
FLOATING POINT
FORTH

U S E R G U ID E

SPECTRUM FLOATING POINT FORTH

USER MANUAL

Contents
1. What It’s All About
2. FORTH Fundamentals
3. Getting Started
4. The Next Step —> Calculations
5. Programming in FORTH
6. Integer FORTH
7. The FORTH Editor
8. Miscellaneous Topics

APPENDIX A — FP FORTH Words
APPENDIX B — Integer FORTH Words
APPENDIX C — The Memory Map

Floating-Point Forth Program
Mike Hampson © 1983

User Manual by: F.A. Vachha 1983
Published by C.P. Software, 17 Orchard Lane,
Prestwood, Gt. MIssenden, Bucks., HP16 ONN,
England.

1. WHAT IT’S ALL ABOUT
1.1 FORTH is the most modern of popular computing languages.

It was created in the early 1970s by Charles Moore and
Elizabeth Rather at the National Radio Astronomy Observa
tory, USA. “FORTH” is not an abbreviation or a mnemonic (it’s
actually the trademark of FORTH Inc, California) — it just
sounds good!

1.2 Technically speaking FORTH is a stack-orientated language
which uses reverse Polish notation. It has won over a large
following because of its speed, economical use of computer
memory and the way in which it uses simple building blocks
to construct complex structures. FORTH is intermediate in
speed and compactness between BASIC (slow, space ineffi
cient) and machine code (fast, compact)

1.3 Floating Point Forth (also called FP50) is an implementation of
the language for the 48K ZX Spectrum Microcomputer. A little
explanation is called for at this stage — isn’t the Spectrum a
BASIC computer? If so, how can it use FORTH?
The answer is that the Central Processing Unit (CPU) of the
Spectrum, which is effectively the only part of the Spectrum
which “thinks”, is a ZX80A microprocessor chip — it
understands neither BASIC, FORTH nor anything else except
(its own) machine code. When switched on, the CPU
automatically starts executing machine code commands
which reside in the ROM. These instructions allow the
computer to accept, edit and aexecute programs in BASIC —
all BASIC commands are ‘interpreted’ by the CPU (using the
ROM program as reference) and executed step by step.
In conclusion, then, the machine code program in ROM
supports the BASIC handling capability of the Spectrum. You
need not concern yourself at ah with the machine code
program operation if you want to write and run BASIC
programs.
In a similar vein, FPSO is supported by a BASIC and a machine
code program — these, together with some data, are what
you load into the Spectrum at the start. These reside in RAM,
we thought having to change your Sinclair ROM chip to get
FORTH was rather drastic. As before, you need not concern
yourself with their operation. They are “user-transparent” —
ie, you need not even know they exist (except in special
cases, say when you BREAK out of the program) in order to
program effectively in FORTH.
Well then — the Spectrum is no less A FORTH computer than
a BASIC computer. It’s just that the BASIC-handling system is
in ROM while the FORTH-handling system (ie FP50) loads
into RAM.

1.4 Why use FORTH?
Programs in FORTH can run up to one hundred times faster
than those in BASIC — FORTH brings you right to the
boundaries of machine code speed. Arcade games come
alive in FORTH — as do all the other program applications for
which BASIC is just not good enough.
Programs in FORTH are much more compact — for example,
an adventure in FORTH could probably have thrice as many
locations as one in BASIC (with instant keyboard response as
a bonus!).
Programming in FORTH is far more instructive and educa
tional than it is in BASIC. FORTH is at least as easy to learn as
BASIC; however it lends itself to “structured” programming
which BASIC does not. Many computer education courses
have switched from the traditional BASIC — base to FORTH.
While FP50 is user friendly, using it gives discipline to your
programming (BASIC certainly does not) — this discipline is
very useful if you decide to learn other high level languages
like PASCAL, COBOL or FORTRAN. Further, as FORTH is all
about stack manipulation (explanations later) it is essentially
similar to machine code. Mastery of FORTH is hence a very
useful stepping stone to the lower level languages like
assembler and machine code itself.
Lastly, because it’s fun!

1.5 FP50 contains all the structures of Forth 79 (the industry
standard). This means that once you understand FP50 you will
be able to use most other versions of Forth.
Note, however, that software written in Forth 79 (or in FIG
Forth, the next most common version) may need some
conversion to run on FP50.
There is a lot of FORTH software available. Currently, there is
at least one FORTH home microcomputer available in the UK,
and program listings for it can be converted to FP50 and
run on the Spectrum.
Note that the special feature of FP50, normally available only
on expensive commercial packages, is its ability to handle
floating point numbers (as opposed to integers only). Other
versions of FORTH available for the Spectrum can handle
numbers from -32767 to +32767 with an accuracy of zero
decimal places. FP50, however, can handle numbers from

-2E127to+2E127 (ie-1.7E38 to + L7E38) with a maximum
accuracy of nine decimal place

SUMMARY OF CHAPTER 1
+ FORTH is a new(ish), fast, compact structured language.
+ FP50 allows you to run near — standard Forth programs on your

Spectrum, iDy providing a Forth operating system which replaces
BASIC.

2. FORTH FUNDAMENTALS
2.1 If you are not familiar with FORTH, it is strongly recom

mended that you read this section before loading the
cassette. Because FORTH operates on principles quite
different from those of BASIC, it is unlikely you will make the
computer do anything productive in FORTH until you have
grasped the elements of this new language.
If, however, you like to learn the hard way, load the program
using LOAD” ” and start. When you finally manage to crash
the program, refer to Section 3.3 to get you restarted. Once
your appetite for exploring the unknown has been whetted,
return to this section, and do things the right way around.

2.2 There are two concepts fundamental to the understanding of
any FORTH dialect — the concept of the WORD and that of
the STACK. Before going any further let us explain what these
are.

2.3 THE WORD
Everything you enter into the computer is a WORD, irrespec
tive of whether it is a command, number, symbol, name or
variable.
The principle of FORTH programming is that you teach the
computer new words to enable it to perform the tasks that
you want.
To begin, the computer starts off with a number of^words it
knows already (you load these into the computer as “data” —
see 3.1). For a list of all the words initially in its vocabulary,
refer to Appendix A and Appendix B.
Now while these words are very useful, you cannot do very
much with them alone. If you want to write a program that will
play chess (or space invaders!) you will not find an existing
word that will do this. What you will have to do is teach the
computer new words, defined in terms of words it already
knows (you can define a new word ONLY in terms of words
previously defined). A single new word can combine the
effect of five or ten or twenty existing FORTH words. Further,
you can define even newer words based on the new words,
and so on. In the end, your whole program will be just one
WORD, defined in terms of many'Other words (all of which
are defined in the dictionary).

2.4 It is vital that you grasp the concept of the WORD in FORTH.
A comparison with BASIC might help you to do this:-
A program in BASIC does consist of words, such as LET,
FOR, NEXT, STEP, GOTO etc. But your program has to be
constructed directly from these words: you cannot define
your own words from them (if you try, you will get an error
message).

A program in FORTH can consist of a mixture of original
words, and words you have defined yourself. This gives you
far more flexibility.
The closest that BASIC can come to this is by using
subroutines. If in your BASIC program you wanted a
command to paint your screen with alternate black and white
squares, you could do this by writing a subroutine (starting at
2000, say) and then using the command GOSUB 2000 at the
appropriate stage of the main program. In a sense, “GOSUB
2000” is a word that YOU have defined, one that will
accomplish the specific task you designed it to do. In FORTH
you would call the word something appropriate (like PAT
TERN) and define it in the way described later. Every time
the computer met the word PATTERN it would paint the
pattern on the screen.

2.5 THE STACK
A fascinating characteristic of FORTH is the stack. The stack
contains numbers. All the numbers used for calculations, as
well as the results of these calculations, are stored on the
stack.
Visualise the stack as a pile of cards with numbers written on
them. The last card you put on the pile is always the first card
that you take off. The operation of the stack can hence be
described as LIFO — Last In, First Out. Each time you put a
new number on the stack, the number which previously was
at the top of the stack is now second on the stack.
Throughout the manual, the term TOS is used to represent the
item on the top of the stack, 20S the next item on the stack,
30S the third item on the stack (counting from the top), etc.
This diagram should help you picture the stack.

That was simple, wasn’t it?
2.6 The numbers you use on the stack can be integers (3, -5

decimal point numbers (3.8, -0.7) or be in scientific notatioi
(+-1.7E19, 2.8E-5).
The range of permitted numbers and their format are exactly
the same as in BASIC (ie, top limit about + 1.7E38, bottom limi
about -1.7E38).

2.7 At this stage it should be pointed out that Section 2.5 actually
oversimplifies the situation: FP50 really uses th ee stacks, not
just one. They are the data/user stack, the return stack and
the calculator stack. But do not worry — the only stack you
need to know about at this stage is the first one, and
whenever the word ‘stack’ is used alone it refers to this one.
The other two stacks are described later, in Chapter 8.

SUMMARY OF CHAPTER 2
+ Two important FORTH concepts are those of the WORD (any

command, number, symbol etc) and the STACK (a LIFO
operating pack of cards, which can contain numbers only)

+ TOS represents the item on the top of the stack
20S represents the item immediately below TOS
30S represents the item immediately below 20S etc.

3. GETTING STARTED
3.1 The professionally duplicated cassette supplied with this

manual contains a copy of FP50 on each side. To begin,
restart the Spectrum by executing RANDOMISE USR 0 (this
simulates a power-off) and then enter LOAD” ”
FP50 loads automatically, in 3 parts (A program (fforth) bytes
(data) and bytes ag^in (routines)). Loading takes about 1 min
45 seconds — once it is complete a picture materialises, a
short tune plays and a prompt appears at the foot of the
screen.
The prompt is ★ ★ ★ >, followed by a flashing cursor (L in lower
case, C in Caps mode — you can switch between these two in
the usual way).
This signifies that you are in the command mode of operation
— FP50 is waiting for you to tell it what to do next. If you wish
to use the editor, refer to chapter 7 at this stage.
(most words resident in the FP50 dictionary must be entered
in capitals. See Appendix A and Appendix B for exceptions).

3.2 You are now almost ready to begin. There are just a couple of
rules of syntax you need to know about — they will help
prevent you misunderstanding or wrongly implementing
instructions given later on.
a. Between each work there MUST be a separator. There

are two permitted separators — one is the ENTER key
and the other is the SPACE key. They have almost exactly
the same effect — use whichever one you prefer.
The only difference between SPACE and ENTER is that
the latter not only separates words, but also gets the
computer to “compile” (translate into simple instructions)
all words entered so far. The SPACE key only separates
words.

b. Be careful about spaces between words when entering
examples from the manual into the computer. 90% of
errors arise from missed spaces. Spaces in the manual
examples are shown by a blank area between words.
There is (unfortunately!) a FORTH word called SPACE:
this is always spelt out with 5 letters in the manual. (See
3.7).

c. Do not use quotes within quotes or embedded brackets.
d. Commands in upper case will not be understood if

entered in lower case, and vice versa.
e. Do not use any of the Spectrum keyboard tokens (like

SYMBOL SHIFT and Y to give you AND) — FP50
recognises none of these. Type in everything in full.

3.3 WHEN THINGS GO WRONG
If and when things go wrong and the program crashes, you

will be returned to BASIC and an error message will appear
at the foot of the screen.
Sources of errors could be using of invalid colours, perform
ing operations that are arithmetically impossible, replying ‘N’
to the screen prompt “Scroll?” using BREAK etc.
To get back into FP50, enter either GOTO 4051 or GOTO 3
(with the latter you get the screen picture and tune again).
You will NOT lose any words you have already defined.

3.4 USING FP50
Let us now begin. You should have, as stated in 3.1, a “★ ★ ★ >”
at the bottom of your screen, followed by a flashing cursor. If
you have been playing with the program and have lost’ this
message, input a semicolon followed by pressing ENTER..
★ ★ ★ > will reappear.

3.5 We shall now put some numbers on the stack. Let us first put
the number 7 on the stack. We do this by pressing the key 7,
the space key (or ENTER — see 3.2a) the semicolon key and
then ENTER.
This looks like:
★ ★ ★ >7 ;
The semicolon marks the end of an instruction, and, provided
the instruction is valid, semicolon followed by ENTER will
first execute the instruction and then return you to command
mode.
We have put the number 7 on the top of the stack (ie, TOS=7)
If you were starting from scratch, the stack would previously
have been empty — there would be only 1 item on the stack
now. Hence the computer displays:
Stack: 1 --------OK (had it been the 5th item, Stack:5 would
have shown) and then the command mode prompt:
★ ★ ★ >
Note — no spaces should be entered between digits/decimal
points/—//exponent signs: if space is entered the
computer will assume you are trying to input two distinct
numbers.
Let us put more items on the stack.
★ ★ ★ >3.7 ; (a decimal, use the . as in BASIC)
★ ★ ★ >lE-3 ; (scientific notation)
★ ★ ★ >-.05 : (negative)
★ ★ ★ >4 5 11; (three numbers at once — this leaves TOS=ll,
20S = 5 and 30S=4. You can enter any amount of numbers
like this.
Note — no spaces between the numbers and decimal points
or between the numbers and symbols.
Notice that the computer displays as a memo the number of
items on the stack every time you enter a number. This is

useful feedback: FP50 can cope with a maximum of 300 stack
items at one time (or 150 if the editor ED50 is in operation).
Overflow is taboo and will cause an error. Do not worry if
your stack becomes big — it is very easy to remove ‘garbage’
from it, as you will see later.

3.6 Now let us see how to get the computer to take items off the
stack and print them on the screen. With the space key,
ENTER key and the were all markers of a sort, they were
not Forth words (see ★ ★). You shall now meet your first
FORTH word, the dot (the fullstop on the Spectrum keyboard,
the same one you used as a decimal point in the examples
above)
. makes the computer print out TOS, ie, the last number you
put in. So try ★ ★ ★ >.; followed by the ENTER key, as usual —
did yon remember to use the space between the two
symbols?
The computer will now have printed out the number on the
top of the stack (11, if you’ve followed these instructions
exactly). Not only does it print this number, but it also ‘forgets’
it — the stack becomes shorter, as the memo — message
indicates.

3.7 Now try taking more numbers off the stack, either one by one
or several at a time. You will see them coming off in the
opposite order to that in which you entered them — LAST IN,
FIRST OUT, remember?
★ ★ ★ >3 8 10 201; (to put 3, 8, 10, 201 on the stack) and then you
enter

The computer will print out 2011083, which is in the order you
expected (TOS first, so 201 discarded to leave 10 as TOS, etc)
— but why no spaces?
Well, the spaces you input between the dots in the command
served only to separate the commands (if you had omitted
one or more of them, you would have got the message — not
known.)
To separate the output; use the FORTH word SPACE (a five
letter word, to be keyed in — do NOT use the space key!)
Now try
★ ★ ★ >3 8 10 201 ;
followed by
★ ★ *>. SPACE .SPACE . ;
and you will get the output in a more usable form.

3.8 If you continue taking items off the stack you will soon reach
a stage when there are none left. Do not continue to take
items off the stack after this. Though the computer will permit
this (showing the size of the stack as -1. -2. -3 etc) you are

encroaching on the VARIABLES area and will corrupt it.
Instead, put some items back on, even if they are dummies.

3.9 You will have noticed that after you have ENTERed your
instruction next to the ★ ★ ★ > .indicator, they disappear, the
message ‘Compiling _— please wait.’ appears, and the
instruction is repeated step by step, before being executed.
This indicates normal operation of FP50.
If a message of the ’—not known’ type appears, you have
input a word that does not appear in FPSO’s dictionary. Either
you have not yet defined a word you intended to (see Chapter
5) or you misspelt a word or omitted a separator between two
words, or between a number and a word.
If this happens, do not be perturbed. Simply retype in a
corrected form, the characters shown before the ’—not
known’ flag. Do NOT retype the entire command.
For example, ENTER
★ ★ ★ >5 6 7; [omitting the space between the 7 and the ;] The
computer will show “7;- not known. Continue definition”. Now
you should ENTER only 7 ; whereupon the Spectrum will
complete the operation, display an OK message and, as usual,
return you to command mode. Had you entered the whole 5 6
7 ; in reply to the continue definition prompt, the computer
would have implemented ★ ★ ★ >56567; which is not what
you wanted.

3.10 Note that you will get the “continue definition:” prompt
whenever an instruction is incomplete, and not only when the
cause of the incompleteness was an undecipherable word (as
was 7; in 3.9). Remember that ALL instructions MUST be
terminated by the FORTH word This explains why the
method is 3.4 (return to command mode) words.

3.11 USING A PRINTER
If a printer is connected to your Spectrum, the following three
commands enable you to use it [All are in lower case]
★ ★ ★ >z ; Accomplishes a screen COPY
★ ★ ★ >pron ; Switches the printer on — all output is now

directed to the printer and not the
screen,

★ ★ ★ >proff ; Switches the printer off (ie, restores
normality)

Interestingly enough, these three commands are not really
FORTH words they are part of the FP50 operating system
although they could have been defined as such. The only real
difference thus makes to you is that you cannot make the
computer ‘forget’ them which you can do with FORTH words.
It is not advisable for you to use pron, proff, z or ; as the
names of FORTH word that you define, while these names

could be used it may lead to confusion.

SUMMER OF CHAPTER 3
+ ★ ★ ★ > represents command mode.
+ Use a space of ENTER to separate words — this is essential.
+ Use a ; followed by pressing ENTER to implement an instruction
+ If the instruction is a number, Or a sequence of numbers, they will

be entered in order on to the stack (ex ★ ★ ★ >5 ;)
+ ★ ★ ★ >. ; prints by the last item on the stack. You can print a

number of items by using . . . (with spaces between)
+ The word SPACE prints a blank space between successive

numbers taken off the stack — its effect is completely different
from the space key.

+ If a ‘ — not known’ message appears, retype correctly the
specified word (s) and not the whole instruction.

+ The command z, pron and proff accomplish COPY, Printer On
and Printer Off respectively.

4. THE NEXT STEP — CALCULATIONS
4.1 One of the first things you did when learning BASIC was to

use the computer as a calculator — doing things like PRINT
2+3* 4/5, etc. Not only did this give you confidence but it also
made you familiar with the mathematical syntax rules of the
computer. Let us do the same with FORTH and your FP50.

4.2 If you know a little about FORTH you probably know all
implementations of its use. Reverse Polish Notation (RPN).
RPN is reputedly difficult but in fact quite easy. If Hewlett
Packard (all of whose calculators use RPN) had priced
themselves down to the Japanese level, we would all be quite
familiar with it.
RPN uses the concept of numbers first, then operators (the
mathematical operators are +, x, /, V , SIN etc etc.).
On most calculators, you would add 2 and 3 together by
pressing 2, + 3, followed by = or ENTER.
On an RPN calculator, to accomplish the same task you would
do 2 3 + (followed by = or ENTER, depending on the
calculator). If you think about it, RPN is very logical — it
mimics what you do when adding two numbers. You don’t
think of the first (2), then perform some magical addition, and
then think of the second (3) and then the answer.
What you do is to think of first one number, then the second,
and then perform addition on them. Which is exactly the
order RPN handles it.

4.3 Let us now use FP50 to perform some calculations. ENTER
★ +★ > 2 3 + .; (note, if stack: 0 before calculation, then stack:
0 after) and the answer 5 duly appears. It is important to
understand exactly what the computer did just now. In
sequence, it is
2 (i) Put 2 on top of the stack (so TOS = 2)
3 (ii) Put 3 on top of the stack (so TOS = 3, 20S = 2)
+ (iii) Took 3 off the stack, and then 2, and then added them

together putting the answer, 5, on top of the stack.
. (iv) Took 5 off from the top of the stack and printed it on

the screen.
Note that the stack has not changed as a result of this
instruction whatever we put on it, we have taken off.
Had we instead done ★ ★ ★ >2 3 + ; we would have, of course,
left 5 on top of the stack.
This is confirmed by the stack memo, see 3.5.

4.4 Note that numbers already on the stack can be operated
on in a very similar way. ENTER.
★ ★ ★ > 7 6 5 4 3 2 1 ; which puts 7 numbers on the stack
(TOS=l) Now ENTER
★ ★ ★ > + + + + + + .; the answer 28 is displayed (and the

stack length went down by seven).
What the "î rst + did was take TOS (= 1) to 20S (=2), remove
both of them from the stack, and replace them by their sum 3.
Now this 3 (=TOS) is added to the 3 you entered (which was
30S, but is now 20S because you took two numbers off the
stack and only, put one back on), etc etc.
1 + 2 = 3, 3 + 3 = 6, 6 + 4 = 10, 10 + 5 = 15, 15 + 6 = 21 and
21 + 7 = 28.
Of course, it’s simpler to think of it as just 1 + 2 + 3 + 4 + 5 +
6 + 7 = 28.
In this case (because the operation was addition) the order in
which the operations were done is not important — but it
could be, so make sure you have understood this.

4.5 Of course, + is not the only mathematical operation available
on FP50. For a complete list of all mathematical operations
(as well as conditionals and other commands) refer to
Appendices A and B.
Here are some more examples of FP50 working as a
calculator. If any of the operations are unfamiliar look them
up in Appendix A.
In each case, the BASIC equivalent is given
**★ > 7 -5 + . ; is the same as PRINT 7 + (-5) ie 2
★ ★ ★ > 7 15 — . ; is the same as PRINT 7 - 15 ie -8
★ ★ ★ > -11 60 ★ . ; is the same as PRINT (-11) ★ 60 ie -660
★ ★ ★ > 80 7 / . ; is the same as PRINT 80/7 ie 11.428571
★ ★ ★ > 2 5 | ; is the same as PRINT 2 | 5 ie 32
★ ★ ★ > 1.8 COSR . ; is the same as PRINT COS 1.8 ie
-0 22720209
★ ★ ★ > 2 SQR . ; is the same as PRINT SQR 2 ie 1.4142136
★ ★ ★ > -2.9 INT . ; is the same as PRINT INT (-2.9) ie -3
★ ★ ★ > -2.9 ABS . ; is the same as PRINT ABS (-2.9) ie 2.9
★ ★ ★ > 0.38 LN.; is the same as PRINT LN (0.38) ie -0.96758403
***> 20 EXP . ; is the same as PRINT EXP (20) ie
4.8516519E+8
***> 1 ATNR . ; is the same as PRINT ATN (1) ie 0.78539816

4.6 Let us now perform some compound calculations, involving
more than one operation. Again, consult 5. If in any doubt as
to the order in which the operators act on the operands
(numbers).
★ ★ ★ >5 20 4 ★ / . ; (Try to predict the answer before trying it
out) As ★ precedes / , it is the first to operate 20S(=20) is
hence multiplied with TOS (=4) to give 80. 20 and 4 vanish
from the stock and 80 is now TOS, with 5 as 20S. The division
is now performed. 20S(=5) is divided by TOS(=80), 5 and 80
vanish, and the result, 0.0625, is made TOS. Lastly, the answer
is removed from the stack and is printed out.

Follow the same reasoning with ***>7 5 40 — / . ; and
deduce that the correct answer is —0.2 ie 7/(5-40).
Let us and try and compute the following in FORTH (2+!3)*7
ie 57 ie 35.
Looking at the brackets, the addition must be performed first.
One would do this by 2 3 H-; if it were the only task this leaves
5 as TOS. Now 5 is to be multiplied by 7 , and the order in
which this is done is irrelevant (because* is commutative).
Hence
★ ★ ★ >7 2 3 + * ; will put 35 as TOS
★ ★ ★ >23 + 7 * ; will do exactly the same
Use . ; to print out TOS
Say however, we wished to compute ((2 + 3) ★ 7)/4 which is
35/4 ie 8.75.
★ ★ ★ >4723 + ★ / . ; does not work, because after performing
the + and ★ the computer is effectively left with 4 35 / . ; This
gives 4/35 and not 35/4
[Remember / divides 20S by TOS an<j not vice versa]
In order to compute ((2+3)*7)/4 we should hence do ★ ★ ★ > 7
2 3 + ★ 4 / . ; this prints out 8.75, which is correct! (23 + 7*
4/is also correct)
As a final exercise, let us compute ((3 4) / (5-6) 8 which
is 7/-1 8 or -7 8 or -56. Now 3 4 5 6 — leaves 7 as 20S
and -1 as TOS
Since these 2 have to be divided, and the result multiplied, by
8, the following instruction does the trick.
★ ★ ★ >3 4 + 5 6 — / 8 ★ . ;
Note that the numbers have not changed their relative
positions — they were in the 3, 4, 5, 6, 8 “sequence” in the
question too. So when working out the FORTH RPN equiva
lent of a computation, leave the numbers in the same order —
its just the operation signs (“+ ”, “—” etc) that move around.

4.7 Later on you are going to see that FP50 includes an integer
arithmetic system as well as a floating point system. Of course
floating point can do everything that Integer can (and much
more besides) but Integer is much faster. Refer to Chapter 6
for details on integer mode operation, and to Appendix B for
all integer commands.
There is no advantage to using integer arithmetic in the
calculator mode (where speed is of little consequence), but if
you wish to, use only pure integers (from 0 to G5535) and
utilise the % + , %—, %★ and %/commands.

SUMMARY OF CHAPTER 4
+ FORTH uses reverse polish notation for computations: This can
be summarised as numbers first, operators later.

5. PROGRAMMING IN FORTH
5.1 The last two chapters introduced you to FP Forth, RPN, stack

handling and the use of the machine for computations. It is
very important that you should have mastered them before
continuing with this chapter.

5.2 The purpose of this chapter is to take you through the steps of
FORTH programming, and not to introduce you to the
predefined words in the dictionary. These can be found in
Appendix A (and B for integer FORTH words, explained in
the next chapter), together with a description of operation
and an example. This chapter will enable you to use the
appendices effectively. Each time a new word is mentioned,
look up its meaning in Appendix A and try it out.

5.3 EXAMINING THE DICTIONARY
To see all the words in the dictionary, enter VLIST; from
command mode. The first FORTH word, STKSWP, appears,
together with a flashing square.
This square means “press Y to continue” — you will meet it
again. Press the Y key and all the FORTH words defined so
far will scroll past. Well, not all of them, actually — some of
them [like pron, proff, ;, SPACE, S, Z, UNTIL, BEGIN etc] are
not literally defined in FORTH and hence do not appear.
All words you define yourself will be added to this
Vocabulary List, so VLIST is a very useful function to use.

5.4 DEFINING YOUR OWN WORDS
As was stated in 2.3, FORTH programming is all about
defining your own words. For example, the game (see 8.1) at
the end of the tape really comprises seven FORTH words,
defined in terms of the original FORTH words.

To define your own FORTH words, proceed as follows:
a. From the command mode, type a colon followed by a

space. Now name your word. Use any amount of charac
ters — only the first six characters count. The name can
comprise letters, numbers and symbols (but not keyboard
tokens like CHRS, TAB etc) — all you have to ensure is that
the name could not be mistaken for a number. So A56+ is
a suitable name, 2 - 5 is not.
As an example, type : TEST (and press ENTER) from
command mode. The word will appear at the top left of the
screen along with its compilation address (see Appendix
C for a memory map if you are interested — you need not
do so). As you define more and more words, the add ass
to which they are compiled increases. Once this reaches
65000 , define no more words — your machine is full.
(This is, in practice, very unlikely to occur).
Now enter the definition of the word TEST. The definition

must be in terms of FORTH words the machine already
knows (just the same as while entering direct commands).
Since we do not know much FORTH yet, it will probably be
simple. Try entering, as the definition

6 4 3 2 + ; (press ENTER)
[As you know, this will put 6,4 and 3 + 2 on the stack (with
TOS = 3 + 2) and then print them out in order ie. 646,
leaving the stack as it first was.]
The word TEST will have been added to your computer’s
Vocabulary (use VLIST; to verify this). Every time you
enter TEST, the computer will print 546. (You can use TEST
in the definition of other new words too). Check this by
trying ★ ★ ★ >TEST ;
and then defining TEST 2 by
★ ★ ★ > TEST 2 9. TEST 0 . ;
Now try TEST 2
★ ★ ★ > TEST 2 ;
The computer prints out 95460 — see how it has used
TEST in performing TEST 2.
This is how one builds up a FORTH program — words on
words on words, until in the end the entire program is but
a word.

While defining words, you can do the following:-
1) . Use a double space between 2 words so that the second

one starts on a new line — this keeps the screen tidy.
Note this option does not work on ED50 (Ch. 7).

2) . Place comments within brackets — these will be ignored
during execution. Comments can obtain spaces, quotes,
punctuation signs etc.

Note that you cannot use as word names the names of existing
words (both original FORTH words and ones defined by you)
— the message ‘Word Already Used’ appears. It is first
necessary to forget the word — see 5.5 below.

5.5 DELETING WORDS
You can delete words by entering, from command mode, f
(for Forget) followed by a space and then the name of the
word. The forget instruction will cause the computer to delete
the named word and all the ones defined since that one.
This can be a great disadvantage at times, especially if you
wish to change the definition of a word defined some time
ago, since which there have been many new definitions.
FP50 will not let you directly redefine the word, but first
forgetting it would cause all the subsequently defined words
to be deleted as well. The solution to this problem is to use
the editor ED50 (see 7.6) — it enables you to directly
redefine.

Note that the Spectrum’s initial words are not protected
against forget — so be careful. Words in the dictionary list
called by VLIST appear in the order in which they were
defined, so forgetting (say) ?DUP which is about half way
down will delete half the original FORTH words (including
VLIST, unfortunately) — you will probably need to load again.

5.6 SAVing Words
You can save FORTH words by making a complete new copy
of FORTH. From command mode enter a (lower case) ‘S’
press ENTER. Then, when prompted, enter a file name,
maximum 9 letters, no spaces.
The program is saved in 3 blocks and at the start of each
block you will have to press enter. Once saving is over, you
are required to VERIFY. If this is OK you are returned to
command mode — otherwise you should BREAK and GO TO
2010 to save again.

5.7 USER DEFINABLE GRAPHICS
There are . a total of 117 UDGs available. 21 of these are
Spectrum’s standard UDGs from the G cursor. As well as
these 21, the entire set of 96 keyboard characters are
redefinable, and these 96 are saved and loaded with the
FORTH whereas the other 21 are lost.
From command mode enter a lower case d (for define) and
press enter. The existing characters are displayed and you
are asked to enter the label (ie. name) of the character you
wish to change. Enter it from the keyboard, using the G
cursor if necessary. You will then be asked for eight lines of
definition, and each line should consist of exactly eight ones
and zeros, indicating black and white in the definition. You
are then returned to command mode. Don’t forget you can
print out the UDG if you have a printer — see 3.11. NOTE,
input errors can result in a BASIC error — to return
to command mode enter GOTO 4.

5.8 THE ARITHMETIC WORDS
The precise operation of these words can be found from
Appendix A:
+ - ★ / t 1+ 1- 2+ 2- NEGATE ABS SGNINT SQR RND SINR
COSR TANR ASNR ACSR ATNR LN EXP.
You should be familiar with the operation of most of these
from Chapter 3.

5.9 THE LOGIC WORDS
The precise operation of these words can be found from
Appendix A:
> < = > = < = < > 0 > 0 < 0 = MAX MIN AND OR NOT.
(The < > consists of a < and then a >, not the single
Spectrum token). Note that > , < , = , > = , < = and>= all take

20S as the first operand and TOS as the second. The two
items disappear from the stack and are replaced by the result
ie. 0 if the statement is false and 1 if it is true. These are very
useful with words like IF, WHILE and UNTIL.
The zero comparisons simply save typing out a space. If TOS
= 5, for example, 0< .; will print out 0 (false, because 5 < 0
is false). AND, OR and NOT are very similar to their BASIC
equivalents.

5.10 STACK MANIPULATING WORDS
The precise operation of these words can be found from
Appendix A:
DROP DUP ?DUP DEPTH SWAP OVER PICK ROT ROLL.
All these words allow you to manipulate the stack effectively.

5.11 VARIABLES
There are 23 variables available in FP Forth. Initially they
have names A, B, C X, Y, Z excluding I, J and K. All the
variable names are words — check this using VLIST. You can
hence rename any variable by defining a new word whose
meaning is that variable. To rename say B as SCORE, use :
SCORE B ;
Storing values in variables is done using T, which should be
read ‘store’. For example, to set Z to -43 use -43 Z ! ;
Note that variables do not need to be declared as in Spectrum
BASIC — they are all initially assigned and set to zero.
The reason why I, J and K are not available is that they are
exclusively for use in loop control — refer to 5.13.
To read a variable onto the stack, use the command (a), which
should be read ‘fetch’. Hence to set TOS to the value of E use
E (a); or to print out the value of E use E (a) . ;
As an alternative to (a). you can use which stands for read.
This prints out the value of the variable — for example, E ? r
Like the M+ key on a calculator there is an increment word,
+! (no space between them). To increment the variable 0
with 235, enter -235 0+!;

5.12 CONSTANTS
Constants are words which put numbers on the stack. To
define the word PI as 3.141592654, enter
: PI 3.141592654 ;
While there are similarities between constants and variables
(see 5.11) there is no limit to the number of constants. The
words which operate on variables, are +! and ? and (a), will
not work on constants.

5.13 LOOP WORDS
Just as in BASIC where loop controls is available using FOR..
.TO. . .NEXT, FORTH provides loop control using DO. . .
.LOOP. DO takes TOS as the first looping value and 20S as the

first illegal value (not as the last legal value as in BASIC).
Hence FOR n = 1 to 100 becomes 101 1 DO.
Next is replaced by LOOP, and needs no operand. For
example,
50 1 DO I . LOOP ;
will print out numbers from 1 to 49 (without spaces between
them). The word I (for index) after DO puts the current top
value on top of the stack.
This (and only this) sort of loop is nestable to any extent — I
will always put the current loop value of the innermost loop
on to the stack. Now try the following (look up EMIT in
Appendix A)
256 32 DO I EMIT LOOP ;
This prints out the character set.
50 far we have only dealt with steps of 1. If a step other than 1
is to be used, +LOOP and -LOOP should be used. They make
I (the index, or loop control variable) increase or decrease by
TOS instead of by 1. In these cases, TOS should be positive.
Try the following (looking up definitions of words you do not
yet know)
51 O DO I . CR 5 LOOP
1000 1 DO I . FIELD I LOOP ;
0.1 0.9 DO I . 0.1 -LOOP ;
31 127 DO I EMIT 1 -LOOP ;
Here the steps were 5, I (!), -0.1 and -1 respectively.
DOs and LOOPs should match, and Gust as in BASIC)
intersecting, non-nested loops are strictly taboo.
When using nested loops, I Innermost loop index, J Second to
innermost loop index and K Third to innermost loop index,
provided that the loops exist. These index names are not
interchangeable, and their use is reserved to loops (they
cannot act as ordinary variables — see 5.11). Try
8 1 DO 8 1 DO I J * . SPACE LOOP CR LOOP ;
LEAVE sets the index value of the innermost loop to the loops
limit — as this is the first illegal value rather than the last legal
one, control exists from the loop immediately LOOP is
executed.
EXITLP, which can only be used within loops, causes the
computer to abandon the current command.
Note that Integer loops are much/faster to execute — see
Chapter 6.
There is another type of loop, different from the DO.. .LOOP
one. This is the BEGIN. . .UNTIL loop.
The operations between BEGIN and UNTIL are executed
continuously, till UNTIL finds a true value on TOS. Try

BEGIN 127 EMIT INKEY 13 = UNTIL ;
This will print CHRf> (127) (ie. “0 ”) till you input the character
with code 13 (ie. the enter key). This is because = will put 1
on the stack only when INKEY has returned 13, and 1 is what
UNTIL is waiting for (any number < > 0 on the top of stack
counts as true).
A variation of this is BEGIN. . . .WHILE. . . .REPEAT. The
operations between BEGIN and REPEAT are executed
continuously so long as WHILE finds true values (ie. 0) as
TOS. Once WHILE finds a false value, control jumps out of the
loop to the word after repeat. Try
8192 BEGIN DUP 1 > WHILE DUP . FIELD 2 / REPEAT DROP;
This continues halving 8192 until the result is not >1 (hence
the last number printed is 2, not 1).

5.14 BRANCHING WORDS
Like the IF.. .THEN available in BASIC, an IF.. .ELSE.. .THEN
control is available in FORTH. As usual, it looks for a true or
false on the stack (preceding the IF). Between IF and ELSE
come all the words to be executed if TOS was true. Between
ELSE and THEN come all the words to execute if TOS was
false. Once the computer has executed one of the word sets,
it executes the words following THEN. Try
5 5 IF 444 . ELSE 333 . THEN ;
5 5 IF 444 . ELSE 333 . THEN ;
Note that IF, THEN and ELSE must be used together. IFs are
not nestable.
As with UNTIL (see 5.13) anything other than zero counts as
true.

5.15 SOUND WORDS
The commands are BEEP and BLEEP, defined in Appendix A.
They both take 20S as duration and TOS as pitch. Try
13 0 DO 0.25 I BEEP LOOP ;
2 0 0 0 %DO 10 %I BLEEP %LOOP ;
The % sign prefixing the words indicates integer operation,
which is much faster than FP. Refer to Chapter 6 for details.

5.16 PRINTING WORDS
The precise operation of these wdrds cart be found from
Appendix A.
SPACE SPACES EMIT . FIELD CR CLS AT TAB
Note that to print a string, use . “the string you want to print”
Spaces, brackets and colour control characters are allowed.

5.17 COLOUR WORDS
The precise operation of these words can be found from
Appendix A.
INK PAPER FLASH BRIGHT INVERSE BORDER PROVER

ATTR
PROVER is like a BASIC OVER, the prefix PR has been used
to distinguish it from the stack manipulating word OVER.

5.18 PLOTTING WORDS
The precise operation of these high resolution graphics
words can be found from Appendix A.
PLOT CIRCLE DRAW POINT
All except POINT reset the colour controls of 5.17.

5.19 INPUT WORDS
The precise operation of these keyboard words can be found
from Appendix A.
INKEY KEY QUERY WORD PAD >IN WAIT
It is interesting to contrast INKEY, KEY and QUERY.

5.20 EXIT WORDS
The precise operation of these words can be found from
Appendix A.
EXIT QUIT ABORT

5.21 GETTING IT ALL TOGETHER
By now (if you have been following the suggested approach)
you will be familiar with a great number of FORTH words, all
of which are defined in Appendix A. There are some more
FORTH words (which appear on VLISTing) that have not yet
been explained — words like STKSWP. This is intentional.
You will only need to use such words if you are an advanced
programmer, familiar with low level language concepts. If
this is the case, refer to 8.2 for a detailed explanation.
As for the rest, you are now well enough equipped to go out
and write marvellous FORTH programs. If this seems rather
remote or improbable, look at, for example, the second
routine in 5. 15, which produced a delightful zap. Why not
define a word, ZAP, with that routine (or a development of it)
as its definition? The trick is building up your own words to
do increasingly long and sophisticated things. Why not define
a word RND() [or any name you choose] which will produce a
pure integer random number in the range 1 to TOS. One way
is by: RND() RNt>* INT 1 % + ; Let us say you now do 5 RND(),
and say the RND word yields 0 .613. Now INT (5 ★ 0.613) + 1 =
4, which is what RND() will put on TOS. Its range is, of course
1 to 5 in this case.
Define a word LOG to give logarithms to the base 10, b y : LOG
LN 10 LN / ;
[Because LOG X LN X / LN 10]
Or draw a pair of axes by defining
: AXES CLS 0 0 PLOT 0 175 DRAW 0 88 PLOT 255 0 DRAW
; Each time you enter AXES; you will get them drawn for you.
Let us take this figure. Define CURVE which draws a sine

wave (magnitude = TOS): CURVE 256 0 %D0 %188 PLOT 0
%I 256 / 360 ★ SIND 3 PICK ★ DRAW %LOOP DROP ;
See what 30 CURVE ; produces.
Now combine CURVE with AXES by defining a new word,
WAVE
: WAVW AXES 80 CURVE WAIT ;
On a different tack, if you would like to use the BREAK key
within a long/endless loop, define the word BREAK? by
: BREAK? INKEY 32 %= IF ABORT ELSE THEN ;
Now insert BREAK? within any long loop.
If you are not convinced that FORTH is worth all the effort,
define and then run : STRIPES 16384 6144 51 FILL ;
Then see how long it takes you to do the same in BASIC.. . .
Once you have defined a couple of dozen of your own, useful
words [and SAVEd then — see 5.6], ideas for programs and
applications will come naturally to you. Use the FORTH editor
(see Chapter 7) to find out how the FORTH game (see 8.1)
actually works.

6. INTEGER FORTH
6.1 FP50’s special feature is its ability to handle floating point (ie

FP) numbers and functions — numbers with decimal digits
and in scientific notation.
However, FP50 is also includes a comprehensive integer
arithmetic system, for the simple reason that integer opera
tions can be performed much much faster than floating point
ones, (integer numbers also occupy less memory space).
The speed differential is tremendous, as can be seen from the
following timings for 1000 operations:

JUPITER SPECTRUM FP50 FP50
ACE
FORTH

BASIC (Floating Pt) (Integer)

Empty Loop bIni r r) 4.2 2.8 0.05
print a number 7.5 18 10 2.6
Add 0.45 7.5 0.7 0.23
Multiply 0.9 7.5 1.0 0.5
The figures are rather convincing, aren’t they? The speed
improvement of Integer FP50 over normal FP50 ranged
from 2x to 56x Hence to get the maximum speed out of
your FORTH programs try to get them to work in integers
only.

6.2 To use integer FORTH, all numbers must be PURE integers
(ie. stored in integer format).
A PURE integer is a whole number in the range of 0 to 65535.
Further it must never have been derived from anything other
than PURE integers. To illustrate what I mean, entering
7 0 0 0 0 21 leaves 35000 on the stack in floating point form
and not in integer form. This is because one of its
‘antecedents’, 70000, was not a PURE integer. Similarly, 10 2.8
X does not leave a PURE integer on the stack — 28 is in FP
form.
In circumstances like this, the INT command can be used to
convert the FP format number into integer format, provided
TOS is a number between 0 and 65535.9.
Note that while floating point operations will work both on
numbers in floating point and in integer formats, integer
operations will work ONLY on PURE integers (ie. numbers in
an integer format) — using them on other numbers will
produce garbage.

6.3 To see how to put a number in integer format on the stack,
simply enter
7 ;
as usual — 7 is now TOS, and is in integer format. (Note you
would not have got it in integer format had it been 70,000 or
7.7).

6.4 Many of the FP operators have integer FORTH equivalents.
The usual connection between the two is that the integer
operator is the FP operator, with a % sign stuck immediately
in front of it (no spaces).
For example, integer addition is % and integer division is %/.
Note that you can read Integer for *%’.
The integer equivalent of . (ie. print TOS) is of course %.
Try the following examples (does not work ■> answer is
wrong):
7 %, ; works.
2 3.5 ★ %. ; does not work (the 7 is not a pure integer).
2 3.5 %★ %. ; does not work (the 3.5 is not a pure integer).
2 3.5 INT %. ; works.
7.7 %. ; does not work.
7000 %. ; does not work.
7000 %. ; works — and puts a comma in. This is another

refinement of integer FORTH.
7 3 % / . ; works — (had %. been used, it would have

been in integer form), note that the result is
2 in FP form.

6.5 The complete list of Integer FORTH words can be found in
Appendix B. Most of them are exactly similar in operation to
their FP (ie. without the % sign) equivalents, and are hence
not described at length. They all work only on pure integers,
and are much faster in operation than their FP equivalents. It
is hence sound programming practice to use integer FORTH
wherever possible.
Some integer FORTH words have no FP equivalents. These
are %MOD and %XOR, and Appendix B explains them fully.

6.6 THE INTEGER DO LOOP
As can be seen from the table in 6.1, there is considerable
advantage in using integer loops. Their operation is similar to
FP loops (see 5.13) except that no integer equivalent of
-LOOP is available, loop control variables J and K cannot be
used (hence no nested integer loops are possible — the only
integer loop control variable is %I) and EXIT%L (not
%EXITLP) is the equivalent of EXITLP.
For example, try
1001 0 %DO 21 0 AT %1 %. %LOOP ;
Fast wasn’t it?
The Integer DO loop words are %DO, %LOOP, %-fLOOP.
% LEAVE, EXIT%L and %I.

SUMMARY OF CHAPTER 6
+ Wherever possible use Integer FORTH, because it is

much faster
+ Prefix most FP words by % to get their Integer FORTH

equivalents — refer Appendix B for details.
+ Integer FORTH words can be used only on PURE integers

— whole numbers from 0 to 65535 which have no
non-PURE integer antecedents, INT can be useful in many
cases.

7. THE FORTH EDITOR
7.1 Immediately after FP Forth (3 sections, as described in 3.1)

there is another program on the cassette with which you have
been supplied. This program, (called ED50) is a FORTH
editor.

7.2 ED50 provides an alternative operating system) to FP50. It
allows you to edit, correct and test programs with ease, and
includes a full screen editor. If you do not understand what
this signifies, the examples which follow will explain every
thing.

7.3 To operate in ED50, proceed as follows:-
a. Get to the FP50 command mode, ★ ★ ★ > (You are already
“in” FP50, and you can have defined words already).
Enter a (lower case) e and press enter.
b. Load ED50, which as stated before is positioned im

mediately after their third part of FP50.
c. The program will autostart. All the words you have

defined and all the parameters/pointers set up will have
been automatically transferred between FP50 and ED50.

7.4 The ED50 command mode prompt is ★ ★ ★ >. If at a later stage
you wish to return to FP50 from ED50 (eg. to SAVE the
program), type in the word ret when you are in command
mode, and press enter. Now start playing the program
cassette from the start (ie. the beginning of FP50). FP50 will
now load and autostart, returning you to ★ ★ ★ >.
Note that (again) all necessary information is transferred
automatically to FP50. Further, only the first part of FP50
loads when returning from ED50. This is normal.

7.5 ED50 can do almost everything that FP50 can. Its memory
map is slightly different, and the maximum number of stack
items is now 150 instead of 300. You cannot SAVE directly
from ED50 (which is why you should return to FP50 at the
end of editing) — the s command no longer operates. You
cannot define your own characters/graphics from within
ED50 either. When defining words you cannot use a double
space to start a new line.
In all other respects, ED50 can do whatever FP50 can ie.
define words, manipulate the stack, run programs etc.

7.6 To understand the extra power of ED50*, get into command
mode # # #> . Define a word, say TEST, by entering
: TEST 5 0 DO 127 EMIT LOOP ;
Try TEST ; to check that it works (it should print out 5
copyright symbols, without spaces).
Now define TEST2 by entering
: TEST2 TEST CR 1 BRIGHT TEST CR 0 BRIGHT TEST ;
and try out TEST2 ;

which should give the TEST pattern thrice, with the middle
one bright.
Now redefine TEST, say by entering
: TEST 10 0 DO 1 . LOOP ;
Try out both TEST and TEST 2 — you will see that the
definition of TEST has been changed, and TEST 2 now uses
the new TEST result to operate on. FP50 could not do this
without first using FORGET (which deletes all words defined
after the desired word — see 5.5).
Note that when you are redefining an existing word within
ED50, you get the message “You are redefining an existing
word — press y if this is OK.”
If you want to redefine, make sure you press a lower case y.
Switch to lower case if you have been in upper. Entering n
will allow you to escape the redefinition mode.

7.7 The most powerful feature of ED50 is the full screen editor.
This enables you to change the definitions of existing FORTH
words without having to retype them entirely (a very painful
process if they are very long).
To use the screen editor, enter a (lower case) e from
command mode. You will be asked to name the word to be
edited. As an example, try TEST (typing in words which are
not in the VLISTed dictionary will simply return you to >
command mode).
You will see the FORTH definition of TEST appear on the
screen, with a flashing cursor at the start of the definition. The
cursor can be moved around the screen using CAPS SHIFT
and keys 5, 6, 7, 8 (the usual ‘arrow’ Keys), for left, down, up
and right respectively.
Type over whatever you wish to change. Use the SPACE key
to delete (ie. print spaces over) — the cursor will move on
automatically in each case. All keys have autorepeat.
Once you have completed editing, press the ENTER key. You
will receive the same ‘redefining existing word’ message as
described in 7.6 — respond accordingly. You will then be
returned to the command mode.
If you wish to abort editing, press SYMBOL SHIFT and ‘Q’.
This will quit the edit mode and return you to the command
mode, with no change made to the word upon which you
were operating.
The only restrictions on the redefined word are that all
control characters within print strings are lost and that there
must be only one semicolon on the screen. Everything on the
screen is sent to the compiler routine exactly as if you had
typed it in as a definition directly.
Some words of caution — FORGET must not be used after

editing, except on words defined since you last edited. So if
the last operations you performed on ED50 were defining
TEST, TEST2, editing TEST, defining TEST2, TEST 4 you can
FORGET TEST2 or TEST 4 but not TEST. Also, do not try to
edit any of the original FORTH words — they contain
machine code and cannot be edited.

7.8 The screen editor is a powerful debugging tool and should
enable you to get many of your abandoned FORTH programs
into good working order!

7.9’ If you manage to BREAK out of ED50 or get an error
message, the way to restart is by using GOTO 60. On no
account should you use RUN.

SUMMARY OF CHAPTER 7
+ It is possible to switch from FP50 to ED50 and back using e and

ret respectively.
+ ED50 allows you to use a screen editor, which is a powerful

debugging tool. FP50 does not have this feature.
+ ED50 is otherwise similar in operation to FP50, with a few

differences (SAVEing, character definition, memory map, max
imum stack size).

+ GOTO 60 enables ED50 to be restarted, if needed.

8. MISCELLANEOUS TOPICS
8.1 FORTH GAME

After FP50 (3 parts) and ED50 (1 part) on your FP FORTH
cassette, a FORTH game has been recorded. It is called
GAME and loads in 3 parts. It was written using FP Forth and
shows what can be achieved with it.
Reset your Spectrum and load the game using the command
LOAD ” ”. When the command mode prompt *★ ★ > is
obtained, enter GAME ; Alternatively, first use VLIST and try
to see what new words have been added to the FP50
dictionary to enable it to play GAME. Remember, GAME is a
word itself, defined in terms of other words, which are
defined in terms of ... and so on .
The object of the game is to turn over all the squares to
yellow side up as they are at the beginning.
First enter skill level, from 1 to 9 (9 is hardest). I suggest
starting at 1. The computer now inverts a number of squares.
To change a square back to yellow you must enter the
co-ordinates of that square, letter first (a — z) then number (1
to 18, single digit numbers to be prefixed by a0). The
problem is that not only does that squarechange colour but
the eight around it do the same...
Try a 01 a few times to get the idea. Once you have done it
you are returned to FORTH command mode — for another
game, just enter GAME ; again.
If you are interested in how the game works (ie. if you want to
see the “program” — or, more correctly, the word definitions)
break out of command mode using CAPS £HIFT and ‘6’, and
load ED50 (see Chapter 7). Use the screen editor option to
examine the definitions of these FORTH words (the only new
ones defined)
SCREEN TURN 9 INP3 RAND SKILL FINI? and GAME.
Try and work out how the program works ... The definition of
GAME,
: GAME SKILL, BEGIN INP3 TURN 9 FINI? UNTIL WAIT ;
is really quite elegant — far more structured than any BASIC
program could be.

8.2 LOW LEVEL PROGRAMMING
You should read this section only if you are familiar with low
level (ie. assembler or code) programming. It shows how to
access and manipulate addresses, control the registers and
execute machine code programs from within FP50.
Note that a memory map has been provided in Appendix C.
a. %AND These are full 16 bit operations, operating

%OR on pure integers (16 bit unsigned numbers)
and

%XOR giving pure integer results.
b. Fetching and Storing

All memory addresses must be pure integers. @ (Fetch)
and ! (Store) can be prefixed by nothing (5 byte floating
point), by % (16 bit unsigned integer), by a C (character or
byte) or by a P (port). Fetch reads in a value from address
TOS and puts it on the stack. Store sends stack item 20S to
address TOS. Stores and fetches available are @ %@ C@
P@ ! %! C! P!

c. Reading and Incrementing
? does @ . Pronounced read.
%? does %@%.
c? does C@%.
% + ! (integer increment) increases the pure

integer found in 2 bytes at address
TOS by 20S (pure integer). 65535 % + !
will effect a decrement, and so on.

+ ! (increment) increases the floating-point
number found in 5 bytes at address
TOS by 20S.

d. General Commands
All the following are pure integer operand/result

functions.
FILL fills 20S (minimum 2) bytes with value

TOS starting at address 30S.
ERASE fills TOS (minimum 2) bytes with value

zero starting at address 20S.
DELETE fills TOS (minimum 2) bytes with value 32

(ascii blank) starting at address 20S.
CHOVE copies TOS single byte numbers from

address 30S
%MOVE to destination 20S. %MOVE does the same

as CMOVE
MOVE for 2 byte numbers, ie. twice as many

bytes. MOVE does the same as CMOVE
for 5 byte numbers, ie. 5 times as many
bytes. The source and destination blocks
must not overlap if the destination
is higher in memory than the source.

TYPE emits TOS characters found at address
20S, eg. 5050 3 0 0 TYPE ;

C DUMP prints out the values of TOS bytes found
at address 20S.

%DUMP prints out the values of TOS 2-byte
numbers found at address 20S.

DUMP prints out the values of TOS 5-byte

numbers found at address 20S.
gives the compilation address of the next
word without executing that next word.
Use only to find words which appear in the
VLIST. A simple apostrophe can be used
as an abbreviation for FIND. As an
example, FIND TEST . ; would print
out the compilation address of TEST,
searches in the dictionary for the word
whose name is stored in six bytes at 232
64. It returns the address of the dictionary
entry (or zero for word not alone) in the
BC register pair. Each dictionary entry
consists of 6 bytes of word name follow
by 2 bytes, of compilation address.
ORs together all bits. of TOS and sets
the Z^flag if the result is. zero. Used by IF,
WHILE and UNTIL,, therefore these
read zero as false and all non-zero values
as true.

OS5CUTE causes a jump to address .TOS.
JXPECT inputs up to TOS characters from ‘the

keyboard and puts them at address 20S.
Input can be terminated early by pressing
enter# in which case the value 13 IS
stored.

—TRAIL- (—TRAILING) takes 20S as the address
o(a* String in memory* and TOS as its length
incRiding trailing space. Leaves 2) S
uitd^nged — adjusts' TOS to exclude all
Irailptg spaces.

COUNT For reading through a table of bytes.
Reads a byte from address TOS and puts
it on top of the stack. The address is
retained as 20S, and is incremented to
point at the next byte.

Multiple stack control
Three stacks are in operation on the FP50 FORTH
IMPLEMENTATION. These are the return stack, the data
stack and the calculator stack. The return stack is pointed
to the SP register pair in the Z80A CPU, and is used by
PUSH, POP, CALL and RET. FORTH uses it for storing
return address and looping variables. It has 2-byte data
items. The data stack, meanwhile, is pointed to by the SP
register pair after the execution of STKSWP. Re-execution
restores normality. It is the FORTH stack discussed

FIND

wrdsch

flgtst

thoughout this manual, and has 6-byte data items (5-byte
floating-point plus 1 dummy byte or 2-byte pure integer
plus 3 zero bytes and 1 dummy byte). The calculator stack
is operated by the Sinclair ROM, and is used for
floating-point calculations on 5-byte items.
STKSWP swap SP between data and return stacks.
R> transfer pure integer from return stack

to data stack (SP pointing to return stack).
R@ copy one pure integer from top of return

stack to data stack (SP pointing to
return stack).

SPtoCS transfer 6-byte item from stack pointed
to by SP to 5-byte position on calculator
stack.

2 to CS transfer two items from data stack to
calculator stack. (SP pointing to return
stack).

CStoD transfer one item from calculator stack
to data stack (SP pointing to return stack).

f. System Variables
System variables used are: DF—CC for print position,
23681 for WORD displacement within the PAD, 23728 to
store the stack pointer not currently in SP, 23662 for
temporary storage.

g. Entering machine code
As if it was a FORTH word, anywhere in a command or
definition, enter
me nl n2 n3 ... nm end
where nl, n2...nm are machine code bytes (in decimal).
You can use ENTER instead of the spaces, but NOT the
double-separator start-a-new-line trick,

h Run time routines
The runtime routines which appear in VLIST are number
(to stack a number) prstrg (used by .“string”) and wrdsch
(to search for words). Do not try to use them;

8.3 Further reading on FORTH
This manual cannot be a comprehensive guide to FORTH. It is
intended to be a helpful and hint-filled introduction, and no
more. To find out more about FORTH, I recommend you refer
to any of the following books:
1. Starting FORTH, by L. Brodie (Prentice Hall, ISBN 013-
842922-7)
2. Introduction to FORTH, by K. Knecht (Howard W Sons,
ISBN &-672-21842-9)
3. The Complete FORTH, by A. Winfield (Sigma Technical,
ISBN 0905-104-22-6)

Borrowing a Jupiter Ace manual from a friend could be
helpful too. While not quite as good as the Spectrum manual,
it is certainly well written.
If you are interested in combining machine code with FORTH
(see 8.2), the best book to read is
4. Programming the Z80, by Rodney Zaks (Sybex, ISBN
0-89588-094-6).
If you are interested in using the Spectrum ROM routines,
calling them from within FP50 etc. necessary reading is:
5. The Complete Spectrum ROM Disassembly, by Dr Ian
Logan & Dr Frank O’Hara (Melbourne House, ISBN 0-86759-
117-X).

SUMMER OF CHAPTER 8
+ Play the FORTH gam e and then (using the editor)

understand h ow it w orks.
+ Low level program m ing can be accom plished on FP

Forth.
+ If you are fascinated by FORTH, further reading is

recom m ended.

APPENDIX A — FP FORTH WORDS
FLOATING
POINT
COMMAND
Description of operation
BEFORE
STACK
AFTER
STACK

Prints TOS on screen/printer X,Y,5, X,Y
+ Adds 20S to TOS and puts result on stack X,3,5, X,8

Subtracts TOS from 20S and puts result
on stack X,3,5, X,-2

★ Multiplies 20S by TOS and puts result
on stack X,3,5, X,15

/ Divides 20S by TOS and puts result
on stack X,3,5, X,0.6
Raises 20S to the power of TOS and puts
result on stack X.3,5, X,243

> Puts 1 on stack if 20S>T0S; zero otherwise X,3,5 X,0
< Puts 1 on stack if 20S<T0S; zero otherwise X,3,5 X,1
= Puts 1 on stack if 20S=T0S; zero otherwise X,3,5 X,0

> = Puts 1 on stack if 20S>=T0S; zero
otherwise X,4,4 X,1

< = Puts 1 on stack if 20S<=T0S ; zero
otherwise X,5,4 X,0

< > Puts 1 on stack if 2 0 S O T 0 S ; zero
otherwise X,5,4 X,1

! ‘STORE’ When used after a variable, will
set the value of the variable to TOS. Ex: if
TOS is 4, A!; will set variable A to value 4 X,Y,4 X,Y

(a) ‘FETCH’ When used after a variable it will set
TOS to the value of the variable. If B=0.8,
then B (a); will set TOS to 0.8 X,Y X,Y,0.8

? ‘READ’ This prints out the value of the
variable it is used after. So if C=-21, C?
prints out -21 X,Y,Z X,Y,Z

+! ‘INCREMENT’ This adds TOS to the
variable it is used after. If TOS=4 and
A =7 ,A+ !; will set A to 11 X,Y,4 X,Y
This puts the address of the top of the
routines compilation area on TOS. Hence if
it is 44089, prints out 44089 X,Y, X,Y,44089

0> Puts 1 on stack if TOS >0, zero otherwise X,Y,4 X,Y,1
0< Puts 1 on stack if TOS <0, zero otherwise X,Y,4 X,Y,0
0= Puts 1 on stack if TOS =0, zero otherwise X,Y,4 X,Y,0
1+ Adds one to TOS and puts the answer on TOS X,Y,4 X,Y,5
2+ Adds two to TOS and puts the answer on TOS X,Y,4 X,Y,6
2- Subtracts two from TOS and puts the answer

on TOS X,Y,4 X,Y,2
2toCS Transfers two items from the data stack to

the calculator stack (SP pointing at the
return stack) X,Y,Z X

79-STA Prints out a message identifying FP50
as being based on FORTH 79 standard X,Y,Z X,Y,Z

ABORT This clears the stack (makes stack length zero
irrespective of whether it was originally +ve
or -ve) and returns you to command mode X,Y,Z

FLOATING
POINT DESCRIPTION OF OPERATION “BEFORE "A FTER”
COMMAND STACK STACK
ABS Removes the -ve sign (if present) from TOS

Replaces TOS by its cos '1, in degrees
Replaces TOs by its cos '1, in radians

X,Y,-3.1 X,Y,3.1
ACSD X,Y,0.5 X,Y,60
ACSR X,Y,0.5 X,Y, 1.0471976
AND If both 20S and TOS were > 0 , replaces

them with TOS, otherwise with 0 X,2,-l X,7
AT Moves the print position to s line 20S and

column TOS X,Y,Z X
ATTR Reads the colour attributes of the character

square on line 20S, column TOS, Hence if
20S = 7, TOS = 3 and the colour attribute
o f (7,3) is 56, ATTR will make TOS = 56.
The co-ordinates must be integers but it does
not matter if one or both of them is ‘out of
range’ — the Spectrum will return the ATTR
value of the closest existing square So 100
100 ATTR will do the same as 23 31 ATTR
Replaces TOS by its s in 1 in degrees

X,7,3 X,56
ASND
ASNR Replaces TOS by its sin'1 in radians
ATND Replaces TOS by its tan1 in degrees
ATNR Replaces TOS by its tan'1, in radians
BEEP Produces a BASIC-type BEEP of duration

20S seconds and pitch TOS X,Y,Z X
BLEEP Produces a note of duration 20S units and

pitch T0S-20S and TOS must be pure
integers. Duration units vary with pitch.
Useful for machine code style sound effects X,Y,Z X

BRIGHT Sets the bright control to TOS (should br
0 to 1). Use before Print commands X,Y,Z X,Y

c@ Refer to 8.2
C Refer to 8.2
C? Refer to 8.2
CDUMP Refer to 8.2
CIRCLE Draws a circle centred at 30S, 20S) and

having radius TOS. Works with pure
integers too A,X,Y,Z A

CLS Clears the screen and moves the PRINT AT
position to the top left hand corner X,Y,Z X,Y,Z

CMOVE Refer to 8.2
COSD Replaces TOS degrees by its cosine X,Y,60 X.Y.0.5
COSR Replaces TOS radians by its cosine X,Y,2 X,Y,-0.4164684
COUNT Refer to 8.2
CR Carriage return — moves the PRINT AT

position to the start of the next line X,Y,Z X,Y,Z
CStoD Refer to 8.2
DELETE Refer to 8.2
DEPTH Gives the number of items on the stack

before DEPTH was put there. So if Z was
the 7th item on stack:- X,Y,Z X,Y,Z,7

DO Loop control command — see 5.13
DRAW Draws a straight line from the last plotted

point to a point whose displacement is
(20S, TOS) pixels. Works with pure
integers too X,Y,Z X

DROP Discards TOS X,Y,Z X,Y
DUMP Refer to 8.2
DUP Copies TOS so it appears twice on the stack X,Y,Z X,Y,Z,Z
?DUP Performs DUP provided TOS is non-zero.

If it is zero does nothing X,Y,0 X,Y,0
EMIT Prints out CHRS (TOS), provided TOS is a

pure integer. If TOS is greater than 255 it is
reduced modulo 256. Non-pure integer
TOS’s will be misinterpreted. X,Y,Z X,Y

ERASE Refer to 8.2
EXECUT Refer to 8.2
EXIT Makes the computer abandon the current

word/command. Do not use within DO loops
— see EXITLP X,Y,Z X,Y,Z

EXITLP EXIT for use within DO loops. See 5.13 X,Y,Z X,Y,Z
ESP Replaces TOS by e to the power TOS X,Y,1 X,Y,2.7182818
EXPECT Refer to 8.2
FIELD Moves the print position into the next 16 char

acter field, like a comma in a BASIC list X,Y,Z X,Y,Z
FILL Refer to 8.2
FIND Refer to 8.2
FLASH Sets the FLASH control to TOS (which should

be 0 or 1). Use before print command X,Y,Z X,Y
flgtst
I

Refer to 8.2
Innermost loop control index — see 5.13

> IN This puts the address of the system variable
which stores the word displacement onto the
stack. > IN C @ gives the number of char
acters WORD has read so far (ie. since the
last QUERY) X,Y,Z X,Y,Z,23681

INK Sets the ink control to TOS (which should be
0 to 8). Use before print commands X,Y,Z X,Y

INKEY Puts the ASCII value of the currently
pressed key on to the stack, or 255 if no key
is being pressed. So, if “A ” is pressed X,Y,Z X,Y,Z,65

INT Replaces TOS by its pure integer equivalent,
if possible. If not, or if TOS was already a
pure integer, no change. See Chapter 6 X,Y,3.8 X,Y,3

INVERS Sets the inverse control to TOS (should
be 0 or 1). Use before print commands X,Y,Z X,Y

J Second to innermost loop control index — see
5.13

K Third to innermost loop control index — see
5.13

KEY Waits for you to press a key and then puts its
ASCII value on stack. So if no key is
pressed X,Y,Z X,Y,Z

LEAVE Sets the index value of the innermost loop
(ie. I) to the loop’s limit value — see 5 13. X,Y,Z X,Y,Z

LN Replaces TOS by its natural logarithm X,Y,10 X,Y,2.3025851
LOOP Like the NEXT command in BASIC — see

5.13 X,Y,Z X,Y,Z
+LOOP Makes the loop “step” = TOS (TOS should be

positive) X,Y,Z X,Y
— LOOP Makes the loop “step” = -TOS (TOS should be

positive) X,Y,Z X,Y
MAX Takes the top 2 stack items off the stack and

replaces only the larger one X,3,7 X,7
MIN Takes the top 2 stack items off the stack and X,7,2 X,2

replaces only the smaller one X,3,7 X,3
MOVE Refer to 8.2

NEGATE negates TOS, ie. multiplies it by -1 X,Y,6 X,Y,-6
X,Y,-6 X,Y,6

NOT Takes TOS and replaces it with 1 if it was 0, X,Y,0 X,Y,1
and with 0 if it was non-zero X,Y,-2 X,Y,0

number Run-time routine — see 8.2
OR Takes off the top two stack items and re X,3,-2

X,0,3
X,1

places them with 1 if 20S was non-zero or X,3
with TOS if 20S was 0 X ,0 ,0 X,0

OVER Puts a copy of 20S on the top of the stack X,Y,Z X,Y,Z,Y
P@ Refer to 8.2
P! Refer to 8.2
PAD Puts the address of the note pad area of

memory (onto which characters are put by
QUERY and read by WORD) onto the stack X,Y X,Y,32883

PAPER Sets the PAPER control to TOS (should be
0 — 8). Use before print commands X,Y,Z X,Y

PICK Replaces TOS by the TOS-th item on the
stack. Say if the 4 is the 7th item on the stack:
Note that 2PICK is hence identical to OVER

3,4,5,7 3,4,5,4

PLOT Plots the pixel (20S, TOS). Works with in
teger operands too X,Y,Z X

POINT Reads the pixel (20S, TOS) and gives the re
sult, 0 (paper) or 1 (ink) in pure integers.
Works only with pure integer operands X,Y,Z X

PROVER Sets the OVER control to TOS (should be 0 or
1). Use before print commands X,Y,Z X,Y

prstrg Run-time routine — see 8.2
QUERY This puts characters from the keyboard into

the notepad area of memory (see Appendix
C and PAD) until you press enter, when the
ENTER code (13) is stored to mark the end of
data. The maximum string length for QUERY
is 141 characters, after which it automatically
ends. QUERY also resets the WORD displace
ment (stored in System Variable 23681 — see
> IN). The note pad can be read using
WORD X,Y,Z X,Y,Z

QUIT Makes the computer return to command mode
(* * * > for FP50, # # # > for ED50) X,Y,Z X,Y,Z

R@ Refer to 8.2
>R Refer to 8.2
R> Refer to 8.2
RND Puts a random number (0 < = RND <1) onto

the stack X,Y,Z X,Y,Z,0.707717!
ROLL The TOS-th item is removed from its position

and put on top of the stack. So, if the 4 is the
7th item on the* stack :- 3,4,5,7 3,5,4

ROT Rotates ->30S is removed from its position
and put on top of the stack X,Y,Z Y,Z,X

SIND Replaces TOS degrees by its sine X,Y,30 X,Y,0.5
SINR Replaces TOS radians by its sine X,Y,2 X,Y,0.90929743
SGN Replaces TOS by 1 if it was positive, -1 if it

was negative or 0 if it was 0 X,Y,-3 X,Y,-1
SPACE Moves the print at position one to the right, or

if impossible to a new line X,Y,Z X,Y,Z
SPACES Moves the print at position along TOS spaces.

The operand should be a non-zero pure in
teger, less than 256 X,Y,Z X,Y

SPtoCS Refer to 8.2
SQR Replaces TOS by its square root X,Y,2 X,Y, 1.4142136
STKSWP Refer to 8.2

SWAP
TAB
TAND
TANR
-TRAIL
TYPE
VLIST

W AIT

WORD

wrdsch
A,B,C..Y,Z
(excl. IJ,K)

Swaps around 20S and TOS
Moves the print at position to column TOS
Replaces TOS degrees by its tangent
Replaces TOS radians by its tangent
Refer to 8.2
Refer to 8.2
Lists the words (and run time routines) in the
FORTH dictionary. Use the Y key to scroll
when the flashing block appears
If you have the Y key pressed, this command
has no effect. If you do not have the Y key
pressed, it waits until you press it, showing a
flashing block in the bottom right hand comer
of the screen. It can be used for scroll con
trol and to prevent immediate return to com
mand mode after producing a screen dis-
play/graph
This reads one character off the QUERY note
pad onto the stack, working upwards through
the pad. Its displacement is stored in the
system variable 23681. See QUERY, PAD,
>IN . If the next unread character in the
pad is “B”
Run time routine — see 8.2
The 23 variables, initially set to zero

X,Y,Z X,Y,Y
X,Y,Z X,Y
X,Y,45 X,Y,1
X,Y,1 X,Y, 1.5574077

X,Y,Z X,Y,Z

X,Y,Z X,Y,Z

X,Y,Z X,Y,Z,66

Note all Integer FORTH words are listed
separately in Appendix B.
The commands below work like FORTH
words, but are not really words (and hence
do not appear in the dictionary).

Prefix 9 used for word definition
; Instruction end indicator
(space key) Word separator
e To load ED50 from within FP50
f FORGET — see 5.5
proff Switches off the printer
pron Switches on the printer
ret To load FP50 from within ED50
S SAVE onto tape — see 5.6
Z COPYs screen onto printer

APPENDIX B — EXISTING INTEGER FORTH WORDS
Note: Where no description of operation is given, refer to the
corresponding word (without the % sign) in Appendix A.
INTEGER FORTH WORDS WORD DESCRIPTION (where necessary)
%.
% +
%—
%★
%/
%>
%<
% =
%> =
%'< =
%<>
%!
% @
% + ! Except that 65536 % will give a decrement, and so

on.
%0 =

%1 +
%1—
% 2+
%2—
%AND
%DO
%DUMP
% FIELD Moves the print position into the next character

field. Does not work with printer.
% LEAVE
%+LOOP
%LOOP
%MAX
%MIN
%MOD This yields the remainder after a division. For

example 13 4 %MOD puts 1 on TOS (because
13 — 4 leaves remainder 1)

%/MOD This puts the integer part of the quotient
on TOS and the remainder becomes 20S. For
example, 13 4 %/MOD leaves TOS = 3 and 20
S = 1.

%MOVE
%NOT
%OR
%XOR If one of TOS and 20S was > 0 and the other

was not (ie. was = 0 since we assume pure

%I
EXIT%L

integers), the two are taken off the stack and
replaceD by the value of the one greater than
0. If not (ie. both = 0 or both > 0) then they
Are taken off the stack and replaced by
TOS set to 0.
Hence 4 7 -%XOR . ; prints 0

4 0 %XOR . ; prints 4
0 0 %XOR . ; prints 0

This is the loop control variable — refer to 6.6
This is the only Integer Forth word not prefixed
by a %. Its FP equivalent is EXITLP.

APPENDIX C — THE MEMORY MAP — FP50
Addresses Function
0 — 16383 ROM
16384 — 23295 Screen
23296 — 23546 Buffer
23547 — 23733 System Variables (including

FORTH ones)
some extra

23734 — 32767 BASIC program and data
growing inwards

stack, both

32768 — 32882 Variables (23 x 5 bytes)
32883 — 33023 Query Notepad
33024 — 33791 Characters (96 x 8 bytes)
33792 — 44031 Dictionary
44032 — 65367x Routines Compilation Area

Stack, both growing inwards
and Return

65368 — 65535 UDG’s

