@, “) ‘.
EPROM MANAGER 11

THING & EPRCH UTILITY SOFTWARE
FOR THE QL

CopRieT 1068-80 Jocke HERZ SoFmie
YRITTEH B Jocue Heal

). THING & EPROM Manager m

EPROM MANAGER 1II

S

Copyright 1988 Jochen Merz

All files delivered on the disc/microdrive cartridge
enclosed are copyright of Jochen Merz; the files
PTR_GEN, WMAN, CONFIG and HOT_REXT are exceptions:
they are copyright of QJUMP and have been included
under license. If you do not know how to use one of
this programs/extensions please have a look at the sec-
tions at the end of this manual.

Please make your own backup of the files to work
with. These backups are for your own use only!!! Do not
modify the master disc/cartridge!

Under no circumstances will Jochen Merz Software be
liable for any damage or loss including but not limited
to loss of use, stored data, profit or contracts which
may arise from any error, defect. or failure of the
software. If you find any bugs in it we will try to fix
it as soon as possible. You get free updates if you
send the master disc/cartridge together with 2 inter-
national reply coupons to

Jochen Merz Software
Im stillen Winkel 12
4100 Duisburg 11
Wesl Germany

In the following manual you can exchange flp to mcv
if you own a microdrive version. Paramelers shown in
squarce brackets mean options. Some examples use some
of the facilities of Supertloolkit IT and HOTKEY System
11.

Copyright 1988,89 Jochen Merz !

4

[

THING & EPROM M anager L .]

The EPROM Manager

The EPROM Manager enables you to put one or more
files of the same or differenl Llype into one file, so
that the whole file can be loade:l in one go. The whole
file may be put into one or more EPROMs if you wish.

Loading a file containing many files not only saves
memory (remember, RESPR takes multiples of 512 Bytes),
but it works much faster, especially if you load from
microdrive.

First you create a control file. You can use any
ASClI-texteditor (for example Metacomcos, The Editor,
or better use QD!!!) to do that. This control file should
contain any instructions for the EPROM Manager to
create the file you wish. After creating the control file
execute the EPROM Manager and enter the name of the
control file. The EPROM Manager does its work auto-
matically now and either reports an error or gives you
the file you asked for. The control file may contain the
following commands: o

ROM outputfile,size[copyrightmessage]

tells the EPROM Manager Yyou wish to get a file to
put into EPROM. outputfile will be created by the
EPROM Manager. size is the maximum work space of the
EPROM Manager in kilobytes. Optionally you can give a
copyright-message, maximum 35 characters long. EPROM
Manager automatically appends a 'NEWLINE'. You know
copyright-messages if you own SuperToolkit II or a disc
controller, for example. Example:

ROM flpl_example,64,Copyright Jochen Merz 1988

¥
4
Copyrifht 198889 Jochen Merz 2
F

THING & EPROM Manager

RAM outputfile,size

s a command to tell EPROM Manager that you wish a
file which you want lo LRESPR. The parameters are the
same as ROM.

Note that the first command of a file must be a ROM
"or RAM command and that there must be only one of
these commands!

There are different Kkinds of files you may wish to
put into a file to load or initialise at a later date.
There are many resident extensions, for example
RAMPRT (QJUMP's RAM-disc), PTK_BIN (Pointer's Toolkit),
HOTKEY System 11 or PTR_GEN, WMAN, etc. You have to
decide whether the resident extension should be
initialised immediately when booted or loaded or if it
should be invoked with a new SuperBASIC command. It
would be very helpful to initialise all the useful things
at the beginning of a QL session, but there are some
programs which do not like any extension. RAM-discs
usually present no problems, but there are some
programs which do not work with an initialised Pointer
Environment.

So you have to decide now which extension should be
initialised immediately. No program worries about
RAMPRT, PTK_BIN should be ok, HOT REXT too. So you

can initialise them immediately. You use the command

BIN filename

These files will be initialised immediately when
loaded or during Loot. Examples:

BIN flpl ramprt |
BIN fApl PTK_BIN

(2upyg‘:|p,hl. 1988,89 Jochen Merz 3

. @ ®

THING & EPROM M anager)

Lot us now have a look at extensions which will be
invoked at a later date. PTR_GE!N is one of Lhese such
programs, WMAN can be initialiscd only if PTR_GEN has
been initialised. Therefore we acd two new SuperBASIC
commands which invoke the Pointer Interface and the
Window Manager if entered. The syntax is

CMD filename,command

The new command may be up to 14 characters long.
You should define it in upper case, otherwise you
would get a mixture of upper and lower case commands
in a listing. Examples:

CMD flpl ptr gen,POINTER
CMD flpl wman,WMAN

To install the complete Pointer Environment use, if
the created file has been loaded, the new SuperBASIC
commands

POINTER:WMAN

You may create a file with another EPROM Manager
control file which puts both files into one file so that
you can install the Pointer Environment with one
command.

Files like this may be declared to be a Thing but
there is no sense at the moment in doing that, as the
concept of Things is new and there is no resident ex-
tension which supports it

(2upy':{ight 1988,89 Jochen Merz 1

[) THING & EPROM Manager)

Most of the other programs you may wish to put into
EPROMs are executable programs, jobs. You usually
start those kind of programs with EX, EXEC or EXEC W
(i.e. programs of filetype 1). Again here you have two
options: You can assign a new SuperBASIC command to
invoke a job or you can create a Thing to be executed
with a Thing command or with a HOTKEY.

JOB filename,command

Is similar to the CMD-command, but this time no ex-
tension will be activated, a job will be created. You
should use ROM-able jobs only!

THG filename,thingname

declares a given file to be a Thing. The filetype will
be the Thing-Type. If the file has a filetype 1, you
may combine it with HOT_THING with a HOTKEY. After
loading or initialising a file or an EPROM which con-
tains a THG-definition, you get some new things: If
before the Thing gets initialised a HOTKEY System II
exists, the Thing will be linked into the Thing-list
automatically.

In any case you get a new SuperBASIC command, TH_
plus the Thingname, to link in the Thing at a later date
or if it has been removed with TH_REMV or TH_FRMV.
Notice that you can use all these facilities only if you
have a HOTKEY System II V2.03 or higher version,
otherwise it is impossible to link in Things.

Thing names must be at least three characters long,
but a maximum of 12 characters is allowed.

o

Copyright 1988,89 Jochen Merz
y

4

o

. @ ;NG & EPROM Manager o

You can put a thing directly on a HOTKEY, even in
ROM! First you have to declare the Thing, then you
declare the HOTKEY. The command is

HOT EXEC key,thingname

To put QRAM on a HOTKEY '/' (as always), you could
put the following two lines into you EPROM controlfile:

THG f£1pl QRAM,QRAM
HOT EXEC /,QRAM

After you burned the ROM and started the computer
with the ROM you will find that a HOTKEY '/' exists.
Have a look with HOT_REXT's HOT _LIST command.

Finally you can declare files to be a device. After
RESET the OL looks for a device 'BOOT' and, if not
found, for a 'MDV1 _BOOT'. So you can make your own
BOOT if you wish. You just write your own BOOT-pro-
gram which does all the things you want after RESET,
remove the line numbers (very important!!! QD helps you
do this!), and declare it to be new device BOOT.

DEV filename,devicename

You can use any other devicename, of course, up to a
length of 4 characters. Beware of over-defining stan-
dard devices like con, scr. Ser, pipe or par, for
cxample!

Cdpyright 1988,89 Jochen Merz 6

ﬁ’
e

= ———

.1 fHING & FPROM Manager f’f

If you Jeclare a procedure to be a device, e.j.
DEV mdvl_someprocedure,PROZ

you can have a look at it at any time by typing in
COPY PROZ TO scr

or you can load or merge it in the usual way to exe-
cute it immediately.

An example: You wish to put the major things of
your BOOT-file into EPROM. This boots much faster and
leaves you more RAM space to work. A control file for
doing this would be

ROM flpl BOOT ROM,64,My BOOT-EPROM
BIN flpl RAMPRT

BIN flpl THING rext

BIN flpl HOT rext

cMp flpl PTR_GEN,POINTER

cMD f£lpl WMAN, WMAN

BIN flpl QLIB_run

THG flpl QRAM, QRAM

THG flpl SYSMON,SYSMON

You save this control data to a file, say
flpl BOOT_CTL

Now you can start the EPROM Manager:
EX EPROM_ MANAGER

and enter the cont ‘ol-filename:

f1pl BOOT CTL

Copyright 1988,89 Jchen Merz 7

g
.

"“ "VB,

THING & EPROM Manager

All firther action is automatic. You will get a ready
file presented or you will read an error message. Be
sure, all the files listed above do not fit into one 64k
EPROMs, so you have to give at least 128k and put it
into two or more EPROMs.

If you burned the file into one or two EPROMs, you
could make a BOOT file:

10 ERT HOT THING('/',QRAM):REMark QRAM

20 POINTER:WMAN:REMark gives us Pointer
30 TH EX SYSMON:REMark executes SYSMON

40 HOT GO

This file would replace a BOOT file of the following
form:

10 a=RESPR(6448):LBYTES flpl RAMPRT,a:CALL a

20 a=RESPR(2998):LBYTES flpl THING_rext,a: CALL
a

30 a=RESPR(10946):LBYTES flpl HOT_rext,a:CALL a

40 a=RESPR(13448):LBYTES flpl__PTR_GEN,a:CALL a

50 a=RESPR(7882):LBYTES flpl_WMAN ,a:CALL a

60 a=RESPR(10064):LBYTES flpl QLIB_run,a:CALL a

70 ERT HOT CHP('/',flpl QRAM)

80 EX flpl_ SYSMON -

90 HOT_GO

y
Copyright 1988,89 Jochen Merz 8

@ ~

THING & EPROM Manager -

General Rules

You should never put impure or any code which is
not ROM-abhle into ROM.

Some resident extensions need a special sequence.
. Some extensions do not like to be loaded before others,
some do not worry about their position in the initiali-
sation sequence.

Never load PTR_GEN before SPEEDSCREEN or
LIGHTNING!

Never initialise Toolkit II after HOT_REXT! If you
have to invoke Toolkit II with the command TK2_EXT,
you should define a command for HOT rext, say
HOT EXT. After the QL started up, you enter
TK2_EXT:HOT_EXT.

”
Copyr‘fght 1988,89 Jochen Morz 9

[}

. THING & EPROM Managc: .

ROM-ABLE OR NOT?

You must not put programs or extensions into ROM
which are not ROM-able. You can check if a program or
extension is ROM-able if you use the new commands of
the extension EPROMTEST rext. Load the extension the
normal way, i.e. with LRESPR or the boring RESPR:
LBYTES-CALL sequence. You get two new commands:

ROM LOAD filename

loads an EPROM-file and initialises it in the same
way as if really is in EPROM. Firstly the ROM-name will
be printed out, then any new commands (if there are
any) will be initialised, after that the EPROM
initialisation (if there is any) will be executed. After
doing that a checksum will be generated and the
contents of the 'EPROM' should now work. You can test
everything. Try to do some things again. If everything
works without a crash, your chances are quite good.
You can enter now

ROM TEST

and you will immediately know if the EPROM code has
been modified by itself (not very good!). There is no
warranty that the EPROM file is 100% rom-able, but you
can assume that it is.

So, here you see how the file would behave in ROM,
so it's not necessary to burn it to see if there 18
anything wrong.

After doing a ROM LOAD and a ROM_TEST you should
RESET your QL.

'
Copyrjght 1988,89 Jochen Merz 10

4

L

"

THING & FPROM Manager

SPLIT FILL

This is a useful utility for large EPROM files. If you
have files longer than 64k and you wish to burn them

~nto EPROM you will surely run into some trouble. Most

memory expansions do not work with the QEP III, so
you have only 64k workspace for the QEP III. You are
lucky if you own an internal memory expansion, this
will work with QEP Ill. Another case is, if you have a
simple EPROMmer and you would like to put a 64k file
into 2 27256 EPROMs. You have to split the file into
two files of the required length. SPLIT FILE helps you
do this. It splits any file into two or more parts to fit
into any available EPROMs. First you have to start the
program:

EXEC flpl SPLIT_FILE

Enter the filename of the EPROM file, e.g.

f1p2 TEST_ROM

and select the size of the EPROMs, in the example 4.
You will get two files now,

f1p2 TEST_ROM 0
f1p2 TEST_ROM_1

(if the file 1is longer, the next file would be
flp2_ TEST ROM_2 and so on)

o
y
Copyright 1988,89 Jochen Merz I

. THING Extension II

THING EXTENSION II

«
Y

’ i
_/”'.‘

Copyright 1988,89 Jochen Merz

You will find the following procedures and functions

in this manual:
Procedure- or function-name

THINGS [#ichannel]

TH_LOAD filename [,thingname]
TH_REMV thingname

TH_FRMV

TH_USE (thingname [,timeout])
TH_OFFSET

TH_FREE thingname

TH_USER [#channel,] thingname
TH_EX thingname [,priority]
TH_TYPE (thingname)

TH_VERS$ (thingname)

Copyrighl 1988,89 Jochen Merz
K

Type

PROC
PROC
PROC
PROC
FUNC
FUNC
PROC
PROC
PROC
FUNC

FUNC

o
Y
oa

1]

OO 00000000~~~

THING Extension II 9

Things

First of all you have to know what things really are,
as the name tells you nearly nothing.

Things are general-purpose resources which may be
used by any code in the system, either from device dri-
vers or directly from programs. Things may be share-
able by a finite or infinite number of 'users’.

A Thing normally has a version number. It is declared
either directly (if the Thing is declared to be a Thing,
e.g. HOTKEY System II) or, if it is loaded at a later
date and declared to be a Thing (e.g. TH LOAD) it will
get the version number found in the header of a confi-
guration block (if one exists). This means: every Ppro-
gram which has a standard configuration header will
have the same version number to be the Thing version.

Things are identified by name (like files). Executable
Things (e.g. files, whose filetype is 1, which may be
EXECuted) may be started from RAM or ROM. You do not
have any loading time and need léss memory. Each exe-
cution of an executable Thing will not copy (or load)
the whole program into RAM, it just creates a new job
header. Every running copy of that thing shares the
same code, but has a different data-area.

The above applies to all other kinds of files. Once
declared to be a thing it is possible to find it in RAM
or ROM. Any piece of code can find it. To give an
example think of user-defined-character sets. If you
start three or four compiled SuperBASIC-Jobs which use
that character set, every program will load it and use
it itself. There was no easy way to let other jobs know
where the character set has been loaded.

Copy¥ight 1988,89 Jochen Merz 2
g

L]

® -

THING Extension II

Things give you an easy way to do it. Everything,
which has been declared to be a Thing may be used
from any code or job running in the machine.

A piece of code that wants to use a Thing supplies
the System with the name of the Thing. The result re-
turned is the address of the Thing. If the call to use a
. Thing is successful, the job is said to be a user of
that thing. This job may free a Thing at a later date. A
Thing will also be freed if a 'user’-job disappears.

If a Job, which installed a Thing, disappears, and the
Job is the owner of the memory occupied by the Thing,
the Thing will also disappear. This can lead to further
action: All jobs which use the Thing at the time it is
removed have to be removed also, as their existence is
based on the existence of that Thing. A special case is
SuperBASIC: SuperBASIC itself must not be removed, so
it is more difficult to remove Things created by Super-
BASIC. The result is: any Job should use a Thing only
for the time it really needs it and then free it.

Removing a Thing which is not in use gives no
problems (TH_REMV). The memory occupied by that Thing
will be released. In this case no job will be killed as
there is no job using the Thing. You can force remove
Things in SuperBASIC (TH_FRMV). All jobs which cur-
rently use the Thing will be removed except the Thing
which is doing the force remove. A very complicated
example would be compiled SuperBASIC, which has been
started by a job which is removed when the Thing is
removed. This means all jobs which are owned by jobs
which disappear would also have to disappear. In this
case the compiled SuperBASIC would also be removed.

This may sound very complicated, but it is not. All
this ensures that QL's memory will be cleared if there

is something removed to the state before. \

Copyright 1988,89 Jochen Merz 3
V4

o
.] THING Extens.on II ’

The Thing-Extension

The Thing-Extension gives you some SuperBASIC com-
mands and functions to control and use Things. You can
load the Thing-Extension by typing

LRESPR flpl THING rext
or for people without SuperToolkit II

a=RESPR(size):LBYTES flpl THING_rext,a:CALL a

THINGS [#channel]

gives a list of all currently existing Things. Default
is channel #1, but you can give any other channel of
course.

You will see a table of three columns: the version-
number (if there is any) of the Thing, the type and the
name of the Thing.

The version-number is either the real version-number
set by the Thing itself or a version-number found in
the Configuration-Block (if there is any) if the Thing
has been loaded with TH_LOAD. Things installed with
the EPROM Manager get a version 'ROM' instead of the
real number (this applies for RAM-files made with
EPROM Manager too).

Copyright 1988,89 Jochen Merz 1

4

s

v
#"

' THING Extension II " J

The Thing-type is (nearly) icdentical with the usual
file-type. TH_LOAD takes the file-type and declares it
to be the Thing-type. The following types exist at the
moment:

-1 VECT special VECTOR THING.

0 UTIL file-type 0 (if loaded) or UTILITY
1 EXEC file-type 1 (if loaded), executable
2 DATA thing containing any type of data
3 EXTN thing contains or is an extension

If the type is 3, you will find a list of the extension
IDs defined in that thing. An example of extension
thing is the ser par_prt Thing of the QL Emulator for
the ST or the Menu Extension.

The special THING is the only Thing which has
upper-case letters. Thus you cannot use or remove it.
It contains vectors to access Things from machine-code.

The Thing-name is very analogue in its form to file-
names. It does not matter whether you specify the
Thing-name in upper or lower case or a mixture of it.
You can see it in the list in lower case anyway, in
order to speed up comparison. There is one restriction:
Thing-names have to be at least three characters long.
This also gives faster comparison. If you TH_LOAD a
file name shorter than three characters, one or two v
will be appended.

4

(¥,]

r
Copy’right 1988.89 Jochen Merz

. THING Extension II '

TH LOAD filename [thingname]

loads in the given file and de«clares it to be a Thing.
The name of the Thing is the nime of the file without
the drive. You may give a drive specifier. If you do
not, the data default directory will be used. If the
name is shorter than three characters, '_' will be
appended to give a name of three characters length.
The Thing-type will be the same type as the file. If the
file contains a standard-configuration-block the ver-
sion number will be used to give the Thing-number.
There may be an optional name if the Thing name has
to be different to the file name.

Examples:

TH _LOAD £lpl_QUILL
defines a Thing type 1 (executable) named
quill.

TH_LOAD flp2 qd :
defines a Thing type 1 named qd_.

TH_LOAD mdvl_gd,Editor
defines a Thing type 1 which is QD, but
the name should be Editor.

All usual file errors may be returned. If a Thing with
the same name already exists, an error 'already exists’
will be returned.

Cupyrﬁght 1988,89 Jochen Merz 6
Y

L1

. THING Extension II .
TH REMV thingname

removes a Thing. The whole memory occupied by the
Thing is released.

Possible error returns: The Thing does not exist or
it may be used by a job.

TH FRMV thingname

removes a Thing, even if it is used by one or more
jobs. All jobs using it will be removed.

TH USE (thingname [timeout])

is a function. It return the address of the Thing or a
negative number which is an error code. You can con-
vert it into a message with REPORT. If an address is
returned, the current job will be a user of the thing,
until the job or the Thing is removed or the job frees
it with TH_FREE.

An optional timeout may be specified. Timeouts are
useful if the Thing which should be used is not
shareable and currently in use. The default timeout 1is
‘forever', so you have to BREAK. If you specify a
timeout, TH_USE will return after the given time if the
Thing is still in use.

The address of the Thing is the start including
header. You will find here always the standard identi-
fication 'THG%'. To find the start of the code loaded in
with TH_LOAD, you have to add the value TH_OFFSET.

Copﬁright 1988,89 Jochen Merz 7
7

.

¢ THING Extension II \.
To use a TH_LOADed font, use

address=TH_USE(fontname)+TH_OFFSET

Another example:

10 adr=TH USE(tra_table)+TH OFFSET

20 IFP adr<0

30 REPORT adr

40 ELSE

50 PRINT 'TRA TABLE at address '‘!adr
60 ENDIF

TH FREE thingname

frees a Thing. The job will be taken out of the list
of users of that Thing. If you are not using the Thing
you will get 'not found'.

TH USER [#channel,] thingname

gives you a list of all jobs which currently use the
given Thing. You may specify an output-channel, default
is #1. You get a list of jobnumber, tag and job-name for
every job using it.

TH EX thingname [;parameter$] [priority]

executes an executable Thing (type 1, EXEC). An op-
tional parameter string may be passed to the joh. This
parameter string has the same function as defined in
the EX command of SuperToolkit II. You can give an op-
tional priority, otherwise 8 will be used. Note that
many programs change their priority directly after the
start.

Copyrﬁight 1988,89 Jochen Merz 8
y

g

L

. THING Extension II '

Note also that only a new data area will be used by
that job; there may be many jobs running which share
the samc program. This can save an enormous amount of
memory. Important: executable Things must not modify
the program code, otherwise only one copy of that must
can be executed!

Examples:

TH_EX Editor
executes a Thing 'Editor’

TH _EX Grabbed Quill; "i100"
executes a grabbed Quill and allows a
maximum workspace of 100k Bytes.

TH_EX asm;'flp2_test -errors',100
starts an assembler, sets its priority to
100 and passes a parameter string.

TH EX 'clock’,l
starts a clock and sets the priority to 1.

TH TYPE (thingname)

is a function which returns the type of a Thing (or
an error message, as always). TH_TYPE has to use a
Thing to find out its version number. The timeout is 2
seconds.

TH VERS$ (thingname)

is a function which returns the type of a Thing (or
an error message). If the Thing does not have a Version
number, an empty string is returned. TH_VERS$ has to
use a Thing to find out its version number. The timeout
is 2 seconds.

Copgright 1988,89 Jochen Merz 9
4

[

. THING Extension II ’

Using Things

A Thing can be thought of as a kind of file in RAM
andfor ROM. One or more Jobs may access Things,
similar to shared files.. By way of example, let us usc
the SuperToolkit II-command

CHAR _USE #channel, fontl,font2

to assign new fonts to a SuperBASIC channel. But,
first you have to get the fonts into memory somewhere.
Let us assume that the length of the font is 850 bytes.
You have to get 850 bytes memory space. Normally you
get memory space by RESPRing it. This works if there
are no jobs running (a rare occasion in my machine) and
this has the disadvantage that you cannot release the
memory to use it for other things (not Things). ALCHP
also has some disadvantages: when doing LOAD, NEW
etc. the memory will be released to the system automa-
tically, after CLEAR the address of the font gets lost ...
In either case you have to re-load the font.

A further disadvantage is: if theré are some compiled
jobs all needing the same font, all have to load them
just for their own use. This does not happen with
Things! First you load a font (TH_LOAD) and declare it
to be a Thing. After doing that any job can access this
font with TH USE. If you do NEW, CLEAR or LOAD, you
can get the address at any time just by using it again.
You do not have to re-load the font.

A further advantage in using Things is the ability to
held programs constantly in memory and to access them
with HOTKEYs. That's what HOT_CHP and HOT RES (of
HOTKEY SYSTEM 1I) do: they load the file and declare it
to be a Thing. You do not believe it? HOT_CHP some-
thing and have a look at the Thing-list.

Copyri’ghl 1988,89 Jochen Merz 10

4

*

¢ e

THING Extension 11

vou will find that HOTKEY II itself is a Thing, and,
if it has a version number V2.03 or higher, you will
find a Thing called 'THING' too. This THING is an ex-
ception, because it is defined upper case and cannot be
used or removed.

If you have a Thing in ROM or RAM, you can combine
it with a HOTKEY. This may be done with the
HOT_THING function. Let us assume you made yourself
some EPROMs with the EPROM Manager or you loaded a
Thing with TH_LOAD, you can combine it with a hotkey,

e.g.
ERT HOT THING(key,thingname)

After that you can press the given key to invoke the
program.

There is a problem when you remove the HOTKEY: The
Thing combined with that key will also disappear, but
if you remove the Thing, the HOTKEY will not be
removed. If you remove the HOTKEY _after you removed
the Thing you will get a message 'not found’. This does
not mean that the HOTKEY does not exist (perhaps it
really does not exist), it can mean that the Thing
combined with the HOTKEY does not exist.

The extension Things (type EXTN) also have many
advantages: the interface to the command language (e.g.
SuperBASIC) is much easier than the existing one. If
you remove the extension, the interface makes sure
that it is really 'clean’ removed, e.g. no crash if you
remove a command which does no longer exist. And, if
there are a lot of BASICs (future ...) running around
and using this extension, the removal of the Thing
makes sure that the BASICs which use them are also
removed.

;.’
opyrighl 1988,89 Jochen Mearz 1

. Pointer Environment & Confi@

POINTER ENVIRONMENT

It is very easy to explain, but adds great power toO
the QL. The Pointer Environment consists of two resi-
dent extensions, called PTR_GEN (an extended version
of the Sinclair QL Pointer Interface) and WMAN (the
Window Manager). The window manager will be used only
from programs which are programmed to do so. The
Pointer Interface will add facilities to the QL which
can be used by many programs, even programs which
were written before the Pointer Interface existed.

You load in the resident extensions in the same way
as other resident extensions:

LRESPR f£lpl PTR_GEN
LRESPR flpl WMAN

If you do not have a SuperToolkit II, you have to use

=RESPR(15000) : LBYTES flpl PTR_GEN,a: CALL a
a=RESPR(9000) : LBYTES flpl WMAN,a: CALL a

The sizes used in this example are also examples.
You have to find out the real sizes and use them
instead. You should add these lines to Yyour BOOT
program!

The Pointer Interface adds 'real' undestructive
windows to the QL. CTRL C does not only move the
active Cursor, it moves all windows of a job. So, do you
have some jobs handy? Start a job and press CTRL C.
Press CTRL C again. Do you seé the effect?

In menu-driven programs you can select items Dby
pointing to them and pressing SPACE or ENTER, or by
pressing the first letter of the text within that item.
Try loading a program which uses the Win(io‘iv Manager.

Under License of QJump 1
K

]

Now move the pointer. Move it nver a 'Menu item'. You

will see, that it gets a border a: soon as you touch it.
This is the ‘current’ item. Now n»ress SPACE. The menu
item will change its colour, maybe something happens
(depending on the item).

., ointer Environment & Config .

SPACE always selects or deseiects, depending on its
. state. You may have pressed ENTER, this selects and
executes. SPACE and ENTER may have the same effects,
but not always. You may, if you own a mouse (connected
to an ST with QL Emulator, QIMI or SuperQBoard) press
the left mouse button instead of SPACE or the right
mouse button instead of ENTER. The third way of se-
lecting an item is pressing the first letter of its name
(sometimes a function key etc). The rule is: point to it
and select or press the first letter..

There are special items which have special
keystrokes.

ESC Escape, Quit, Abort

Fl is Help

CTRL F1 is Sleep :

CTRL F2 is wake up button or update window
CTRL F3 is wWindow resize

CTRL F4 is window move

Not all programs offer all the facilities!

Move the pointer out of the window. You will see, it
appears to be lock. This means: there is a window
underneath which is locked. Now press SPACE or ENTER.
You will 'pick' this window. It is easier then doing lots
of CTRL C's.

The Pointer Environment offers many facilities, the
window Manager even more. To mention them all would
fill many pages. You will find special facilities used by
a program explained in the manual of that pr?gram.

Undcf' Licensc of QJump 2
/

4

I . .er Environment & Config .

CONFIGURATION

To start CONFIG use

EXEC flpl CONFIG or
EX CONFIG

Using CONFIG is very easy. CONFIG asks for the file
to configure. These files may contain one or more
configurable parts.

Each part has its own name and version number. You
will be asked in turn if you wish to configure each of
the parts. Press ESC when Yyou have configured
everything that you wanted.

Once you have said YES to configure a program,
there will always be some text to which you have to
reply. You can always press ENTER to go to the next
question, press ESC to quit or answer the question.

You will be prompted for different types of
parameters, e.g. string, number, a single character or a
number of pre-defined options.

You can go through many options by pressing SPACE.
When you found the right option, press ENTER.

You may press ESC at any stage to save the setups
you have done so far. Press ESC again to configure
another program or a press it a third time to leave
CONFIG.

Under Liq%nse of Q.!ump 3
&

