
Machine
Code
Tutor

by
Malcolm Evans

The
Complete

48K Spectrum

LOADING INSTRUCTIONS

This program is arranged on four sides of t ap e.

To LOAD THE PROGRAM TYPE LOAD " "# USING SIDE 1 .
This will uo a d in the screen and pro gram/sim ulator.
When instructed stop the t ap e. Do HOT press drear
DURING the LOADING OF THE SIMULATOR.

You will then be asked whether you wish to load
LESSONS.

If NO (N) y ou will enter straight into the editor
PART OF THE SIMULATOR. Th IS IS NOT RECOMMENDED FOR
BEGINNERS. You MAY ESCAPE BY PRESSING BREAK.

I f YES (Y) you will be reouested to load the
REOUIRED GROUP OF LESSONS. CHOOSE THE DESIRED
SECTION AND START THE TAPE RECORDER. The GROUP YOU
HAVE CHOSEN WILL APPEAR ON THE SCREEN. IF YOU HAVE
SELECTED THE WRONG GROUP PRESSING BREAK WILL STOP THE
LOAD. AND ENABLE YOU TO LOAD ANOTHER SECTION.

The program and lessons are arranged on the cassette
TAPES AS FOLLOWS:

SIDE 1
SIDE 2
SIDE 3
SIDE k

Program/simulator

Lessons 10 - 17
Program/simulator

Lessons 2 6 - 3 5

Lessons 1 - 9
Lessons 18-25
Lessons 18-25
Lessons 1 - 9

ASSEMBLER INSTRUCTIONS

The assemble* accepts all 280 instructions as
INCLUDED IN THE LESSON SUMMARIES. IN ADDITION IT
HILL ACCEPT THE FOLLOWING INSTRUCTIONS ITSELF:

DEFB N

DEFW nn

BIN n

Define Byte. This allocates the
NEXT MEMORY LOCATION FOR STORAGE<
(THIS MAY RE LABELLED). AND INITIALLY
LOADS IT WITH N. The simulator will
CONTINUALLY DISPLAY THE CONTENTS OF
THE LOCATION IN DECIMAL OR HEX.

Define Wo r d. This allocates the next
TWO MEMORY LOCATIONS FOR STORAGE *
(MAY be LABELLED). AND INITIALLY LOADS
IT WITH THE TWO BYTE NUMBER NN. ThE
SIMULATOR WILL CONTINUALLY DISPLAY
THE CONTENTS OF THESE LOCATIONS AS A
SINGLE DECIMAL OR HEX NUMBER.

This is the same as DEFB. except that
THE SIMULATOR DISPLAYS THE MEMORY
contents in Binary f o r m. n is a
DECIMAL OR HEX HUMBER.

The assembler will also accept l a b e l s. A label is
defined in relationship to numbers as fol lows:

Decimal Number Any string containing only
Q-9

Hexadecimal Number Any string containing only
0-8 or A-P. It may be
DISTINGUISHED FROM DECIMAL
by following it with an H.

Label Labels a memory location.
Any string not covered by
decimal or hexadecimal numbers
ABOVE. REGISTER NAMES OR

R ' s n r L ' ' ' ' c -
MAXIMUM LENGTH IS 0 CHARACTERS.

ERROR HESSA6ES - ASSEMBLER

Instruction unknown * First part of mnemonic not
recognised

Space missing - Space missing after first
PART OF mnemonic i.e . I D A ,5

H issing space or , • Space or , missing after

s m ,c
Error after In s t. Error after first part of

mnemonic which the assembler
was UNABLE to RECOGNISE AS
ANY other defined error

Number missing - Part of mnemonic missing
COULD BE A NUMBER

Bracket missing - A BRACKET MISSING
Number too large * N****** greater than

Label too long - Labels can only have upto 6
CHARACTERS

Label not found Label appears in instruction
but not declared in label
COLUMN

No DEFH or DEFN - Label with no instruction

Can only ADD IX /IY - SBC IX / IY or ADC IX /IY found
Offset too big - Offset in (IX*d) or UY* d)

INSTRUCTION GREATER THAN 255

Offset hissing - Ho offset in (IX*d) or (IY«d)
instruction

ERROR MESSAGE - SIKULATOR
Program counter mas jumped to non valid address

UR PROGRAM MAS CAUSED THE
TO JUMP TO AM ADDRESS WHICH

IS NOT THE DEGINNIMG OF ONE
OF YOUR INSTRUCTION LINES

YOU ARE TRYING TO RUN CODE IN ALLOCATED STORAGE AREA

Your program has caused the PC
TO JUMP TO AN ADDRESS WHICH
HAS SEEN ALLOCATED AS STORAGE

YOU ARE ABOUT TO AFFECT MEMORY AREA NOT ALLOCATED TO
VOU

YOU AAC ABOUT TO LOAO A
MCMOAY LOCATION NOT ALLOCATED

YOU ABE ABOUT TO WAITE TO MEMORY WHICH MILL AFFECT YOUA
PROGRAM

YOU ARE ABOUT TO LOAD A
MEMORY LOCATION WITHIN YOUR
PROGRAM INSTRUCTIONS.

The STACK POINTER IS OUTSIDE ALLOCATED MEMORY AREA

The stack pointer

W W B r f P B
3Hts"8RiH)

There are too many registers called up

Your program uses more
REGISTERS THAN THE SIMULATOR
CAN DISPLAY. The PROGRAM
CAN BE RUN BUT ONLY THOSE
REGISTERS DISPLAYED CAN BE
SHOWN

The lessors in this program arc arrangco in pour
gro ups. Upon loading of each section an introduction
APPEARS ON THE SCREEN. TmC MENU FOR THE GROUP OF
LESSONS CAN THEN BE OBTAINED BY PRESSING SPACE . At

LESSON OR EXAMPLE PRESSING WEAK
(CAPS SHIM ♦ SPACE) will return you TO THE MENU.
The FOLLOWING IS A COMPLETE LIST OF ALL KEYS USED AT
VARIOUS STAGES WITH A FULL DESCRIPTION OF THEIR
FUNCTION.

HEW

ENTER M ill enter any lesson or example
HIGHLIGHTED ON THE nCNU.

SPACE Pressing this key allows you to choose
WHICH ITEM TO ENTER

LESSON AND EXAMPLE TEXT
SPACE Pressing this key will display the next

p a g e. At the end of each lesson it
WILL EFFECT a RETURN TO MENU.

BREAK H ill return you to the henu at any tim e.

SIMULATOR : All keys auto-run

RUN This clears all registers and starts
PROGRAM RUNNING.

ANY KEY I f in running state will perform the
highlighted instruction.

a s s . ™ «
stops the running of the prograh

EDIT Pressing this key enters the editor.
(I♦Symbol allowing you to modify or re-write the
s hi ft) p ro gram.

g This .swops the display between Decimal
and Hexadecimal not ation. This key is
OPERATIVE ONLY WHEN THE PROGRAM IS NOT
RUNNING.

BREAK H ill return you to the m e n u.

fat* COMPLETED IF YOU WISH TO REPEAT THE EXERCISE THEN
PRESS RUN.

EDITOR All keys Auto-run

CURSOR KEYS :
& ! » >

Pressing these will allow you to
HOVE the CURSOR IN THE DIRECTION OP
THE ARROWS.

ISiM™ 1 ‘

SPACE

This clears the editor screen and
HCNORY AND RETURNS THE CURSOR TO
THE START OP THE SCREEN

Tars to reginning op instruction
WHEN in larel c o l u m n. Elsewhere
A SPACE WILL RE CREATED.

ENTER This moves the cursor to the start
op the next l i n e.

& ! This DELETES THE CHARACTER TO THE
LEPT OP THE CURSOR AND SHIPTS THE
CURSOR ONE SPACE TO THE LEPT.

STOP Initiates assembly op the program
ON SCREEN. Ip assembled correctly
THE SIMULATOR MODE IS ENTERED. If
AN ERROR IS POUND THEN AN ERROR
STATEMENT IS DISPLAYED AGAINST THE
APPROPRIATE LINE OP THE PROGRAM AND
THE EDITOR WAITS POR CORRECTION.

BREAK W ill return you to the m e n u.

The cditor always displays letters in capitals
However CAPS Sh i m is hot r eq uired.

INTRODUCTION TO LESSONS

The Couplet* Nacmine Code Tutor contains 35 m
LESSONS COYER INO ALL THE INSTRUCTIONS ON THE Z80
PROCESSOR* WHICH IS THE PROCESSOR IN YOUR SPECTRUM
Computer.

All the lessons are dealt with in great detail on
SCREEN. AND IN MANY CASES ARC FOLLOWED BY EXAMPLE
PROGRAMS* WHICH YOU CAN USE AS EXERCISES IY
MODIFYING THEM YOURSELF. THERE IS NO DANGER THAT
YOU MIGHT CRASH THE SYSTEM,

There now follows a list op all the lesson headings*
TOGETHER WITH AN INDICATION OF THOSE LESSONS THAT
ARE FOLLOWED »Y EXAMPLES. UNDER EACH HEADING THERE
IS A SUMMARY OF INSTRUCTIONS WHICH WILL BECOME CLEAR
TO YOU AS YOU PROGRESS THROUGH THE TUTOR. THESE
SUMMARIES ARE INTENDED AS A PERMANENT RECORD OF
INSTRUCTIONS* TO WHICH YOU CAN EASILY REFER FOR
REVISION PURPOSES* WITHOUT HAVING TO REFER BACK TO
THE SCREEN TEXT.

Registers and Nemory
Initially we only consider A.B.C.D*
£*H, AND L REGISTERS.

- S imple Load Instructions
The following instructions are covered:
m g gNjj R^A£E ANY OF THE FOLLOWING:

WHERE N IS A NUMBER 0 " 255
WHERE NN IS A MEMORY LOCATION 0 * 65535

Examples follow this lesson

- Register Pairs
A NUMBER IN A REGISTER PAIR IS 256 X
the high Byte ♦ the low By t e.
The following instructions are covered:

B P V ^ J d fifv * €6,STe*
n n 'is A NUMBER*0 * 65535
JHCRIs^tS ADDRESS OF A MEMORY LOCATION

EXCHANGES register contents.

Examples follow this lesson

LESSON 1

LESSON 2

LD r ;r ‘

LD r *n
LD A*(n n)
LD (n n)*A

LESSON 3

LD d d.nn

LD d d*(n n)
LD (n n)*dd
EX DE*HL

LESSON A - Indirect Addressing
The following instructions are covered:

ID R/(HL)

LO (HL).r
ID A,(BC)
ID A.(DE)
ID <80,A
LD <DE),A

LESSON 5 -

ADD A,n

i n

ADC A,n

a k a ; V >

LESSON 6 -

3

WHERE R IS ANY SINGLE REGISTER
A . B . C , 8 , t , H , OR L .

Examples follow this lesson

Additions and the Carry Flag
Additions with Accumulator and HI
register pair are discussed as well as
ADD with Ca r r y.
The following instructions are cov e r e d;
WHERE N IS A NUMBER 0 * 2SS
WHERE R IS ANY SINGLE REGISTER

ADD with Carry

2 Examples follow this lesson

Subtraction and the Carry Flag
Subtraction with and without Carry on
the Accumulator and HL register pair are
discussed.
The following instructions are cov ered:

SUBtract from A* n , r , or (HL)

SuBtract from A with carry

SuBtract from HL with carry

2 Examples follow this lesson

Sit Cagav Flag „
Compliment Ca m y Flag

3 v >

T k

LESSON 7

LESSON 8

LESSON 9

**
$? H L >

LESSON 10

* ! l >
Jp 9C,**i fe

Increment ano Decrement Instructions
The followinc instructions arc covereo:

Examples follow this lesson

The Zero Flao
No new instructions are covered in
this lesson, which is included to show
you the effect on the Zero Flag of all
THE INSTRUCTIONS CONSIDERED IN
PREVIOUS LESSONS.
A TADLC OF THE EFFECTS OF ALL
INSTRUCTIONS ON ALL FLAGS IS GIVEN IN
Appendix (A)
Examples follow this lesson

Compare
If n is the number with which A is
com pared, then the following results

Carry Zero
A GREATER THAN N 0 0
A EOUALS N 0 1
A Less than n 1 0
The following instructions are covered:
Compares A with n <0-255>
Compares A with register r
Compares A with memory location <HL)
Examples follow this lesson

Conditional K Unconditional Jumps
The following instructions are covered:

JUMP IF CARRY FLAG NOT SET
JUMP IF CARRY FLAG SET
JUMP IF ZERO FLAG NOT SET
JUMP IF ZERO FLAG SET

Examples follow this lesson

l l -

l * >

LESSON 11

JR e

LESSON 12

PUSH DO

LESSON 13

LESSON 1*

RciATive Jumps
Thc following instructions arc cov ered:
Where 6 IS the displacement in the
range 127 to -128

Decrement and jump on non zero

2 Examples follow this lesson

The Stack
The stack and the stack pointer are
INTRODUCED.
The following instructions are covered:
where DD is AF. BC, D£. or Hi. Prom
NOW on gjj CAN BE CONSIDERED AS BC. Dt.

Examples follow this lesson

Calls to Subroutines
The following instructions are covered:

Unconditional 0 CARRY
Carry set
Not Zero
Zero set

2 Examples follow this lesson
Binary Notation
This lesson is about a whole new number
base - bin ary. This is a system of
using only two different num bers, one
AND ZERO, IN EACH DIGIT COLUMN. A
FLAG IS AN EXCELLENT EXAMPLE OP A
BINARY DIGIT. Th IS IS BECAUSE IT CAN
ONLY HOLD A VALUE of ONE OR ZERO. AFTER
READING THE LESSON ABOUT BINARY. YOU HAY
FIND THIS REFERENCE CHART USEFUL:

JR NC.e

I ft
DJNZ £

POP DO

EB k k r

III
m
EX (SP).HL

CM!. NC«nn
c a l . c ,hh
CAL. jZ.nn

Values Of Bi
Bit Num b e r:
Values

LESSON 15 -

LESSON 16 -

LESSON 17 -

LESSON 18 -

t 7 t o Bi t 0:
7 6 5 * 3 2 1 0

128 6* 32 16 8 * 2 1
Examples follow this lesson

Hexadecimal Notation
Hexadecimal notation is discussed at
GREAT LENGTH IN THIS LESSON, BUT THE
FOLLOWING TABLE WILL PROVE AN
INVALUABLE reference
Decimal B inary Hexadecimal

Examples follow this lesson

B inary Coded Decimal Notation
The instruction DAA (Decimal Adjust
Accumulator) is introduced.
Examples follow this lesson

Positive l Negative Numier Notation

ft/E instructions introduced are CPL
omplemcnt) and Ntb (Ne ga te), as well

as the overflow and sign f l a g s. A
table of the effects of all instructions
on THE OVERFLOW AND SIGN FLAGS IS 6IVEN
in Appendix (A)
Examples follow this lesson

Parity
The Parity flag and its uses are
introduced.
A TABLE Of THE EFFECTS OF ALL
INSTRUCTIONS ON THE PARITY FLAG IS GIVEN
in Appendix (A).

LESSON 19

LESSON 20

LESSON 21

8 :t o >

r B ! ! ; t o)

lif *;to)

LESSOR 22

LESSOR 25

15a t o)

1 & t o)

§ t» t o)

The Flag Register and AF Register
Pair

Sign S P/V Flags in Instructions
The following instructions are cov ered:
CALL PQ.nn RET PQ Parity odd • 0
Ca l l p e.nn r e t p ? parity even - i
CALL I '** BET P S ign ♦ve
CALL H,nn RET N S ign -ve
If the condition is not net the program
WILL NOT jump, call a SUBROUTINE OR
RETURN
Examples follow this lesson

Bit Manipulation.
The following instructions are covered:
WHERE N IS THE BIT NUMBER 0 *7

Examples follow this lesson

Logical Instructions
The following instructions are covered:

Examples follow this lesson

Shift Instructions
Shift Instructions are pictorially
ILLUSTRATED IN APPENDIX (B) ,
The following instructions are covered:
divides *ve and -ve numbers by 2

DIVIDES *VE NUMBERS 0 - 255 BY 2

MULTIPLIES ♦VE AND -VE NUMBERS BY 2

Examples follow this lesson

* R : S

AND n
AND r
AND <HL)

Ik.
I k.

LESSON 2<* Rotate Instructions
Rotate Instructions arc pictorially
illustrated in Appendix (8)
The following instructions arc covered:
rotate r le f t, carry duplicates

rotate A le f t, carry duplicates
ROTATE R AND CARRY LEFT
ROTATE A AND CARRY LEFT
ROTATE R RIGHT. CARRY DUPLICATES
ROTATE A RIGHT. CARRY DUPLICATES
rotate R and Carry right

ROTATE A AND CARRY RI6HT

Examples follow this lesson

LESSON 25

RLD
RRD

Decimal Rotate
Decimal rotate instructions arc
PICTORIALLY ILLUSTRATED IN APPENDIX (B)
The following instructions are covered:
Rotate Left Decimal (x lO)
Rotate Right Decimal(/10)
Examples follow this lesson

LESSON 26 - Index Registers
The IX or IY register can replace the

The following instructions are covered:

i m i IW h LD S P .IX
EX (S P) .I X

S B ? f c H B S l ® s i r s
I B ? CP <IX*D>

XOR (IX *o)

ADD I X . dd INC IX DEC IX

Mil! M W ift m
SET N < IX *d >
JP (IX)

RES N .(I X * d > BIT N .(I X » d)

Examples follow this lesson

! > ’

I L « ’

LESSON 27 - The Alternative Sct of Registers
THE FOLLOWING INSTRUCT10HS ARE COVERED:

EX A F .A F * EXCHANGES THE CONTENTS OF AF AND A F'
EXX exchanges BC,DE and H U with B C \ D E ‘

AND Hi RESPECTIVELY.

Examples follow this lesson

LESSON 28 -

IN A.(h)

!E 1:111

Input and Output Instructions
The following instructions are covered:

port*(8 ilsF* mmB€* 0F ™ E ,I4PUT

83!!!:!
Examples follow this lesson

LESSON 29 - Block Instructions
LESSON 30 - Block Transfer Instructions

The following Instructions are covered;

bBU pointer incremented
POINTER INCREMENTED AND REPEATED
UNTIL NUMBER FOUND OR BC*0
POINTER DECREMENTED
POINTER DECREMENTED AND REPEATED
UNTIL NUMBER FOUND OR BC”0
Examples follow this lesson

LESSON 31 -

81*
8k

Block Search
The following Instructions are covered:
POINTER INCREMENTED
POINTER INCREMENTED AND REPEATED UNTIL
NUMBER FOUND OR 8C*0
POINTER DECREMENTED
POINTER DECREMENTED AND REPEATED UNTIL
NUMBER FOUND OR BC«0
Examples follow this lesson

LESSON 32 - Block Input/Output Instructions
The Block Input instructions covered are

I
INCREMENTING
INCREMENTING AND REPEATING
DECREMENTING
DECREMENTING AND REPEATING

The Block Output Instructions
COVERED ARE:
INCREMENTING
INCREMENTING AND REPEATING
DECREMENTING
DECREMENTING
Examples follow this lesson

LESSON 53 - Processor Control Instructions
The following instructions are covered:

K E t
RSI n

t Ui
a t : I

LESSON 3R -

E l
D!

ii i
RET I
RETN
LESSON 35 -

5 S * €o ! 08H# 10H' l8H' 20H* 28H'

Examples of the use of the Refresh
Register follow this l e s s o n.

Interrupts
The following instructions are covered:
Enable Interrupts
Di s a k e Interrupts

Interrupt Nodes

Return from Interrupt
Return from Non-Naskadle Interrupt

F inale

I

w
»

»
 *

cr

oc
f

cf

it

tr
wc

Ti
dc

 m
 r

u
e
s

SI
M

U
tfC

IS
Tt

*
t(S

TR
UC

T I
CR

S
IR

ST
M

CT
IO

I
CA

W
T

TW
O

P/
V

SI
CK

• - > > 4. > • A. 4. <w r- • • •

s
i
3 3

! B

i i
S 8 S -
£ U,

i s?si v>
2

3 § § M 3 S t 2 * 3 s 5 & * NO
TA

TI
ON

•

NO
T

Iff
EC

TE
D

V
P/

V
IN

DI
CA

TE
S

OV
CA

FlO
N

!
AF

FE
CT

ED
 A

CC
OK

DI
M

P
P/

V
III

OI
CA

Tt
S

PM
!t

t
0

RA
fc

 R
ES

ET

TO
 I

NS
TR

UC
TI

ON
1

FU
6

X
T

?
Fl

Af
i

SU
TE

 t
fU

O
ft

AP
PC

lfl
ll

A
EF

FE
CT

 o
r

IK
Tt

llC
Tt

Ot
tS

 0
*

FI
AA

S
KC

IS
TU

 P
AI

N
(m

AT
IO

AS

nt
$T

**c
tio

*
ca

ra
t

ha
o

*n

si
t*

m
i

to
 i

Ks
na

cT
io

is

•
♦

♦
M

l
tX

QC
AK

C
IK

ST
IO

CT
IO

IIS

•
AO

O
f

•
•

•
AO

C.
SK

!

»
V

t
IK

.tC
C

•
PU

SH
.W

•

HO
T A

T 1
0*

♦

W
T

«m
CT

(0

V
P/

V
IN

DI
CA

TE
S

CV
tt

Fl
O*

!

AF
FE

CT
ED

 A
C

CW
1K

P
P/

V
IN

DI
CA

TE
S

PA
RI

TY

0
Ft

 AC
 «

$
£

!
TO

 I
NS

TR
UC

TI
ON

1
FL

A*
 S

ET

?
Ft

 AC
 S

TA
TE

 M
M

AM

AP
PE

ND
IX

 A

EF
FE

CT
 O

F
IN

ST
RU

CT
IO

NS
 O

N
PA

IR
S

HI
SC

EL
LA

NE
OU

S
IN

ST
RU

CT
IO

NS
IN

ST
RU

CT
IO

N
CA

RR
Y

ZE
RO

P/

V
SI

6N
AL

L
JP

,JR
,C

AL
LS

,R
ET

♦

♦
♦

♦
S
DJ
NZ

LD
I,L

DD

♦
♦

!(
2)

♦

LO
IR

 L
OO

K
♦

♦
0

♦
CP

I,C
P1

R,
CP

D,
CP

0R

♦
!(3

)
!<

2>

!
IN

 A
',<

n>
* O

UT
(n

),A

>
♦

♦
♦

♦
OU

T
<C

>,
ft

)
IN

 f
t,

(C
)

♦
!

P
!

IN
M

ND
,

OU
T I

.
OU

TD

♦
!<

R>

?
?

IN
IR

,I
ND

K,
OT

IR
,O

TO
K

♦
1

?
?

NO
P,

HA
LT

,
01

,
El

,
IN

♦

♦
♦

♦
NO

TE
S:

<1

)
P/

V D
IS

PL
AY

S
ST

AT
E

OF
 IN

TE
RR

UP
T

EN
AB

LE
 F

LA
6

(2
)

P/
V

-
0

IF
 B

C -
 0

IF

 N
OT

P/

V
- 1

<3
)

Z
-

1
IF

 A
 -

 (H
L)

IF

 N
OT

Z

- 0
(R

)
Z

-
1

IF
 B

 -
 0

IF

 N
OT

Z

-
1

APPENDIX B
SHIFT t ROTATE INSTRUCTIONS

PICTORIAL DESCRIPTION
HNENONIC

RLC RICA E D ^ - d _ y J

Rl» RLA *-©— G Z

RRC# RRCA * - d

RR RRA q F __0— 4c}-1

S U © — G = ------ 0

SRA = a — <n

SRI O— CZ===3D— «□

, I-- .. . *
RID A 21 1 5 0 | 7 1 | J 0 | (H I)

'--- L ~t L _ b t = = = r
1-- --11--- 1

RRD A 7 R 30 7 R | 3 0 (H I)
TZ__ - J

GLOSSARY
ASSEMBLY LANGUAGE - A language using mnemonics to
REPRESENT MACHINE CODE OPERATIONS. A LOW-LEVEL
LANGUAGE. A* ASSEMBLY LANGUAGE PROGRAM CAN NOT
ITSELF BE RUN UNTIL IT IS ASSEMBLED.

BINARY - Two. In binary arithmetic the digits 0
AND 1 ARE USED TO REPRESENT NUMBERS.

BINARY CODED DECIMAL (BCD) - A system where a nybble
REPRESENTS ONE DECIMAL NUMBER. THEREFORE A BYTE
CAN REPRESENT TWO DECIMAL NUMBERS.

BIT - One single binary dig it, either a one or a
ZERO.

BOG - An error or undesirable aspect in a pro gram,
WHICH PREVENTS a program from working correctly or
NOT AT ALL.

BYTE - A GROUP OF BINARY BITS. USUALLY 8, CONSIDERED
AS ONE UNIT.

CHARACTER - An element of a set of symbols, such as
A LETTER OR NUMBER. OR SPECIAL SYMBOL.

CHIP - Common name for integrated c ir cuit, derived
FROM THE SMALL PIECE OF SILICON ON WHICM THE
INTEGRATED CIRCUIT IS CHEMICALLY FORMED.

COMPUTER - A MACHINE THAT ACCEPTS DATA, ACTS UPON IT,
AND SUPPLIES THE RESULTS OF THE PROCESSING AS A RESULT
OF CERTAIN INSTRUCTIONS. A COLLECTIVE NOUN
DESCRIBING THE PROCESSOR AND 1/0 DEVICES.

CRASH - Term used to describe the computer 'locking u p '
AND NOT ACCEPTING ANY INPUT FROM THE KEYBOARD. Th£
ONLY SOLUTION IS TO TURN THE COMPUTER OFF AND THEN ON
AGAIN.

CURSOR - A FLASHING THIN LINE USED TO INDICATE WHERE
DATA IS EXPECTED TO BE ENTERED ON A YOU.

DATA - A PIECE OF INFORMATION WHICH THE COMPUTER CAN
PROCCSSs

EDITING * The process of changing data before it ts
COMMITTED TO THE PROCESSOR.

EXECUTE - To carry out the instructions in a program.
A microprocessor executes a program by reading AND
ACTING ON THE INSTRUCTIONS.

GRAPHICS - Term describing the display op data in
pictorial fo r m. P ictures on screen are displayed
USING PIXELS.

HARDWARE - Parts Of the computer that physically
EXIST. THE COMPUTER AND A PRINTER FOR EXAMPLE.

HEXADECIMAL - A number base using 16 different
DIGITS FOR EACH NUMBER COLUMN. The DIGITS 0~9
AND A“ F ARE COMMONLY USED.
INSTRUCTION - A certain action to be taken by the
PROCESSOR. A MACHINE CODE PROGRAM IS MADE UP OF
INSTRUCTIONS.

MACHINE CODE * Binary representation of the
INSTRUCTIONS OF THE MICROPROCESSOR. MACHINE CODE
CAN BE ACTED UPON BY THE MICROPROCESSOR WITHOUT ANY
FURTHER TRANSLATION.

MEMORY - Collection of integrated circuits in which
data is stored. Each binary bit is stored as an
ELECTRICAL SIGNAL WITHIN THE 1C. MEMORY IS
CLASSIFIED AS ROM OR RAM AND ITS SIZE IS MEASURED K
(kil obytes).

MICROPROCESSOR - An integrated circuit that contains
ALL the COMPONENTS TO PERFORM THE BASIC DATA
PROCESSING OPERATIONS. ALL IN ONE PACKAGE. A
MICROPROCESSOR MUST BE CONNECTED TO MEMORY AND 1/0
DEVICES BEFORE IT CAN BE USED.

MNEMONIC ' A group of 3/1* characters representing
A MACHINE CODE INSTRUCTION. EACH MNEMONIC IS
TRANSLATED BY AN ASSEMBLER INTO A MACHINE CODE
INSTRUCTION.

NYBBLE - A group of four b tt s. There are two nybbles
PER BYTE.

OBJECT PROGRAM - A program in machine c o d e. The source
PROGRAM. WHICH CANNOT BE EXECUTED BY THE PROCESSOR.
IS ASSEMBLED BY THE ASSEMBLER WHICH GENERATES AN OBJECT
PROGRAM. THIS OBJECT PROGRAM RESIDES IN MEMORY. AND
CAN BE EXECUTED BY THE PROCESSOR.

OPERATING SYSTEM - A machine code p ro gram, part of the
SYSTEMS SOFTWARE. WHICH ENABLES THE PROCESSOR TO
PERFORM THE DATA PROCESSING AND CONTROL FUNCTIONS.

PAGE ~ When used in conjunction with mem o r y, means 256
BYTES OF MEMORY.

PROGRAM - A collection of instructions to hake the
MICROPROCESSOR PEREOPM A CERTAIN TASK.

RAM - Random Access Memory. This kind oe memory
MAY IE WRITTEN TO OR READ EROM. IHIS KIND OE MEMORY
USED TO STORE THE PROGRAM THAT IS BEING DEVELOPED.
IE YOU TURN THE COMPUTER OFF/ ALL DATA CONTAINED IN
RAM WILL BE LOST.
ROM - Read Only Memo ry. This kind of memory is set
UP AT THE FACTORY WHERE THE COMPUTER IS MADE. IT
USUALLY HOUSES THE OPERATING SYSTEM AND OTHER
PROGRAMS NECESSARY EACH TIME THE COMPUTER IS TURNED
ON. IURNIN6 THE COMPUTER OFF AND THEN BACK ON AGAIN
HAS NO EFFECT ON ROM,
SOFTWARE - A non-physical part of a computer such as
A PROGRAM.

SOURCE PR06RAM - The program that consists of
MNEMONICS THAT CAN BE UNDERSTOOD BY HUMANS. TmIS
PROGRAM CANNOT BE EXECUTED UNTIL IT 1$ ASSEMBLED.

NOTES

NOTES

Copyright 1984
N«w Gaoaration Software Ltd.
Bath,
Avon.

