
FIFTH

USERS MANUAL

BY

RICHARD TAYLOR

C R L

INTRODUCTION TO MAIN INSTRUCTIONS

For a long time now there has been the need for a BASIC
extension to improve its graphics capabilities. Graphics
seem to have become the most important feature of any micro
computer. The Spectrum is no exception but fortunately has
a auite reasonable graphic power. Its major short-coming
is the fact that you can only have a maximum of two colours
in a single character sauare. This problem can, however, be
mainly solved by Cdreful screen layout.

When you think about it there are few BASIC commands which
actually affect the content of the screen CLS, PRINT, PLOT,
DRAW and CIRCLE. These can only directly make static displays.
To produce a moving display is very complicated. By careful
use of the PRINT command you can get some sort of 'jumpy'
movement. When you want to move more than about two objects
at once then things get really complicated and even a very
experienced BASIC programmer would find it extremely difficult
to produce the convincing graphics, there is a least
tendancy to return to the sophistication of the early ZX81
BASIC games where in a aircraft-carrier bombing game, for in
stance, the plane would stop dead in mid air while the bomb
would slowly, jumolly,move downwards. Since the pioneering days
of the ZX80 machine graphics have improved dramatically. The
BASIC, however, has not, it still contains the same old smatter
ing of vague BASIC graphic statements.

'FIFTH' helps to bring BASIC back into 'Line' with the graphic
power of today's machines. 'FIFTH', although it does other things
as well, is mainly designed to allow you to produce BASIC games
with much the same effect as machine code ones. 'FIFTH' also
saves computer memory since operations that would have previously
taken many lines of BASIC programing can be condensed into a
small selection of the 25 'FIFTH' coronands. 'FIFTH' makes it
so easy to get graphics moving around the screen that it makes
it inviting to do so; encouraging you to write effective programs.

'FIFTH' graphics are incredibly smooth, the objects liter
ally float across the screen making it a Pleasure to watch
them. You are also not limited to a few objects but as many as
you like, within reason. 'FIFTH' is not a language on its own
but augments the already resident BASIC. You can make the two
languages communicate with each other with the minimum of fuss.
You might think that the slow speed of BASIC would limit the
performance of 'FIFTH' but this is not so. One of the advantages
of 'FIFTH' is that the graphics are independant of the program,
this does not mean you have difficulty in controlling them
but relieves you from the fuss of updating screen positions and
erasing characters etc. This method is much faster than normal
BASIC movement since the erasing, updating and re-nrinting
routines are well written in ultra fast machine code. To get
a 'FIFTH' object to move around the screen all you have to do
is give the computer certain information about its direction
and speed etc. 'FIFTH' can then get on with the job of actually
moving the object. It will keep moving it in the specified direct
ion and speed until it goes off the edge of the screen or it
hits something else. This is where another powerful feature of
'FIFTH' comes in; a sort of 'parallel' BASIC. Parallel BASIC means
that you have two independent programs running at the same time.
'FIFTH' can't do that exactly since only one program can act
ually be running at once but appears to almost do so. What
happens is that if, say, an object went off the edge of the
screen then something called a service routine would be called.
This is a short routine written in BASIC, which is supplied with
the necessary information, (what went off the screen and in
which direction) and has to do something appropriate. In most
cases this would mean pqinting the object the opposite way to
what went off the screen and sending it on its merry way again,
until it goes off the edge of the screen again or 'hits' some
thing else on its way. A routine to handle a collision between
two objects, or interacts as they are called, is written in a
similar way. In this case you would have to send each of the
objects involved in the collision in opposite directions to
avoid further ones. The advantage of this is that the service
routine is called automatically, without any special prompting

from the rest of the program. In fact, the rest of the
program won't even know that It has been interupted. This
means that the 'main-lap' of the program can be entirely
unconnected with the objects moving on the screen. This lack
of dependence on BASIC (except for the service routines and
parts of the main loop) really means that the speed of BASIC
is of less importance than usual. The moving graphics slow
down BASIC quite d lot, depending on the ammount of objects
moving on the screen at that time. It still takes much less
time, however accessing each moving object Individually
like the normal way BASIC would produce movement.

As well as providing moving graphics, 'FIFTH' also vastlv
improves the Spectrum's sound. The BEEP command does not produce
anything like the zaps and bangs you would probably reauire
in a game. The sound effects 'FIFTH' provides are very useful for
this purpose. 'FIFTH' also has commands to rapidly change the
on-screen colours and to print in larger than normal characters.

That completes this Introduction to 'FIFTH'. I hope that it
has given you an insight into the basic way 'FIFTH' operates.
Remember, you cannot write a program in just 'FIFTH', it is an
enlargement and extension to BASIC.

P ointed by CLEARAPRINT
OI-271* 2527/0872

(g) C o m p u t e r R e n t a l s L t d .

1.

INSTRUCTIONS FOR 'FIFTH

by Richard M. Taylor

The ZX Spectrum Is certainly a formidable and very powerful machine.
The dialect of BASIC that it uses, Sinclair BASIC, is well blessed
with a variety of useful extraneous commands. Like most other makes of
machine it is used to a large extent for playing games on.
Unfortunately, BASIC Is not really desianed for writing fast
moving graphic games. This is especially true of Sinclair
BASIC which lacks the speed of many other dialects. There is
a comolete absence of conmands for moving characters, and larger
blocks, around the screen with both smoothness and speed. The
usual remedy for this problem has been writing games in machine
code. This can certainly produce amazing effects but tends to be
out of reach for the majority of users. Few people are willing
to take the time and trouble of learning the whole new language
of the machine code. 'FIFTH' remedies these short-comings to a
large extent by providing a ldrge auantlty of powerful, useful
graphics commands. 'FIFTH' is an extension to BASIC so there
is only a small amount of learning to do if you already know
BASIC - which I suggest you should, if you wish to use this
program to its full potential.

Written entirely in machine code for the 48K version, 'FIFTH'
resides above RAMTOP. It occupies a shade over UK or U338 bytes
to be precise. TO LOAD USE, CLEAR 61029; LOAD " CODE

61Q30 65368 65535
USER DEFINABLE I
GRAPHICS I

BASIC AREA - SEE P165
OF THE SINCLAIR MANUAL 'FIFTH'

FIG. 1 - 'FIFTH'S' Position in the Memory Map.

2.

Many of the "FIFTH' Cornnands have to be cross-referenced
with one another. References sometimes have to be made with
commands not discussed at that particular point. For this
reason, you may not be able to understand many things on the
first reading of this manual but as you unconsciously inter
connect everything, your unaerstandina should increase.

Examples are scattered liberally throughout this manual. They
should be entered exactly as listed with the 'FIFTH' toolbox
program loaded. After running, if they do not stop automatic
ally you should use BREAK. Type NEW to be sure of clearing
the BASIC area beofre typing in the next example routine. You
will not need to re-load the 'FIFTH' program since it resides
above RAMTOP and is not affected by NEW.

The commands are put into REM statements in the BASIC program.
Every program which uses 'FIFTH' must start with the following
lines:-

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030

The 1000 in line 10 tells 'FIFTH' how much memory to reserve for
the object data, this may vary from program to program. This is
fully described under the OBJECT command. Line 20 calls the main
body of the actual 'FIFTH' program. Although it is usual to have
these two lines at the beginning of the program, this is not
always so. In fact, it must be at the main entry point of the
program which is better at the end rather than the beginning of
a program.

After executing line 20 the interpreter carries on as normal
(the interpreter is a larger routine in the Spectrum's 16K ROM
which actually executes BASIC programs). There is, however, one
exception, when the interpreter finds a REM statement it treats
it in a different way. Normally a REM command would be completely
ignored and the interpreter would go straight onto the next line.

3.

However, the REM statement may now contain 'FIFTH' commands
so the interpreter acts accordingly. The first thing it does
is to look at the first character, if this is an asterisk then
it treats the REM as it would have normally. If it is not an
asterisk then the interpreter can be sure that the REM contains
'FIFTH' commands.

1000 REM * THIS IS A COMMENT
Comment lines can be put in as
normal if you include an asterisk.

Like normal BASIC statements you can have multiple commands on
one line but instead of being separated by colons they are
seperated by the rather neglected back-slash (back-slash is
symbol shifted D in E mode). The parameters of 'FIFTH' commands
are separated by comnas, as with the parameters of normal BASIC
statements. Every BASIC command has its own token on the key
board but 'FIFTH' commands obviously do not have their own
tokens. YOU HAVE TO SPELL THEM OUT YOURSELF, INCORPORATING A
TRAILING SPACE. Its up to you whether you use upper or lower
case to do this. You can even change the case in the middle of
command words eg:-

1000 REM TeMps\ lARge
is just as legal as:-
1000 REM temps\ large
or
1000 REM TEMPS \ LARGE

You can vary the case of the parameters in much the same way
(the above two commands do not have any parameters - or argu
ments as they are more usually called). Personally, I think it
is a good idea to type the commands in upper case and the param
eters in lower case. This makes the listing more readable as
well as making it look neater. You can just as freely incorp
orate control characters in 'FIFTH' REM statements - see ocge
11A of the Sinclair Programing manual.

If tne command you give is wrongly soelt or does not make
sense for some reason then the comDuter will helpfully respond
with error "Q Parameter error". This is usually used for the
FN function. Since this is not utilised much in games writing,
error Q very rarely occurs. Therefore error Q now takes on a
second meaning of a syntax error in a 'FIFTH' command. Error Q
is also produced if a function name is incorrectly soelt.

Error "A Invalid argument" can occur if the arguments of a
'FIFTH" conmand do not make sense. For more details see the
section under the 'FIFTH' functions. Other errors can occur but
these are uniaue to each 'FIFTH' command, They are fully ex
plained under each command description. There is one other pecul
iarity of programming in 'FIFTH'. Normally, when a program is
completed or a jump is made to a line number bigger than existing
then "OK" will be the computer's response. However, in 'FIFTH'
OK is suostituted for error "8 End of file". This report was
originally designed for the elusive Sinclair Microdrive but has
been put to this use in 'FIFTH'. The reason for using error 8
instead of error 0 is rather technical, so I will not go into it.

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030

If you RUN this, notice how it stops
with error 8.

There now follows a detailed description of each of the 25
'FIFTH' comnands:-

This command merely sets uu colours for succeeding 'FIFTH'
commands. You will remember that there are two ways of using
the BASIC colour statements, either universally as statements
on their own or in graphic commands to specify temporary colours.
This 'FIFTH' command makes the temporary colours the same as
the universal ones. It also transfers the state of INVERSE and
OVER which can also be set up temporarily. This is because some
'FIFTH' commands require 'dummy' PRINT statements preceeding

TEMPS

5.

them such as:-

100 PRINT INK 6j PAPER 1; FLASH 1;

This does not print anything but changes the temporary colours.
If, however, you just wanted to use the universal colours then
precede the 'FIFTH' command with TEMPS, Commands which may use
TEMPS are:-

a) LARGE
b) FILL
C) REPLACE
d) COLOUR
e) PUT

Examples

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 PAPER 5
AO REM TEMPS \ FILL
50 PAPER 7

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 PRINT PAPER 5
AO REM FILL

Both of these routines use the FILL command, which is described
next. They both do a similar job in making the background cyan.
Notice how TEMPS is used in the first example.

FILL

This command is used to change the screen colours without act
ually affecting the screen display. It is an annoying feature
of Sinclair BASIC that you have to clear the screen, using f.LS,
before new universal colours are shown. This connand remedies
the problem.

6.

The colour you want to change the screen to is Dut into a
dummy PRINT statement oreceeding the FILL command, e.g:

10 RANDOMIZE 1000
20 RANDOMIZE USR 6103O
30 PRINT "This is a demonstration of the
FILL command.
AO PRINT PAPER RND*7; INK 9;
50 REM FILL
60 GO TO AO

This program contains a lot of suitable points. It constantly
changes the background colour always keeping the INK colour
contrasted with it. Page 111 of trie Sinclair BASIC Programing
manual gives information about the use of colours' 8 & 9 in
PRINT statements. You can also use 8 & 9 in FILL comnands, their
use is explained below
'COLOUR' 8 - This leaves the appropriate type of Colour (INK,
PAPER, FLASH or BRIGHT) as it was previously.
'COLOUR' 9 - This can be used with either INK or PAPER. It
makes one contrast with the other, in much the same way as in
normal, PRINT statements, e.g.

100 PRINT PAPER 8; INK 9;
When used in front of a FILL command, this makes sure that ail
INK on the screen is in Contrast with the PAPER, which is not
changed.

Examoles:-
10 RANDOMIZE 1000
20 RANDomize USR 61030
30 FOR Q r O TO 255
AO PLOT a,0
50 DRAW OVER 1,-255-2*0,175
60 NEXT a
70 FOR a= 0 to 175
80 PLOT 0,a
90 DRAW OVER 1;255,175-2*a
100 NEXT d

7.

110 PAUSE 50
120 PRINT PAPER RND ‘7; INK 9;
130 REM FILL
140 GO TO 110

This program draws a "moire" pattern and then proceeds to change
its colour once every second. The INK 9 in the line 120 ensures
that the INK is never the same as the PAPER colour i.e making
the pattern invisible. You can of course use the TEMPS Command
instead of the durrmy PRINT statement if the need arises , e.g.

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 REM TEMPS FILL

would make sure that the screen colours are the same as the
universal ones.

REPLACE

The replace command is very similar to the FILL one except that
it is more selective in the on-screen colours that it changes.
It will only change a colour if it is another, specified, one.
You have to specify two colours so the command uses both the
universal and temporary colours. The temporary colour is the one
to be searched for and the universal colour is the one which will
replace it. For instance:-

100 PRINT INK 1, PAPER 6;
110 REM REPLACE

If incorporated into a program this would change every occur
ence of blue ink on yellow paper to the current universal colour.
'Colours*' 8 & 9 as universal colours have their normal meaning
but 8 & 9 as temporary colours are interpreted slightly differ
ently. Details below:-

Colour 8 - The appropriate colour type is ignored and so has no
importance in the search, i.e.

100 PRINT PAPER 8, INK 2;
If this was put before a REPLACE command then any attribute with
red INK (PAPER is not important) would be set to the current
universal colour.

Colour 9 - This has no importance or use in a REPLACE command.

The TEMPS commands could be used but would not be of much use,

8.

can you see why? Any attribute that was already the universal
wouia be replaced by the universal colour - not very useful.

Examoles:-
10 RANDOMIZE 1000
20 RANDOMIZE USR 6103O
30 FOR a = 0 TO 703
AO PRINT INK RND* 7; REM * An inverse space
50 NEXT a
60 PAUSE 0
70 PRINT INK RND * 7;
80 REM REPLACE
90 GO T060

This fills the screen with coloured blocks and every time you
Dress a key, all blocks in a particular colour are changed to
black. Press BREAK to escape from the program.

LARGE

ihis allows you to print larger than normal characters, or strings
of characters, on the screen. Like the other commands discussed
so far it has no parameters and needs a dummy PRINT statement be
fore it. What is printed is determined by the state of 5 BASIC
variables-x, y, t, w, and ds. The variables x and y determine
where the top-left hand corner of the printout is to be. Unlike
normal printing these are High resolution co-ordinates, x can be
0 to 255 inclusive and y can be 0 to 175 inclusive. When using
normal BASIC High resolution statements the y co-ordinate starts
from the bottom - (0,0) being the bottom left hand corner of the
screen. In contrast Hi-res 'FIFTH' commands have the y co-ordinate
starting from the top so (0, 0) is the top left hand corner of
the screen. The variables t and w determine the size of the
characters to be printed. The height is given in the variable t
whicn should contain a number between 1 & 22. The width is given
in the variable w which should contain a number between 1 & 32.
Here are some useful values:-

a) trl, w -=2 - double widt̂ h
b) t r 2, wr l - double height
c) t=2, w - 2 - double size
d) t = 22, w =32 - A size at which a sinale character fills

the whole screen.

9.

If the value given in x, y, t or w is non-integer then it
is rounded to the neorest integer. If this is out of range
then error B will be given. A, holds the string of characters
to be printed. This con be of any length including zero
choracters (a'null" string). The string, however, should not
contoin ony control choracters. If you do then the computer will
show its displeasure by replying with error "A Invalid Argument",
e.g.-

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET d$ » "FIFTH"
AO LET x » 0: LET y « 0: LET t « 22: LET w * 6
50 REM TEMPS \ LARGE

This example program will print 'FIFTH' In large enough letters
to cover the whole screen. Notice how the TEMPS command is used
in line 50. If you preceed the LARGE comnand with d dummy PRINT
statement to set up temporary colours items then the large
characters will be printed in the specified colours. The routine
works by using part of the plot command routine, in the 16K ROM,
to print the characters. Please note that the plot position is
not changed by this command.
Examples:-

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET X:0: LET y = 0
AO LET t=rl: LET w = 2
50 LET a$= "Double width"
60 REM TEMPS\ LARGE
70 LET yr 50: LET ts 2: LET w r 1
80 LET a * = "This is double height"
90 REM TEMPS\ LARGE
100 LET yr 100: LET w* 2
110 LET a$r "Double size"
120 REM TEMPS\LARGE

This will print in the three most used types of large text.

N.B. If any af the five variables are not defined then error-
"2 Variable not found" will result.

10.

SOUND

This is the cormand that produc'es those amazing sound effects
you may of heard in the demonstration program. The BASIC BEEP
command is very limited in the sounds that it can produce, the
SOUND command 'fills in' the enormous sound making gap. Unlike
the commands so far describes. Sound does need parameters (4 in
all) to describe what sound to make but it does not need a
preceeding aunty PRINT statement. You can give parameters in two
ways:-
a) As a 'FIFTH' function (see the section on 'FIFTH' functions).

This is the least used way.
b) As a single letter variable. The variable must however be

numeric and must not be a subscripted variable. If the vari
able is not defined then error "2 variable not found" will be
produced. You are not allowed to do any mathematics in a 'FIFTH"
REM statement i.e. addition or -subtraction.

100 REM SOUND a.b.C.d

This is the usual format for a SOUND command, each of the vari
ables describe a different property of the sound:
VARIABLE a - THE REPEAT VALUE. It describes how many times a
sound of length b and tone c should be produced and the current
tone (initially c) should be added to d (the step) and the sound
repeated before the particular sound statement has been finished.
VARIABLE b - The SOUND LENGTH. This describes the length of each
component noise of the whole SOUND command.
VARIABLE c - THE SOUND TONE . This describes the starting pitch of
the Sound coimand. This has the variable d added to it after every
repeat to find the new pitch (The NO. of repeats is determined
by the a variable).
VARIABLE d - THE STEP VALUE. This is the value that is added to
the last tone after every repeat to find the new tone. e.g.

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a -10: LET b-5: LET C^OO: LET ds.150:
REM SOUND a.b.C.d

This produces a 'phasor' like sound. The graph below shows how
the phasor noise is made u p .

TONE

Graph. FIG 2. - A Closer look at the phasor noise.
11 .

As you can see, the phasor noise Is actually made up of very
short BEEP'S, each one being slightly hiaher than the previous
one. Now change the LET br 5 in line 30 to LET b= 100. When you
RUN the program now you can distinctly hear each individual tone.
You may want the sound to decrease in pitch rather than increase.
This is achieved by making d a number between about 65000 and
65535. This is because after adding d to the current tone it is
taken to MOD 65536 (this means it divides by 65536 and takes the
remainder, NOT the answer). Another way of looking at this is
that if the number is bigger than 65535 then it subtracts 65536
from it. In other words, 65536 is the same as 0. For good sounds
the variables should be within the ranges below:-
Variable A - Between 1 & 50 but this really depends on the sound
length given in b. All the other numbers can have a range of 0
to 65535 Inclusive except this one which must be 1 to 255 inclusive.
Variable B - Between 3 and 100
Variable C - Between 0 ans 2000 if going up or between 2000 and
5000 if going down.
Variable D - Between 1 and 500 if going up or between 65000 and
65535 if going down.

Unlike during a normal BEEP statement, the SOUND command checks
the BREAK key while producing the sound.

Examples:-
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a= RND *20 + 3
40 LET bzRND *10 + 3
50 LET Cr RND * 1000
60 LET d = RND * 200 + 50
70 IF RND>. 5 THEN LET c * RND # 1000 + 4000:

LET d - RND * 50-*- 65400
80 FOR e= 1 TO 3- RND * 10
90 REM SOUND a,b,c,d,

12.

100 NEXT e
110 GO TO 30

Press BREAK to escaDe from this program. It makes ranaom sound
effects.
N.B. Although the variable a,b,c and d hdve been referred to
throughout this description you do not have to use them. w,x,y
and z could hdve been used just as easily. You can even use the
same variable twice or even more times in a single SOUND command
e.g.

100 REM SOUND e,o,e,z, is perfectly legal.

GEI

GET and PUT (described next) are used together. They are very
powerful commands. They allow you to out part of the screen
disoolay into a BASIC string variable using the GET command and
then PUT the information back onto the screen. GET has five
parameters, A to tell it from which part of the screen to get
the data from and 1 to tell it in which BASIC string the data
should be stored. It is used in the form:-

100 REM GET a,b,c,d,a$

A and c must be 0 to 21 inclusive and b and d, 0 to 31 inclusive.
As you can see GET uses PRINT positions, not High resolution co
ordinates. The reason for this is simple, the attributes (which
are also saved by GET) are stored in character positions so it
would be difficult to save the colours if GET was a high resolution
cornnand. The data which is stored is always in a rectangle, (A,b)
being the top left hand corner and fc,d) being the bottom right
hand corner of the rectangle. In order for this to work properly
c must be greater than or eaual to a and d must be greater than
or eaual to b - otherwise you would have a rather strange rect
angle, the right hand side being more left than the left hand side
or the top being below the bottom! Fortunately, if co-ordinates
do not make sense then error "B Integer out of range" will be
produced.

(Line Number, Column
Number).

(a,b)

AREA SAVED

Tc73T

13.

FIG. 3 - How the GET Co-ordinates are arranged

The last paremeter tells GET where to store the data. This
should be d string from a$ to z$. If there was already a variable
called d$ etc. then it is deleted and replaced by the new version.
You cannot slice a string or use a subscripted string array i.e.

100 REM GET a,b,c,d,c$(2 TO 20) is not allowed.

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a - 0: LET b = 0: LET c * 21: LET d * 0
AO REM GET a.b.c.d x$

This puts the screen data in the left most column of the screen
in the variable x$. The only way to replace the data is to use
the PUT comnand as the data is stored in a special format. Error
"2 Variable not found" occurs if one or more of the first four
parameter variables are not defined.
Examples

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET Os 0: LET bsO: LET c = 21: LET d =31
AO LET X- 0: LET y= 0: LET C=22: LET wsiO
LET 3$ sGET.
50 REM\TEMPS\LARGE\GET a,b,c,d,a$
60 FOR a=0 to 31
70 REM TEMPS PUT b,a,a$
80 LET.b«b*0.6875
90 PAUSE 50
100 CLS: NEXT 3

This draws "GET" in large letters across the screen and then
proceeds to move it in a 'south-easterly' direction. The PUT
command (which is described next is used in this example program.

Pill
This command, which is used in conjunction with GET, allows you
to put data from a string back onto the screen after it has been
collected by GET. It has 3 parameters, the first two tell it where
to put the data on the screen and the third one tells it in which
string the data to be used is. Unlike GET, this command must be
preceeded by a dummy PRINT statement or a TE^PS command. PUT is
used in the form:-

1H.

100 REM PUT x,y,aS
x must be in the range of 0 to 21 and is the line number. Y,
on the other hand, must be in the ranqe of 0 to 31 as it is a col
umn number. If you do not keep the numbers within these ranges
then the computer will show-its ingratitude by responding with
error "B Integer out of range". The string variable must have
been previously defined in a GET command. If no such simple
string exists or it was not defined in a GET command (the computer
has ways of telling whether it was or not) then error "2 variable
not found" will be produced. Under normal circumstances you would
precede the PUT command with a TEMPS instruction unless you wanted
to do something special with the colours. Only 'colours' 8 & 9
are useful in PUT dummy PRINT statements, their use is explained
below:-
COLOURS 8 - The particular colour type is left as It was previously
(INK, PAPER,BRIGHT or FLASH). Normally, the colours that were
saved by the GET command would be PUT back onto the screen.
COLOUR 8 is a way circumvent this behaviour e.g.
100 PRINT PAPER 8, INK 8; BRIGHT 8; FLASH 8;
in front of a PUT command, this dummy PRINT statement would ensure
that the screen colours would remain the same.
COLOUR 9 - This is not as useful as colour 8.
100 PRINT INK 9;
This will not change the on-screen PAPER colour but will ensure
that the INK colour is contrasted with it.
INVERSE and OVER are also very useful in PUT dummy PRINT statements
e.g.
INVERSE 1 - Will print the display in inverse to the way in which
it was collected by GET.
OVER 1 - Normally, PUT will obliterate the display that was al
ready on the screen. By using OVER 1 the two displays will be
merged together see page 113 of the Sinclair BASIC Programming
manual.

100 PRINT OVER 1; INVERSE 1;

This leaves the display exactly as it was previously but does
change the on-screen colours (attributes).

15.

If the data stored in the string tdkes ud the whole screen,
say, then when you use PUT it will not fit completely on the
screen unless you start printing at (0,0). In fact the PUT
command will only put on as much as it can, anything else is
left unprinted. GET AND PUT also allow you to have a limited form
of animation. By drawing each frame and getting them into dif
ferent strings you can rapidly go through them using the PUT
command. Be warned however that the memory reauirements for this
can be quite cbnsiderable. A screenful of data needs of 6K of RAM.
Examples

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 PRINT "This is a downward scroll"
40 PAUSE 10
50 GO SUB 8000
60 GO TO 40

8000 LET a=0: LET br 0: LET c • 21: LET dr 31
8010 REM GET a,b,c,d,a$
8020 LET a- 1
8030 REM TEMPS PUT o,b,d$
8040 PRINT AT 00; "(32 spaces)"
8050 RETURN

This demonstrates how you can use GET and PUT to do o downward
scroll. The subroutine at line 8000 actually does the scrolling.
You can also fix it to do rightward scrolling but NOT upward or
leftward scrolling, can you think why?

LEI
This is almost exactly the same as the BASIC LET statement. The
main difference is that the variable you are defining must be a
single letter, non-subscripted, numeric variable. Its format is:

100 REM LET ar('FIFTH' expression)

The a represents the variable that you are defining. The 'FIFTH'
expression would usually be a 'FIFTH' function. You could have a
variable as with normal parameters but this could be done with a
BASIC LET statement. You may be wondering what use all this is..
It allows you to access the fifth functions in BASIC and then :o
calculations on them (which you cannot do in 'FIFTH'), e.g

100 REM LET x= COLUMN Invader
110 LET X = X + 12: REM MOVE invader, x^Line invader.

16.

This uses the 'FIFTH' LET conrrand and BASIC calculation to make
the invaaer jump 12 pixels right.
Examples:-

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a -1: REM OBJECT bomb, a
AO REM PR I NT bomb, v
50 REM LET t =■ SCREEN bomb
60 PRINT CHR$-t

Lines 50 & 60 use the LET command to find out what the bomb is
printed as.

OBJECT

Up until now the comnands have not been really related to one an
other. The OBJECT command is the basis for most of the remaining
commands. The real power of "FIFTH" is its ability to define ob
jects using the OBJECT command. The objects can move about the
screen completely independently of BASIC. The BASIC you would have
to laboriously erase and reprint an object to move it around the
screen. This is slow as well as being impractical, if you wish to
move more than a couple of objects simultaneously. With 'FIFTH'
all you have to do is tell the computer the following information:-
a) what the object is to be printed as e.g. The letter "A" or a
full stop, b) In what direction is the object going to go in e.g.
u p , down or left 'FIFTH', allows 16 different directions, c) In
wnat colour the object is to be printed e.g. Red, Yellow or Green,
d) The speed dt which the object is to move. In 'FIFTH' you tan
also define how many pixels an object will jump at any one time.
An object can jump as small as on pixel, this is 8 times smoother
than BASIC graphics.
Then 'FIFTH' can move the object around the screen. When the object
goes off the edge of the screen or collides with another object
then a special user defined service routine is called, but this is
described later. 'FIFTH' allows you to give objects names. This
makes programming easier than if you had to auote a long number
every time. If you were writing a space invader type program you
may want AO, say, invader objects. It would be very difficult to
refer to each one individually. Fortunately 'FIFTH' has a solution
to this problem. Like a BASIC array you can define a number of
objects with the same name. 'FIFTH', however is more flexible in

17.

the way you can access them. You can either concentrate operations
on an individual or collectively on the whole group. Some pieces
of object information can be uniaue to each subscript. In fact only
colour and the 'Print as' chdracter have to be the same for all
subscripts. You may remember that the RANDOMIZE 1000 at the be
ginning of 'FIFTH' program tells the computer how much memory to
reserve for the object data. One thousand bytes is usually used
because it is large enough for just about any application. To work
out exactly how many bytes you will need use the below method:
No. of letters in the name 10+6x No of subscripts.

From this you can see that 10 invaders would take:
7 + 10 + (6 x 10)* 77bytes - not very much.
An object conmand has the format:
100 REM OBJECT (name), (Fifth Expression).

The name can be any length and can contain any charater (Except":")
It is best, however, to stick to letters and numbers (Alphanumeric
characters). The 'FIFTH' expression is evaluated and tells 'FIFTH'
how many subscripts with that name you want. This can be anything
from 1 to 255 inclusive. If you define an object with the same
name as one already defined then 'FIFTH' will not take any notice
of the new version. It will, in fact, still store the new object
data so defining objects with the same name is just a way of wasting
memory. You may be wondering where 'FIFTH' keeps all this data.
What it does is to lower RAMTOP (which is initially set at 61029)
by the amount given in the first RANDOMIZE statement. For instance,
after running one of the example programs, type:
PRINT PEEK 23730+256 * Peek 23731 (This finds RAMTOP)
This will reply with 60029 which is 1000 bytes lower than the in
itial setting of 61029. The initial RANDOMIZE instruction can have
any argument except 0. If there is not enough room in the computer's
memory then it will reply with error "4 out of memory".
Now for an example

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a - 100: REM OBJECT Missile, a

This will define 100 objects called "Missile". Now change the 100
in the line 30 to 250. When you RUN it this time, the computer res
ponds with error "4 out of memory". This is because there is not
enough room reserved for 1000 objects. Change the 1000 in line 10
to 10000.

18.

This reserves nearly 10K of memory for the objects, more than
enough. When an object is defined, you have not given information
about speed, direction etc, The computer has to make them ud. The
aata it uses is listed below:-
a) CURRENT SUBSCRIPT - Set to ALL
b) COLOUR - Set to the current universal colour.
c) PRINT _ A Space character (CHR$ 32)
d) DIRECTION - Direction 0 (Upwards)
e) SPEED - Moves once every five seconds (250 interrupts;

It makes one pixel jumps.
f) SCREEN POSITION - It is ENABLED but is on Line 176, Column 0
g) ERASE STATUS - It will be overprinted under any circumstances

but this is possible with the above para
meters anyway.,

(Until you have reaa the rest of the manual you will not beN.E
able to understand this)

Examples:-
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a -10: REM OBJECT invader, a
HO REM PRINT invader, x
50 REM DISABLE invader
60 FOR a«l TO 10
70 REM USE invader, a
80 LET b r 8 A : LET c - 2 0 * 2 0 * a: REM MOVE invader

c,b
90 NEXT a

This will print ten X's across the centre of the screen. Actually
these are the ten "invaders" defined in line 30. The program uses
a variety of commands not explained yet to achieve this result.
Note-.-

aj Any commands (or functions)that need an object name (EXCEPT
OBJECT) can be given a string variable name instead. This, as
usual, must not be subscripted or sliced, e.g.

100 REM PRINT invader, A
and

100 LET a$ = " invader": REM PRINT as, A
Both have the same meaning.

If the string variable is not defined then error "2 variable not
found" will be produced.

19.

b) If you use a name that has not beed defines in an OBJECT
command then error "a Invalid Argument" will result.
c) When referring to or defining object names it makes no
difference whether you use UDber or lower case, e .g :-
PLANE/ Diane, Plane and pLAne all refer to the same object type.

L££
This is one of the conmands which determines whether a particular
object type will have its subscripts accessed indivdually or as a
whole group. This is the command which will allow you to access
subscripts individually Its format is:-

100 REM USE (object type name), ('FIFTH' expression)
The object name is that of the object type that you wish to access
on a single subscript basis in suceeding operations. The 'FIFTH'
expression tells the computer which individual subscript you wish
to use. e.g! if you defined 10 objects called a "torpedo" then this
'FIFTH' expression can be evaluated to a number between 1 and 10.
If the number is not between 0 and 255 inclusive the error "B
integer out of range" will be produced. If the number is then
bigger than the number of subscripts (in this case bigger than 10)
then error "6 number too big" will be the result.

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET arlO: REM OBJECT invader, a
AO LET a=7: REM USE invader, a

This defines an object called "invader" and then sets the 'CURRENT'
subscript to 7. If you change the LET a 7 in line AO to LET a 11
then when RUN, the program will stop with error 6. This is because
you have tried to use a subscript that does not exist. Now change
the LET a 10 in line 30 to LET 0*11 and the program will work all
right again.
You may think that if you use 0 for the second parameter them some
error would be produced because subscripts start at 1. In fact this
is not the case as:-

100 LET a=0: REM USE bomb, a (or something similar
has the same meaning as ALL, which is describes next.

Examples
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a*100: REM OBJECT rocket, a
AO REM PRINT rocket, X DISABLE rocket

Cont/d

2 0 .

50 FOR Or 1 TO 100
60 REM USE rocket, a
70 LET xs INT (RND* 256): LET y* INT (RND*176)
80 REM MOVE rocket, x,y
90 NEXT a

This ranaomly positions 100 X's around the screen. It uses a host
of unexplained commands but notice how the USE command. is utilised
in line 60. The program goes through all 100 rocket's individually
ana places each at a random position.

ALL

This is the command which allows you to access all subscripts of a
particular object type at the same time. It is used in the form:-

100 REM ALL (Name of object type)
Unlike USE, ALL does not need a second parameter to tell it which
subscript you want to USE as it assumes you want to access all
subscripts. After using ALL, every operation you do to that part
icular object type will be done to every subscript i.e. If you did
an operation to move a "rocket" to position (231,67) then if ALL
had been used on the "rocket" object type all subscripts would
move to (231,67). Conversely, if USE had been carried out on
"rocket" then only the selected individual would move to (231,67)
and all the others would stay where they are.

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a *10: REM OBJECT invader, a
40 REM DISABLE invader\PRINT invader, H
50 F0R= 1 TO 10
60 REM USE invader, a
70 LET x = RND*255: LET y=RND*175
80 REM MOVE invader x,y
90 NEXT a
100 REM ALL invader
110 PAUSE 0
120 LET y * 176: REM MOVE invader a,y

If you RUN, ten H's will appear at random positions on the screen.
If you press a key then they will all disappear. Now change line
100 to:-

100 LET zslO: REM USE invader, z
If you RUN the program again and press any key then only one H will
dlsaooear. This illustrated the power of ALL and USE. Try and
account for the difference in the two RUN'S.

21.
N.B.Although a USE command with a second parameter with a value
of 0 is the same as an ALL conmand, it is good programming practice
to use ALL except in situations where it is much more 'elegant'
to utilise the first method. A good use for this property of USE
is given later in this manual.

This is the command which describes what character an object will
print as. This can- be any character, including graphic symbols
and user definable graphics. It has the form:-

100 REM PRINT (object name), (Character)
If no such object with the name you give exists then the computer
will respond with error "A Invalid Argument". If the character you
give is a token (anything with more than one character in it l.e.
PRINT or SCREEN) or unprintable (anything with a code below 32)
then error A will result. The only other character that you can
not use is the space (CHR 32). There is however a graphic symbol
which is the same as a space. It is accessable on key 8 in GRAPHICS
mode. An individual subscript cannot have its personal 'print as'
character. In fact, every subscript in each object type must be
printed as the same character. This also means that the PRINT
command is not affected by ALL or USE commands.
Examples

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a-' 1: REM OBJECT missile, a\DISABLE missile\

PRINT Missile, s
UO LET X^12A: LET y - 8M: R E M O V E missile, x,y

Changing the second parameter of the PRINT command in line 30:o
to other characters.

COLOURS

This command determines what colour an object is printed in. Like
PRINT, only one set of colours can be defined per object type. The
command must be preceeded by a drniuy PRINT statement. This is the
colour that the object will be printed in. You could of course use
a TEMPS command if you wanted the object to be printed in the
current universal colour. A colour command is used in the format

100 REM COLOUR (Name of object type)
'Colour' 8 has its usual meaning although 'colour' 9 is not usee
by the COLOUR command.

2 2 .

Examples
10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a-1: REM OBJECT invader, a
AO REM DISABLE lnvader\PRINT invader, x
50 PRINT INK 2; REM COLOUR invader
60 LET x-12A: LET y-8A: REM MOVE invader x,y

Try cnanging the dummy PRINT statement in line 50 to print the
"X" in different colours.

VECTOR
This is the command which decides the direction in which on object
will move. 'FIFTH' gives you o choice of 16 directions, each one
signified by a number between 0 and 15 inclusive. Direction 0 is
on upward direction, 1 is slightly rlghtword to this (or eastward)
This scheme carries on until direction 15 which is just leftword
to direction 0.
FIG. A - How the VECTOR directions are orronged.

unlike PRINT or COLOUR, this comnand takes notice of ALL and USE.
If the 'Current' of the object type is ALL then oil subscripts
will hove their direction changed. If, however, the current is
USE then only the direction of the individual selected in the
USE command will have its direction altered. If the direction
value is not between 0 and 15 inclusive then error "B Integer
out of range" will result. If the direction value is not a whole
number then it is rounded to the nearest one. Even if an object
is disabled (see the disabled command) then the direction will be
changed but will not take effect until the object is re-enabled.
The same .will happen if the object is at an 'Off-screen' position
(described under the MOVE command).

A VECTOR command has the format:-
100 REM VECTOR (name of object type), (new
direction)

Examples
2 3 .

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a = 1: REM OBJECT ball, a
40 REM PRINT .ball, 0
50 REM SPEED ball, a,a
60 LET a = 8: REM VECTOR ball, a
70 LET x r 124: LET y-84: REM MOVE ball, x.y
80 GO TO 80

When you RUN this program an "o* appears at the centre of the
screen and moves downwards until it goes off the edge of the screen.
Press BREAK. Change the value of a line 60 to get an idea of the
different directions of the VECTOR command. The program uses a
variety of unexplained commands to achieve this end. Lines 30-60
just sets up the object called ball so that the computer has
enough information to move it around the screen which it does after
it has been positioned in the middle of the screen by line 70. Line
80 is necessary to allow the object to move. This is because if an
error report is produced (i.e. in this case error *8 End of file")
then all moving objects on the screen will come to a halt.

SPEED

This is the command which allows you to change the speed at which
an object moves on the screen. 'FIFTH' allows a tremendous choice
of speeds but more important it determines how smooth the graphics
of a program will be. 'FIFTH' allows you to define how many pixels
an object will jump at any one time. A speed command has the format
100 REM SPEED (Name of object type), ('FIFTH' expression),
(expression) .
This command, like VECTOR, is affected by ALL and USE. The first
'FIFTH' expression describes the delay in 1/50 of a second before
the object is moved, and must be between 1 dnd 255 inclusive.
Fifty times a second, the Spectrum's Z80 A Processor receives an
'interrupt' from Sinclairs ULA chip which is also inside that black
case of your Spectrum. This interrupt signal tells the processor
to read the keyboard and increment the frames counter. However,
when using 'FIFTH' the processor also has to move 'FIFTH' objects,
This expression therefore, tells the fifth system how many inter
rupts it has got to wait through before it is that particular
objects turn to be moved. As you can see a value of one would mean
that the object would be moved every time and therefore 50 times
a second. If the value was 50 then the object would only be mcved
once every second.

2 4 .
If the value was 2 then the object would be moved 25 times a
second. From this it can be seen that the formula
Number of movements Der second = 50

The value of the first expression
can be maae.
This is all very well but there is a trade off between speed and
how fast BASIC is. Since the objects are moved .at times when the
BASIC program would be normally executed it can be seen that the
more often an object is moved, the slower BASIC will be. This is
especially true is a large number of objects are being moved.
Fortunately, 'FIFTH' has a remedy to this difficult problem. It
comes in the form of expression NO.2 which must also be in the
range of 1 to 255 inclusive. It tells 'FIFTH' how may pixels it
snould move the object every time it is its turn to be updated
during an interrupted response. Most of the smooth graphics that
you may have seen in the demonstration program were done using a
movement of one pixel 50 times a second. These are the smoothest
graphics possible but are expensive on the speed of BASIC if you
have more than a few of these objects moving simultaneously. It is
a good idea, however, to try and use these smooth graphics whenever
possible as the effect produced by the objects 'floating' across
the screen can be auite incredible. If you want to keep the same
speed but do not want the connected slowness of BASIC then increase
the number for both the first and second parameters. For instance,
the parameters may become eaual to 2,2 after previously being 1.1.
The object will still have the same overall speed but its movement
will be a little more 'jumpy' (but still 4 times better than BASIC
movement). Instead of moving one pixel 50 times a second It will
be moving 2 pixels 25 times a second. But this is really a small
price to pay for the speed increase in BASIC. If you just Increase
the size of the second parameter without the first then the overall
speed of the object will be increased. Now for a practical example:-

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET arl: REM OBJECT thing, a
40 REM PRINT thing, <
50 LET d= 12: REM VECTOR thing d
60 LET as 1: LET b = 1: REM SPEED thing a.b
70 LET x =255: LET yz 84: REM MOVE thing x,y
80 GO TO 80

2 5 .
The SPEED command is used in line 60. On the first RUN, d “l "
will move ocross the screen from right to left. This is ot the
smoothest speed. Chdnge the values in line 60 to get the 'hang'
of the SPEED command. You should now know whot every command in
the listing does except the move conmand, although its use should
be Quite obvious.
Examples:-

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a * 10: REM OBJECT cars, a/DISABLE cars/PRINT cars,
i*Q FOR a - I TO 10
50 REM USE cars, a
60 LET b - I: REM SPEED cars, a, b
70 LET y * 170: LET x - 20 a: REM MOVE cars, x, y
80 NEXT a
90 REM ALL cars/ENABLE cars
100 GO TO 100

This program places 10 "*"'s at the.bottom of the screen. Then
they start moving but everyone is slightly slower than the previous
one, looking from left to right. The SPEED command is used in the
USE mode in line 60.

MOVE

This command is used to move a particular object to a given position.
It is used in the form:-
100 REM MOVE (Name of object type), (x co-ordinate), (y co-ordinate)
Like VECTOR and SPEED, MOVE is affected by ALL and USE. The x
co-ordinate is a 'FIFTH' expression which must have a value between
0 and 255 inclusive. If the expression evaluates to a non-integer
then it is rounded to the nearest one. The y co-ordinate must also
have a vale of 0 to 255 inclusive although numbers bigger than
175 do not have the usual meaning. As you may remember, 'FIFTH'
Hi-res co-ordinates have them starting from the top of the screen
so that (o,0) is the top left hand corner of the screen. This is
in contrast with the BASIC PLOT, POINT and CIRCLE statements which
have their y co-ordinate starting from the bottom of the screen.
There are 176 possible y co-ordinates as there are 22 lines each
of 8 pixel height (22 x 8*176). The two bottom lines of the dis
play cannot have objects printed on them but they provide a useful
area to print scores and times etc. as there is no danger of them
being overwritten by the moving objects. If, say, the y co-ordinate
was 175 or the x co-ordinate was 251 then there would not be

2 6 .
enough room to fit the whole of the 8 x 8 character on the
screen. 'FIFTH" only prints on as much as it can, anything else
is left unprinted. This gives the impression that there is an
area off the screen that cannot be seen. It is as if the screen
is just a window on a larger area. The co-ordinates always refer
to the top left hand corner of the character. If the y co-ordinate
is greater than 175 then the object is not printed anywhere on the
screen. The object will cease to be moved by interrupts and there
fore the only way to make it reappear on the screen is to use
another MOVE instruction. Please note that MOVE does not imple
ment an interact response cycle even if another object was collided
with. You have to do this manually by using the FIND command to
check the position that you are going to move the object to. (You
will probably not understand this until you have read the rest of
this manual). A MOVE instruction automatically erases the old
image of the object.

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a - 1: REM OBJECT object, a
40 REM PRINT object, 0^)1 SABLE object
50 LET x-100: LET y=100: REM MOVE object x,y

This program sets up a single object called "object" (confused)
and then preceeds to move it to position (100,100). If you change
the values of x and y in line 50 then you can get some idea of the
way in which MOVE works. Try positioning the object near the
bottom of the screen.
Examples:-

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a = 1: REM OBJECT arrow a
40 REM DISABLE arrow\ PRINT arrow,7
50 LET y = 84
60 FOR x 0-T0 255
70 REM MOVE arrow, x,y
80 NEXT x
90 GO TO 60

This program illustrates how you can use the MOVE command to give
you animation. This is obviously not as good as 'FIFTH' automatic
movement but at least BASIC is not slowed down. You can vary the
speed of the movement by introducing a STEP statement in the FOR
instruction at line 60. For instance, a STEP 2 doubles the speed
of the movement.

2 7 .
Note:-
When you first define an object it is moved to position (0,176).
As you can see, this is an off screen position. This is to
prevent the object immediately appearing on the screen after defin
ition when, perhaps you do not want it to. After setting up the
parameters of the object it can be moved into the active screen
area using a MOVE comnand.

R MOVE
This is similar to the MOVE comnand. The R stands for relative
MOVE. This works in a way similar to Sinclair BASIC'S DRAW command
You do not give an actual screen position but one to be added to
the existing one. A RMOVE has the format:-
100 REM RMOVE (Name of object type), (relative x), relative y)
The name of the object type to be used works in exactly the same
way as in the MOVE comnand. The x relative co-ordinate is added
to the current x co-ordinate to produce the new one. This rel
ative x co-ordinate must be in the range of 0 to 255 inclusive.
The relative y co-ordinate works in exactly the same way and must
be in the range 0 to 175 Inclusive. The co-ordinates are in a 'wrap-
round' form so if you add 1 to an x co-ordinate that was previously
255 then the new x co-ordinate would be 0. The y co-ordinate is
also 'wrap-round' but wraps at 176. For instance if you added 1
to a y co-ordinate that was previously 175 then the new y would
not be 176 but 0. This also means that you cannot move objects to
off screen positions using the RMOVE comnand, you have to use
MOVE. One problem with 'FIFTH' expressions is that you cannot have
negative numbers. The RMOVE comnand works alright as long as
you are moving down or right but consider whdt happens when you
try to move left or up. The DRAW statement allows negative argu
ments but a 'FIFTH' expression does not. The solution to this
problem is similar to that used for decreasing pitch in the SOUND
comnand. If you want to move the x co-ordinate left then use the
formula:-
Number to use as first parameters256 - number of steps left
This works as long as you do no want to move 0 pixels left, but
this is not really moving left anyway.
The formula for the y co-ordinate is:-
Number to use as second parameter*176 - number of steps up
so for instance, to move 2 pixels up and 1 right the values would
be (1,254). Like the move comnand an interact service routine is
not called if the move would mean a collision with another object.

2 8 .

You nave to oo this manually using the FIND comnand. A limit
service routine is also not called if the move mean the object
going off the eage of the screen.
Examples

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a»l: REM OBJECT arrow, a\PRINT arrow >\

DISABLE arrow
40 LET x ̂ 0: LET y=84: REM MOVE arrow, x,y
50 LET x-1: LET y c O
60 REM RMOVE arrow, x,y
70 GO TO 60

This example program is a modified one. of that used for the MOVE
example program. It uses the RMOVE instruction to move the arrow
across the screen. To increase the speed of the arrow, increase
the size of the x in line 50. Change the LET y*0 in line 50 to
LET ysi and the arrow will move diagonally.

FIND

This comnand is used to determine whether there is an object at a
given screen position. It has the form:-
100 REM FIND (x co-ordinate), (y co-ordinate)
The x co-ordinate must be in the range of 0 to 255 inclusive and
the y must be in the range of 0 to 175 inclusive. The name of the
object type is returned in the BASIC variable j$ and the number of
the subscript is returned in the BASIC variable j. If, however,
there is no 'FIFTH' object at that position then j$ will be the
null string (a string containing no characters - "") and j will
have the value 0.

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET asl: REM. OBJECT invader, a\PRINT invader

A\DISABLE invader
40 LET x= 1: LET yslOO: REM MOVE invader x,y
50 REM FIND x,y
60 PRINT j$, j

This should print "invader" and "1" at the top of the screen. If
you miss out the PRINT command in line 3 0 -then the routine will
still work. In fact, the FIND comnand does not look at the screen
at all. It simply goes through the co-orindates of all the objects
and uses the first object that seems to near enough to the pos
ition you gave. The name of the object type, which is given in j$,

29 .
is always given completely in lower case letters, even if the
object was defined completely in upper case.
Examples:-

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET ar 10: REM OBJECT abc, a\PRINT abC,H
40 LET a r 1: REM SPEED abc,a,a
50 LET a = URND*9: REM USE abc, a
60 LET x r 124: LET y * 175: REM MOVE abc,x,y
70 LET y -40
80 REM FIND x,y
90 PRINT AT 5,0; j$ "(3 spaces)" 'j
100 GO TO 80

This program defines 10 subscripts of "abc". It then randomly
selects one of these and moves it up the screen. One of the pos
itions it has to pass throgh is monitored by a FIND connrand whose
results are printed on the screen. From the results you should be
able to determine which subscript it was.

DISABLE
This command gives you the facility to stop an object moved by
interrupts. It is used in the form:-
100 REM DISABLE (Name of object type)
Like most of the commands connected with 'FIFTH' automatic move
ment, this command is effected by ALL and USE. The given object
will be disabled as far as automatic movement is concerned. The
object must be re-enabled using an ENABLE instruction for move
ment to continue. All other commands such as MOVE still work as
normal. Commands that just give information (e.g. PRINT or COLOUR)
also still work all right although their effect is not shown until
the object is re-ENABLED. When first defined, an object is enabled.
The only time that it is disabled (except manually in a BASIC
program using DISABLE) is after it collides with another object or
goes off the edge of the screen in which can an appropriate service
routine is called which would usually re-enable it anyway.

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a*i: REM OBJECT ball, cNPRINT ball,0
40 REM SPEED ball, a,a
50 REM DISABLE ball
60 LET x - 124: LET yrl70: REM MOVE ball, x,y
70 GO TO 70

30.

When RUN this program will print most of a "Q" at the bottom
of the screen. If you now delete line 50 then the "ball" will then
move up the screen. This is because the DISABLE instruction at
line 50 prevents the "ball" from moving. Remember that if you
DISABLE an object then it will not be erased from the screen and
can still, therefore, be involved in a collision with another
object.
Examples:-

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a -1: REM OBJECT ball, a
40 REM PRINT ball, 0\SPEED ball, a,a
50 LET x -12*4: LET y =165: REM MOVE ball, x,y
60 IF INKEYS *"0" THEN REM DISABLE ball
70 IF INKEYS -"1" THEN REM ENABLE bail
80 GO TO 60

This is a modified version of the last program you may have typed in,
You can start or stop the ball at any time as it travels to the
top of the screen. Key "0" stops the ball and key "1" starts it again
N.B. If you try and DISABLE an object which is already disabled
then the command will have no net effect.

ENABLE

This is the complementary command to DISABLE, as you might expect.
It has a similar format to DISABLE l.e.

100 REM ENABLE (name of object type)
Everything that was explained about the DISABLE command is appli
cable to the ENABLE command. Except, of course, the object is
enabled instead of disabled.
Examp1es:-
The example given for the DISABLE conmand will aslo function as
an example of the ENABLE command, which it contains in line 70.

LIMIT
This command is used to define which line number will be jumped to
if an object goes off the edge of the screen. 'FIFTH' is very power
ful in the sense that it will automatically jump to a certain line
number when an object reaches the edge of the active screen area.
It will perform something similar to a BASIC GO SUB but no GO SUB
instruction is needed in the main loop of the program. In fact the
service routine (the BASIC routine that is called when a limit
condition occurs) must be terminated with CONTINUE, not RETURN.
Most of this, however, is explained under the UMTPARAM command. It

3 1 .

is up to the programner to write a sort service routine at the given
line number to handle the limit condition. A LIMIT command has
the form:-
100 REM LIMIT ('FIFTH' expression)
The 'FIFTH' expression gives the line number to be jumped to if
a limit occurs and must evaluate to between 0 & 65535 inclusive
otherwise error "B Integer out of range" will result. If the
expression comes to more than 9999 (The highest number possible)
then when a limit condition occurs, no line will be jumped to and
so program execution will carry on as normal. Now for an example

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a - 1000: LET b - I: REM LIMIT a/OBJECT thing, b
40 REM PRINT thing,t\SPEED thing,b,b
50 LET x * 124: LET y =.175: REM MOVE thing, x,y
60 LET Or 0
70 GO TO 60

1000 STOP
Programs similar to this already used as examples in this manual
do not stop when the treached the top of the screen. This program
however, does stop with error "9 STOP statement". The stop state
ment is at line 1000. As you can see, there is no actual state
ment to jump line 1000 in the main loop of the program. This is
caused by d limit condition occuring when the object tries to go
off of the screen. You may winder what the seemingly redundant line
60 is doing in the program. This is needed because 'FIFTH' cannot
jump to a service routine if the main loop of the program consists
of a single GO TO statement which jumps Itself. There are other
rules concerning this to be complied with but these are explained
under the LMTPARAM command. When you first execute the "RANDOMIZE
USR 61030" at the beginning of the program, the limit line is set
at 10000 so that if a limit condition occurs then no service
routine will be called (Mainly because the computer does not know
whether you have written one or not;).
Examples:-

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a c 8000: LET b=l: REM OBJECT ball, b\LIMIT a
40 REM PRINT ball, o\SPEED ball, b,b
50 LET x r 128: LET y^88: REM MOVE ball, x,y
60 LET ar 0

32.

/O GO TO 60
8000 REM LMTPARAM
8010 IF 1*0 THEN LET z-7
3020 IF 1? 1 THEN LET z-11
8030 IF 1-2 THEN LET z=15
8040 IF 1-3 THEN LET z-3
8050 LET z - Z INT-(RNDM)
8060 IF z -15 THEN LET z^z - 16
8070 REM VECTOR ball, Z/ENABLE ball
8080 CONTINUE

This program Droauces an "o" bouncing around the screen, do not
worry about how it works at the moment.

INTERACT

This is similar to LIMIT but determines the line that will be
jumped to when two objects collide with each other. Its form is:-
100 REM INTERACT ('FIFTH' expression)
Most of the details are the same as for the LIMIT command.
The following information applies both to the LIMIT and INTERACT
commands. Before a service routine can be jumped to, the inter
preter must finish the statement that it was executing when the
collision happened. This means that 'FIFTH' must temporarily store
the information pertaining to the collision or limit condition.
There has to be room for more than one lot of information in case
a lot of events all happen at once. It can now be told that the
temporary store is the "service stack". In fact there are two of
these, one for LIMIT'S and one for INTERACT'S. There is room for
16 outstanding service routine calls in each stack. If more than
16 become outstanding at one time then error "4 out of memory"
results. This error is a bit strange as it can occur at any line
since the objects are being moved and collisions etc. are being
stored at the same time BASIC is running. The rule is to look into
the possibility that the error was caused by an overflow of the
service stacks before spending ages looking for a non existant
error in the actual program. Under normal circumstances, the
service stacks should never overflow unless you are doing some
thing terribly wrong. The service.stacks are LIFO (Last in-First
out) structures so that the last object condition that happened
is always the first one to be processed. As well as this, interacts
'have priority over limits' so before a limit condition is seen
to, there must be no outstanding Interact conditions. 'FIFTH' does

3 3 .

not allow 'nested' service routines so another service routine
will not be called while another is in progress. The interpreter
knows that its finished the service routine when it comes to the
delimiting CONTINUE statement.
Examples:-

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a *1000: LET b = 2: REM INTERACT a\0BJECT,b
40 REM PRINT bomb,0
50 LET a*l: REM SPEED bomb, a,a\ ERASE bomb
60 REM USE bomb, a
70 LET C = 8 : REM VECTOR bomb, C
80 LET x =124: LET y-0: REM MOVE bomb, x,y
90 REM USE bomb, b
100 LET y» 175: REM MOVE bomb, x.y
110 LET aM:
120 GO TO 110

1000 REM INTPARAM
1010 BEEP 2, - 30
1020 REM ALL bomb\ ENABLE bomb
1030 CONTINUE

This program defines two objects hurtling towards each other. When
they meet, a series of low freauency BEEP'S are produced.

LMTPARAM

LMTPARAM stands for limit parameters. The command is used in limit
service routines to assign BASIC variables with information about
the limit condition. This command has no parameters after it. When
it is executed it returns the name of the object type that went off
the screen in the BASIC variable h$. This will always be composed
entirely of lower case letters so remember that when you do tests
on this variable. The actual subscript of the object type that went
off the screen is returned in the BASIC variable h. The direction
that it went off the screen is returned in the variable i. This
is 0 if it went off the top of the screen, 1 for the right hand
side, 2 for the bottom and 3 for the left hand side. The co-ordinates
the object had just before it went off the screen are kept - the
object is not ereased and still remains on the screen. What happens
in fact, is it is disabled to stop it causing another limit condition
on its next move. You must remember, however, that the object may
not be near the edge of the screen if you gave a particularly large
number for the second parameter of its SPEED coimrand. It is the job

of the service routine to 'point' the object in another direct
ion or do something appropriate and then re-enabie the object.
Even if you are not going to use the information given by a
LMTPARAM command, you must still put it in. It is best, therefore
to always put it as the first line of your service routine. A
service routine is finished when the interpreter comes to a
CONTINUE statement, this would be the last line of your service
routine. As was pointed out in the description of the INTERACT
command, another service routine will not be called while one is
being executed. What happens therefore, If the limit service
routine marks the end of that particular part of the program and
no CONTINUE statement is needed. The answer to this is to add the
line "POKE 23681,0" This tells "FIFTH" that the service routine
is finished, just like a CONTINUE statement would.
Now for a working example:-

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a *2000: LET x-1: REM OBJECT ball,

x\LIMIT a
40 REM SPEED ball, x,\ PRINT ball,0
50 LET x -124: LET y=100: REM MOVE ball, x,y
60 LET a=l: GO TO 60

2000 REM LMTPARAM
2010 LET b=(7 AND i=0) **-(11 AND is 1) +

(15 AND ’ i =2) *(3 AND is 3)
2020 LET b s b + INT (RND*3)
2030 IF b a 15 THEM LET b*b-16
2040 REM VECTOR h$, b\EMABLE h$
2050 CONTINUE

This is a similar example given under the LIMIT command. It
produces a "0" bouncing around the screen. The main loop of the
program is in line 60 which as you can see, is a 'do nothing' loop.
Lines 1 0 - 5 0 merely set up the object. From line 2000 onwards is
the service routine. Notice how it starts with a LMTPARAM command
ana ends with a CONTINUE statement. Line 2010 makes the b variable
eaual to a suitable parameter for the VECTOR command but pointing
in the order direction to which the object went off the screen.
Line 2020 adds some randomness to the VECTOR selection, otherwise
the object would just bounce the some woy all the time. Line 2030
makes sure that this variable does not come to more than 15 and
if it does it subtracts 16 - making direction 16 eaual to direct
ion 0. Line 2040 actually changes the direction. Notice how h$
is used for the name instead of 'real' name. In this particular

3 4 .

3 5 .
example we know that h$ will always he assigned as "ball" but
in other programs this may not always be the case. Here is more
sophisticated version of the same program, it moves 8 balls
simultaneously:-

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a i 6000: LET b-8: REM OBJECT ball,

b\LIM IT a
40 REM PRINT ball, 0
50 LET a=l: REM SPEED ball A,A
60 LET 124: LET y = 50: REM MOVE ball x,y
70 LET a» 1: GO TO 70

6000 REM LMTPARAM
6010 LET b s I NT (RND*3)>(7 AND itO)+-(ll AND i- D-r

(15 AND 1 -2)*(3 AND 1 3)
6020 IF b >15 THEN LET b *b- 16
6030 REM LET C-CURRENT h$\USE h$,h\VECTOR h$,

b\ENABLE h$\USE h$, C
6040 CONTINUE

This program contains a lot of interestinn points. Here is a des
cription of i t: -
Lines 10-60: Set up the object type called "ball". Line 30 also

sets the service routine at line 6000.
Line 70 : The main loop of the program. As you can see this

contains the seemingly redundant "LET a * I". This is
because the main loop of the program must not contain
a single statement l.e. None of the below are legal:-

70 FOR a ■ 0 TO 1000000: NEXT a (FOR is only executed once)
70 GO TO 70
70 IF 2>I THEN GO TO 70 (Always goes back to line 70)
Line 6000: Gets the information necessary for the service routine.
Line 6010: Makes b eaual to a suitable number for a VECTOR command.
Line 6030: This performs most of the work of the service routine.

First of all, it makes c eaual to the current subscript
being used of h$. In this particular program this is
not really needed but is incorporated to illustrate a
point. As you can see the second command is a USE
instruction. This changes the current of h$ which coulc
spell disaster for the main loop of the program. A ruie
when writing service routines is to leave everything
exactly as you found it. Be very careful about BASIC
variables. Always use different variables in the service

3 6 .
routine to those used in the main Iood of the program.
It is certainly very difficult to get used to service
routines. Many programs bugs can be attributed to using
the same variable is) in both the service routines ana
the main program loop. Also watch out for other things
that you do in a service routine that may effect the
main program execution.

Line 6040: This terminates the service routine.
In most programs you would want to do different things according to
the object type that went off the edge of the screen. You could do
this by a number of IF...THEN GO TO___statements near the beginning
of the service routine i.e.

9000 REF LMTPARAM
9010 IF h$ = "invader" THEN GO TO 3000
9020 IF hS - "bomb" THEN GO TO 3500
9030 IF h$-"missile" THEN GO TO 7000
etc.

Examples:- 10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET a *8000: LET b r 1: REM OBJECT arrow,b\LIMT a
40 REM PRINT arrow,ASPEED arrow b,b
50 LET 2=4: LET x - 0: LET y - 0 REM VECTOR arrow,z
60 REM MOVE arrow X,Y
70 LET a * 1: GO TO 70

8000 REM LMTPARAM
8010 LET y - y 8: IF y * 170 THEN STOP
8020 REM MOVE arrow, x,y ENABLE arrow
8030 CONTINUE

This program produces an arrow moving from left to right. When it
gets to the edge of the screen it goes bock to the left hand side but
8 pixels lower and continues the cycle.

INTPARAM
This command is very similar to the LMTPARAM except it is used for
interact service routines. The main difference are the variables
that it defines and their meaning. A collision obviously involves
two objects. The name of the first object is given in h$ and its
subscript number in h. The second object has its name returned in i$
and its subscript number in i. As usual, the names are given entirely
in lower case, so remember this when performing tests on them.

37.

When a collision occurs both of the Involved objects are disabled.
The two objects never actually touch each other. In fact although
thecharacters are printed on an 8 x 8 pixel grid the 'FIFTH'
system tests the bordering pixels to see if they are set to the
INK colour. If they are then 'FIFTH' knows that it has collided
with another object. One s d in-off from this is that if one of the
print as characters is eaual to a space the collision can never
occur because It will never be detected. If one of the things
involved in the collision is not recognised as a 'FIFTH' object
then it is given the name ""(the null string) and has subscript
number 0.
Examples:-

10 RANDOMIZE 1000
20 RANDOMIZE USR 61030
30 LET Or 5000: LET b= 2: REM INTERACT a\0BJECT

star, b
40 LET a s 1: REM PRINT star*\ SPEED star, a,a,\

ERASE star
50 REM USE star, a
60 LET X — 0: LET y^i50: LET Z=4: REM MOVE

star, x,AVECTOR star z
70 REM USE star b
80 LET z=12: LET x=255: REM MOVE Star x,y\

VECTOR star, z
90 LET a = 1: GO TO 90

5000 REM INTPARAM
5010 BEEP.05,50
5020 REM USE h$, h\ENABLE h$\USE i$, i\ENABLE 1$
5030 CONTINUE

This program produces two horizontal 'V"s moving in opposite
directions. When they collide a BEEPING noise is produced as the
interact service routine is called.
N.B. - (When you write an interact service routine and want to
test whether the BASIC variables hs and 1$ are the names of part
icular object types do it both ways i.e.)
100 IF (h$ = "bomb" AND i$c"missile") OR (h$ - "fissile" AND is *
bomb")
THEN etc................

FIG,,, 5 - Where 'FIFTH' looks for another object (Over page)

3 8 .

ERASE
The usual was to actually move an object is to erase (print a space)
the old image of the character and then print the character at the
new position. This is all very well but is auite slow since the
'FIFTH' system actually has to print two characters (the space
to erase the old image Plus the re-print of the actual character),
under certdin conditions it is only necessary to print the new
image as this will automatically erase the old image. The condition
is that the 'print as' character must have a border of paper
pixels eaual to the number of jumps per move*of that particular
object. The two diagrams below explain why the letter "a* can be
moved in "non erase" mode with a jump of one Pixel per move while
the letter "j" cannot.
FIG. 6 - A comparison of the letters "a" and "J"

whenever you use the PRINT or SPEED commands, 'FIFTH' checks to
see whether it is possible to put that particular object into
non-erase mode. If this is possible then 'FIFTH' will do so. All
the ERASE command does is to make sure that the given object type
is in erase mode, even if non-erase mode is possible. ERASE is
effected by ALL and USE. Its format is:-

100 REM ERASE (Name of object type)
You may be wondering what good this is as printing a character in
erase mode uses more time and therefore slows the speed of BASIC.
The answer is that there is a trade-off between the two. A charac
ter printed in non-erase mode 'doesn't look where its going' and
therefore never detects a collision with another object. A non-
erased character never takes part in an interact condition, there
fore unless the other character is printed in erase mode and would
therefore detect the presence of the first character. There is how

3 9 .
ever another reason for using non-erase mode, it is explained
below:-

The problem lies with the foot that the T.v. picture is being
output at exactly the same time that the objects are being moved.
The problem only reors its ugly heod when you ore moving more than a
few erased choracters ot the same time and even so, only when the
characters are at the top of the screen. For the problem to reach
its full extent the objects have to be moved every interrupt or
50 times o second. The first thing 'FIFTH' does is to erase the
character by printing a space over it. It sometimes just so happens
that the ULA chip reaches that portion of the display file where
the character is and outputs it to the T.V. at the exact moment.
'FIFTH' did not have time to print the new version of the character
so the object visibly disappears from the screen because 'FIFTH'
only had time to print the space over the old image. This effect
does not happen with non-erased objects since they are never com
pletely absent from the display at any time. Please note that al
though the object may not appear on the screen for a short period
of time it is still in the display file. The answer to this problem
is to try and use as few erased characters as possible and if you do
use them keep them to the bottom of the screen as much as possible.
Please note that you sometimes see another form of corruption where
a character is only partly printed. This is caused by the ULA
reaching that particular portion of the display when 'FIFTH' is
only part way through printing the new image of the character.
(N.B - Although the SPEED command may only refer to a single
subscript, all subscripts of the given object type are tested for
compatablllty with non-erase mode.)

When d 'FIFTH' command has a numeric parameter you can either put
a BASIC variable there or a 'FIFTH'function. The use of single
letter variables has been explained but the use of 'FIFTH' functions
has not. They basically allow you to 'get back' the information
put in using most of the other comnands. r*any functions have
parameters themselves, usually the name of object types. Below is
a description of all 13 of them:-

40.

m
FORMAT:
DESCRIPTION:

No (Name of object type)
Returns the nimber of subscriptions of the given
object type.

COLUMN
FORMAT:
DESCRIPTION:

COLUMN (Name of object type)
This function returns the column number (x co
ordinate) of the given object type, according
to ALL and USE. If the CURRENT of that object
type is ALL then error "A Invalid argument" results

LINE
FORMAT:
DESCRIPTION:

LINE (Name of object type)
This returns the line number (y co-ordinate) of
the given object type, according to ALL and USE.
If the CURRENT of that object type is ALL then
error "A Invalid argument" results.

SCREEN
FORMAT:
DESCRIPTION:

SCREEN (Name of object type)
Returns the code of the character that the given
object type will be printed as. Use the CHR$
function to get the actual character.

ATTR
FORMAT:
DESCRIPTION:

ATTR (Name of object type)
Returns the colour that the given object type is
printed in. It is given in the same format as you
would get from a normal ATTR function - see page
116 of the Sinclair BASIC programing manual.

DIRECTION
FORMAT:
DESCRIPTION:

DIRECTION (Name of object type)
Returns the direction (0 to 15 inclusive) of the
given object type, subject to ALL and USE. If the
current of the given object type is ALL then error
"A Invalid argument" will result.

CURRENT
FORMAT:
DESCRIPTION:

CURRENT (Name of object type)
Returns the current subscription of the given
object type. If the current is ALL then 0 is re
turned.

MASK
FORMAT:
DESCRIPTION:

MASK (Name of Object type)
Returns the colour mask for the given object
type. It is used for PAPER or INK 8 etc. When
converted to binary, any bit that is set sign
ifies that the corresponding bit from the actual
colour (returned by ATTR) is not taken from that
byte but from what was already on the scr-en.

VELOCITY
FORMAT:
DESCRIPTION:

VELOCITY (Name of object type)
Returns the delay, in l/50th's of a second, bet
ween succesive moves of the given object type,
according to ALL and USE.

JUMPS
FORMAT:
DESCRIPTION:

JUMPS (Name of object type)
Returns the nunber of pixel jumps an object will
make, every time it is moved, subject to ALL and
USE. Error A if the current of the supplied
object type is ALL.

LIMIT
FORMAT:
DESCRIPTION:

LIMIT
Returns the number of the line at which the limit
service routine is sited. If this is bigger than
9999 then this signifies that no limit routine
is to be called.

INTERACT
FORMAT:
DESCRIPTION:

INTERACT
Returns the line number of the interact service
routine, if there is one. If this is bigger than
9999 then this signifies that no interact service
routine is to be called.

STATUS
FORMAT:
DESCRIPTION:

STATUS (Name of object type)
Returns a 1 if the object is enabled or 0 if
disabled. Subject to ALL and USE but if the current
is ALL then error A will be produced.

BREAK KEY DISABLE

'FIFTH' allows you to disable the BREAK key from within a program.
'POKE 65239,1" disables it while "POKE 65239,0" enables it again.
As well as offering more program security this is a useful solution
to the problem that you sometimes press BREAK by mistake during
a program.

41 .

HINTS AND TIPS
<42.

(a) Saving application programs

When you write a program using .'FIFTH' you will have to save
'FIFTH' as well as the BASIC program in order for it to work
on Re-loading.
To SAVE 'FIFTH':- SAVE "Data "CODE 61030,A506 (This also saves

the user definable
graphics)

Remember to VERIFY:
To LOAD 'FIFTH'.: LOAD "Data "CODE 61030,<4506 (This also restores

the UDG's)
Save 'FIFTH' immediately after the recording of the BASIC program.
Have the BASIC program auto-run and at the entry point incorp
orate the 1i ne:-
CLEAR 61029: LOAD "Data" CODE 61030,<4506
Which will lower RAHTOP and then load 'FIFTH'.

(b) The use of CONTINUE

You can usually use the CONTINUE cornnand to restart program
execution after an error, intentional or not, occurs. When using
'FIFTH', however, this is not possible. To avoid this problem it
is best to organise your program structure into small subroutines
and to make correspondingly great use of the GO SUB statement.
You can then test each subroutine individually - minimizing the
amount of bugs.

(c) The use of RANDOMIZE
In most 'FIFTH' programs, line 20 is "RANDOMIZE USR 61030". You
may think that the USR function always returns the same number
for the seed of RND so that random numbers always start from the
same point. This is not so since a 'random' number is always re
turned by the USR function.

(d) The use of 'FIFTH' REMs
A REM statement containing 'FIFTH' commands must always be the
last statement on that particular line. If there are more state
ments then they are ignored.

COMPUTER RENTALS LTD

I N D E X

Des.cript;iQn page no

Instructions for 'FIFTH' 1
Temps 4
Fill 5
Replace 7
Large 8
Sound 10
Get 12
Put 13
Let 15
Object 16
Use IS
All 20
Print 21
Colours 21
Vector 22
Speed 23
Move 25
RMove 27
Find 23
Disable 29
Enable 30
Limit 30
Interact 32
LMTPARAM 33
Intparam 36
Erase 38
No 40
Column 40
Line 40
Screen 40
Attr 40
Direction 40
Current 40
Mask 41
Velocity 41
Jumps 41
Limit 41
Interact 41
Status 41
Break Key Disable 41

