To load the program, start tape at beginning, enter LOAD " " on your Spectrum then wall, the program loads in two parts - on completion the computar will display a menu of options - switch off tape.

SCENARIO
You are the pilot of a light aircraft on a fight from an airffeld at night, with a runway running East-West (Heading 270). Select mode 6 - map- The runway is shown along with the VOR (v), the NDA (n), and a range of hills which extend the entire width of the screen up to an altitude of 1650 leet, with one small valley to the West of the runway. The lower half of the screen show 5 a profile view of the area (when you complete m run your route will be shown in plan and proflle). The airspace above this area is very congested, if you should climb above 2200 m there is a high risk of collision.

Your intial position depends upon the Mode selected, if nothing is selected within 30 secs the progrsm will run Mode 0 - Demo. After selection of Modes 1 - 4 you will be prompted to input the wind strength. Input wind strength desired followed by enter. Wind direction is random.

MODE O DEMO
This shows the last $2 \frac{1}{2}$ miles of a successful approach (in this case fown on auto pilot) The graphics are a view of the runway, somp scattered lights and a village at night, this comes into view at 2 miles. If you can see all of the lights on both gides of the runway then you are in line with the rumway. If you cannot see both sides or can see nothing at all uhen you are not in line. After landing the menu will return.

MODE 1-FINAL
You are 9 miles from touchdown at 2000 ft , somewhere near the centre line heading West (270). You must use the instrumente available to find the rway and land successfully.

INSTRUMENTS
A/H (Artificial Horizon) - This shows the nose up/down pitch and angle of bank, the horizon is represented by the white line behind the aircraft shape f.e. If the horizon line is below the aircraft then the nose la pitched up, if the horizon slopea from high on the left to low on the right the aircratt's left wing is below the horizon and in laft turn (and vice varsa).

ILS (Instrument landing system) - This instrument interpreta two redio beame aert out from the runway, one in line with the centreline (beading 220), the eecond show's a safe glide slope. The bars on the instrumentis reprasent the position of the radio beams relative to the aircraft i.e. If the vartical bar is right of centre then you must fly 'right' to get to it, if the horimontal bar is above the centre, then you are below the glide slope and soon. impORTANT - If you are heading away Irom the airfield the indications appear reverted.

ASI (Air Speed Indicator) in MPH.
ALT (Altitude) in feet above the runway.

HDG (Heading) In ct mpass degrees e.g. $360=$ North, $090=$ East, 245 = South West.

VSI (Vertical Speed Indicator) This shows rate of climb or descent in feet per minute (minus figures are descent).

FUEL, reduces faster with higher RPM. Initial amount varies with Mode.
FLAP indicates up or down (DN) Max safe flap down speed = 85 MPH (ASI reduces by 5 MPH when 'DN' due to drag)

GEAR indicates up or down (DN) Max safe geat ' DN' speed $=90 \mathrm{MPH}$ (ASI reduces by 5 MPH when ' DN ' due to drag)
N.B. If you oxceed either max safe speeds or the max safe speed for the whole aircraft (145 MPH) then you will crash.

DME (Distance measuring equipment) Measures miles from the beginning of the runway. N.E. As you pass the hegining of the runway the figures increage egain.

RPM (Engine Power) Max 2500, MIN 800. N.B. If you run out of fuel RPM will reduce to BOD.

To land successfully you must stall the aircraft onto the first 0.2 miles of the runway (Flap down i.e. leas than 60 MPH). From a height of less then 10 ft , with a descent rate of 300 ft per minute or less, wings level, gear down (you will hear the tyres squeek on larding).

When an alrcraft 'stalls' it can no longer fly. At any aldtude above 10 teat this will damage or crash the aircraft - an aircraft will stall when ASI is less than the stall speed (normally 7U MPH) - when you lower the flaps the stall speed reduces to 60 MPH - thls allova you to Hy slower, safely. N. B . If you are in a banked turn the stalling speed increases by 5 or 10 MPH (depending on the angle of bank).

MODE 2 - Heading South East (130) roughly towards the NDE (E) level at 2000 feet.

INSTRUMENTS - As per MODE 1 PLUS:
ADFE (Automatic Direction Finder) This is an instrument which has pointer which polnts to the NDB (Non-Directional Beacon) (East in this case), which is afruated at four miles from touchdown in line with the ILS centraline. The needle points relative to the aircraft direction such that if the aircraft is pointing straight at the N ild the pointer points arsight up e.g. if the pointer is left of straight up, then turn left to home in on NDB.

When you pase over the NDA the pointer will swing around (Run Mode 5 A/Pllot and observe the affect at 4 miles) having found your way to the NDH you now have to turn in to "eatabliah" on the ILS. The easiest way to do this is to fly past the NDB on a South Easterly heading for four or five cyeles and then iurn left to the LIS. Navigational accuracy to the NDB is measured only on the first pasa (not as you pass it intound on the ILS) Max 50\%. You must juctge your own moment
to commence descent (bearing in mind the glide slope and mountains).
MODE 3 Heading North towards the VOR (VHF Omni-Directional Range)
INSTRUMENTS As Mode 2 Except:

VOR This is a different kind of radlo beacon which produces beams radially (like the spokea of a wheel). You have preselected the 360 radial. The instrument shows the relative position of the beam in the same way as the ILS centrelite (inbound heading now 360). DME in this case shows distance to run to VOR ADF W - there is a second NDE situaved at the same place as the VOR (W standing for West) the pointer now polnts to it.

When you pass the VOR/NDE W make a right turn, select the ILS (by holding down key 'I') which gives you NDE E and the ILS as in Mode 2, continue as per Mode 2.

Navigational accuracy is assessed on VOA and NDB E (Max 100\%).
MODE 4 TAKE OFF - On the runway with take off power selected.
INSTRUMENTS As per Mode 3.
You must take aff the climb to an altitude high enough to cross the hills. You msy efther climb straight ahead to an altitude clear of the hills or you may intarcept the radial 360 from VOR (as already selected) which will take you through the narrow valley west of the airfleld. If you climb atraight ahead you may use ADF W to hame in on the VOR/NDB \mathbf{w}, ther continue as per Mode 3.

MODE 5 AUTOPILOT In this Mode the computer selects a position as per Mode 1 Finale, and whil fy teself down the ILS and achleve a landing. Each time the Autopilot makea a control change the computer will BeEP. If you wish to take control of the computer approach then press ' T '.

In all player controlled Modes the keyboard is acanned just after the short eEep (cycle time about 2 secs) when taking cantrol from Autopilat hold down ' T ' untht you hear the input BEEP (shorter than Autopilot BEEP).

CONTROL KEYS

7 Ralses A / C noie
6 Lowerg A/C nose
3- Reduces engine rpm
$K+$ Increages engine rpm
5
Bank left

Bank right

EFFECT

Speed decreasea, rate of deacent decreases (climb increasea) Speed increases, rate of dancent increases (climb increases) Speed decreases, rate of descent incrases (climb dec reases) Speed increases, rate of descen' decreases (climb increases) A/C will turn left, heading will decresse and this will contrue until opposite key (B) is used which will bank A / C right \& level wings.
A/C turns right, heading will increase etc. Adjusts heading by 1 to the left without the need to bark

0

1

T
GLOSSARY OF AVIATION TERMS

A / H

A/C
ADF
115
DME
VNE
WND
HDG
ALT
VS1
RPM
ASI
NDD
vor
R

1 to the right
Haises or lowers Anp
Raises or lowers gear
Changes VOR display to [LS display and. ADF W to ADF E
Take control from Autopilot

Artificial horizon
Aircraft
Automatic direction finder
Instrument landing system
Distance measuring equipment
Velocity never exceed
Wind givan in compass degrees
Haeding in compess degrees
Altitute in feet
Vertucal apeed indicator
Engine power

Atr speed indicator

Non directional radio beacon
VHF Omni directional range Radial

