
SPECTRUM 48K
and

SPECTRUM +

LASER BASIC

by OASIS SOFTWARE

COPYRIGHT NOTICE

Copyright © by Oasis Software. No part of this manual may be reproduced on any media
without prior written permission from Oasis Software.

THIS MANUAL

Piracy has reached epidemic proportions and it is with regret that we are forced to reproduce
this manual in a form which cannot be photocopied. Our apologies for any inconvenience this
may cause to our genuine customers. A reward will be paid for information leading to the
successful prosecution of parties infringing this Copyright Notice.

NOTE

This manual is essential for the use of Laser BASIC. For this reason we would warn customers
to look after it very carefully, as separate manuals will not be issued under any circumstances
whatsoever.

ENQUIRIES

If you have any queries on the use of Laser BASIC, please send them to us in a letter, ensuring
you enclose the Enquiry Card printed on the last page of this manual. A new card will be
returned to you with your reply. Please note that enquiries not accompanied by the card will not
be answered.

Copyright © by Oasis Software

CONTENTS

TAPE MAP 2

INTRODUCTION 3

USING LASER BASIC WITH MICRODRIVES 3

GLOSSARY OF TERMS USED IN THIS MANUAL 4

EDITING AND RUNNING PROGRAMS 7

GETTING STARTED WITH YOUR FIRST LASER BASIC PROGRAM 7
Loading Laser BASIC
Loading OPTION 2 sprites

LASER BASIC 8
Tool kit facilities 8
The graphics variables 11
Assigning variables 12
Interrogating variables 13
Sprite utilities 14
Horizontal screen scrolls 16
Vertical screen scrolls 17
Screen attribute scrolls 18
Horizontal sprite scrolls 19
Vertical sprite scrolls 20
Sprite attribute scrolls 21
Group 1 GETS and PUTS 21
Group 2 GETS and PUTS 24
Group 3 GETS and PUTS 25
.MOVE 25
Transformations 27
Miscellaneous words 30
The extended functions in detail 32
Additional commands 35

PROCEDURES 35
Local and global variables 35
Invoking procedures 36
Nesting procedures 37

PROGRAMMING TECHNIQUES 38
Moving software sprites 38
Screen scrolling under keyboard control 38
Simple putting 38
Logical operations 40
.MOVE 42
Hiresolution putting 42
Collision detection 43
Scrolling landscapes 44
Redefining character sets and UDGs 44
The variable sets 45
Loading and saving Laser BASIC programs 45

1

THE SPRITE GENERATOR PROGRAM
Introduction 48
Loading 48
Getting started 48
Glossary of terms 48
Sprite generator key function summary 51
The Laser BASIC sprite generator example session 56
Creating Sprites in the Sprite Generator Program 61
(a summary)

APPENDIX 1 LASER BASIC COMMANDS 62

APPENDIX 2 SPRITE1A AND SPRITE2A SPRITES 67

APPENDIX 3 SPRITE1B AND SPRITE2B SPRITES 68

APPENDIX 4 THE LASER BASIC DEMO EXPLAINED 70

LASER BASIC TAPE MAP

TAPE 1 SIDE 1
i) “ LASER" LASER BASIC PROGRAM. Load using LOAD "LASER" or LOAD ""
ii) “SPRITE2A” A file of OPTION2 saved sprites for use in Laser BASIC (see

Appendix 2)
iii) "SPRITE2B” A file of OPTION2 saved sprites for use in Laser BASIC (see

Appendix 3)

TAPE 1 SIDE 2
i) "SPTGEN" The Sprite Generator Program, used to create and edit your sprites

for use in Laser BASIC.
To load type RANDOMISE USR 0
LOAD"”

ii) “SPRITE1A" A file of OPTION1 saved sprites for use with the Sprite Generator
Program (see Appendix 2)

iii) "SPRITE1B” A file of OPTION1 saved sprites for use with the Sprite Generator
Program (see Appendix 3)

TAPE 2 SIDE 1
i) "DEMO” LASER BASIC DEMO Load using LOAD “ DEMO” or LOAD

TAPE 2 SIDE 2
i) “ GAME” LASER BASIC GAME. Load using LOAD “ GAME” or LOAD ""

2

LASER EXTENDED BASIC
by Kevin Hambleton

INTRODUCTION
Laser Extended BASIC is an extension to the existing BASIC interpreter in the ZX-Spectrum
ROM. Although Sinclair BASIC is a powerful and flexible implementation of the time honoured
language, it was necessary at its inception to make its features as general as possible. BASIC
has numerous applications but the specific area of our interest is graphics and animation. Laser
BASIC was designed to enhance the ease, and particularly the speed, with which complex
animated graphics could be produced and over 100 commands and functions are included to
do this. A technique akin to semi-compilation is used to further increase the execution speeds
of the extra commands.
Those users already familiar with the Lightning series will recognize most of the command set,
although for clarity a number of the command names have been changed. At this stage, Laser
BASIC does not produce stand-alone programs (you need the extended interpreter to be
resident) but a compiler is also being developed which will make your BASIC programs run
faster and not require the interpreter to be resident. This will mean that you can market your
programs commercially.
Laser BASIC can also be used by the commercial programmer, already familiar with the
Lightning series, as a quick and simple to use development tool. The command sets are very
similar and so Laser BASIC can be used to get a quick feel for an animated sequence before
conversion to White Lightning or Machine Lightning. The interpreted nature of BASIC makes it
absolutely ideal for this sort of exercise.

USING LASER BASIC WITH MICRODRIVES
Laser BASIC can be automatically saved to a microdrive cartridge using one of the options in the
loader menu. Once Laser BASIC has loaded rewind the tape and select option 5. The various
files that make up Laser BASIC will be loaded in and then saved to a microdrive cartridge in
microdrive 1, one file at a time. You will need to stop and start the tape recorder as instructed.
Laser BASIC can then be loaded from a microdrive cartridge by typing;
LOAD * “ M";1;“ LASER”
Once Laser BASIC has been transferred to microdrive it can be loaded and then RUN irrthe
same way as the tape based program.
There is, however, one unavoidable problem associated with the use of the microdrives. If a
microdrive error occurs, such as “ File not found” or any other error associated with the
microdrive, then control will exit the Laser interpreter and re-enter the Sinclair interpreter. You
will know if this has happened because any attempts to type an extended command will result in
the flashing “?” symptomatic of a syntax error, or, if you try and RUN a program containing
extended commands then "Nonsense in BASIC" will be issued. To return control to the
extended interpreter just type a hash ("#”) followed by ENTER. If the “#” itself generates a syntax
error (the “?”) then delete the “#” and type:
RANDOMIZE USR 58830 followed by ENTER.
We apologise for this unavoidable, annoying inconvenience.
In the extremely unlikely event that the tape based interpreter is exited, use: RANDOMIZE USR
58820.

3

GLOSSARY OF TERMS USED IN THIS MANUAL

SPRITES
A sprite is a software controllable graphics character. Laser BASIC allows up to 255 sprites to
be defined, each with their own user selectable dimensions. The limit on the size and number of
sprites available to the user is set by the amount of memory available.
Supplied with Laser BASIC is a program known as the Sprite Generator Program which is used
to create software sprites. Once sprites have been created in this program you can save them to
tape or microdrive cartridge using one of two ‘OPTIONS’.
‘OPTION1’ sprites are used exclusively with the Sprite Generator Program whilst
'OPTION2' sprites are used exclusively with Laser BASIC.
Two sets of OPTION2 sprites have been provided on tape ready for you to load into Laser
BASIC, these being “SPRITE2A” and “SPRITE2B” (see Appendices 2 and 3).

SCREEN WINDOWS
A screen window is a section of the screen defined by four variables COL, ROW, HGT and LEN.
COL is in the range 0 to 31, ROW is in the range 0 to 23, HGT is in the range 1 to 24 and LEN is in
the range 1 to 32. The unit for each of the above is the character. COL and ROW specify the
column and row position on the screen of the top left hand corner of the window, with ROW 0 at
the top of the screen and COL 0 on the far left hand side. HGT and LEN define the size of the
window.
To see an example of a window on the screen type in the following line and hit ENTER.

.ROW=5:.COL=6:.HGT=4:.LEN=3:.INW

SPRITE WINDOWS
A sprite window is a section of a sprite defined by the variables SPN, SCL, SRW, HGT arid LEN.
SPN specifies the sprite, SCL and SRW specify the column and row within the sprite and HGT
and LEN define the size of the window. If the window defined by these variables lies outside the
sprite or overlaps its borders then the command will not execute but no error message will be
issued.

SPRITE SPACE
Sprite space is the area of memory containing all previously defined sprites. The top of sprite
space is 56575 decimal (DCFF HEX) and the lower end grows downward from this point.
Cautious users may wish to find out how far down their sprites have grown by using one of the
following routines:

PRINT PEEK (62464)+ 256*PEEK (62465)
OR

LET X=?PEK(62464): PRINT X

4

RAMTOP
Note that it is very important that your sprites should never grow down over RAMTOP. To read
the value for RAMTOP use:

PRINT PEEK (23730)+ 256*PEEK (23731)
OR

LET X=?PEK(23730): PRINT X
Every time a sprite is defined it uses 9 x sprite HGT x sprite LEN + 5 bytes.
In most cases the user will not need to worry about sprites moving down over RAMTOP unless
sprites are created during runtime using .ISPR or .SPRT. It is possible to check that a sprite
created at runtime will fit by performing the above calculations. It is not recommended that
newcomers define sprites from within Laser BASIC, instead sprites should be defined from
within the sprite generator program and loaded into sprite space using one of the following
procedures.
Method i)
Method ii)

Note:

PIXEL DATA

For those not aquainted with the workings of the Spectrum screen display, each character on
the screen is produced as follows: each character cell is an array of 64 (8 by 8) pixels,
represented by bits in memory. A pixel is a 'dot' which can be INK colour or PAPER colour. The
bits which define a particular character or block of characters are referred to as pixel data.

ATTRIBUTE DATA

The colour of the INK and PAPER in each particular cell, together with the brightness and
flashing attributes are controlled by a separate byte. The bytes which define the attributes of the
block of characters are referred to as attribute data. Pixel data and attribute data are frequently
treated as separate entities in Laser BASIC.

SCREEN OPERATIONS

These are operations which are carried out on a particular area of the screen. The area of the
screen to be operated on is called the screen window and is defined above. The operations
themselves include scrolls, inversions, reflections etc. and all commands in the category are
postf ixed by a 'V', e.g. .SR1V, .INVV, .MIRV etc. If the window overlaps the edge of the screen then
the window will be automatically adjusted to lie “ on-screen” .

Using one of the three options presented by the Laser BASIC loader menu.
Loading the sprites by hand using the following method.
Once Laser BASIC has been loaded type;
CLEAR (SPRITE.START ADDRESS) - 1
LOAD “ (FILENAME)" CODE (SPRITE START ADDRESS)
.POKE 62464,(SPRITE START ADDRESS)
The “ FILENAME" is the name given to the sprite file when It is saved by the
sprite generator program. The sprite start address is the lowest byte used by
the sprite file and is also given by the sprite generator program.

5

SCREEN/SPRITE OPERATIONS

These are operations between the screen and a sprite. The dimensions of the sprite are used as
the dimensions of the screen window and COL and ROW are used to give the co-ordinates of
the top left hand corner of the window, thus the operations are defined using the variables SPN,
COL and ROW. If the window lies off the screen or the sprite overlaps the border of the screen
then only part of the sprite will be 'PUT' or ‘GOT’. Commands in this category are prefixed with
*PT’ or ‘GT\ e.g. .GTBL, .PTXR, .PTND etc.

SPRITE OPERATIONS

These cover more or less the same operations as the screen window commands but this time a
complete sprite is operated on in memory instead of a section of the screen. The only variable
used is SPN and all commands in this category are postfixed with an ‘M’.

SCREEN/SPRITE WINDOW OPERATIONS

These are operations between a screen window and a sprite window. As before, ROW, COL,
HGT and LEN define the screen window, but this time SCL and SRW are used to define the
position of the window within the sprite. SCL and SRW are measured in characters, SCL from
the left and SRW from the top. If SRW+HGT is greater than the sprite height, or if SCL+LEN is
greater than the sprite width, or if LEN+COL is greater than 32, or if HGT+ROW is greater than 24,
then the commands will not execute. Commands in this group are prefixed with ‘GW’ or ‘PW’.

SPRITE/SPRITE WINDOW OPERATIONS

These are operations between a whole sprite and a window within a second sprite. The two
sprite numbers are held in SP1 (the sprite not containing the window) and SP2 (the sprite
containing the window). The dimensions of the window are the dimensions of the sprite not
containing the window and the position of the window in the sprite whose number is held in SP2
is specified by SCL and SRW. If the sprite whose number is held in SP1 overlaps the border of
the sprite whose number is held in SP2 then no execution will take place. Commands in this
group are prefixed with ‘PM’ or 'GM\

SPRITE/SPRITE OPERATIONS

These are commands where a sprite is transformed and the result is left in a second sprite; there
are only two commands in this group; .SPNM and .DSPM.

DUMMY SPRITE

A dummy sprite is a sprite which does not contain data for display. It may be used, for instance,
to store a machine code subroutine, an array, or maybe used as part of a collision detection
routine.

6

EDITING AND RUNNING PROGRAMS

The Spectrum editor has been extended so that the extra Laser BASIC commands will pass the
syntax checking stage of program entry. All Laser Basic commands start with a full stop 7 and
this is followed by 4 characters which must be typed in upper case. All Sinclair BASIC
commands are entered in the normal way. Assignments such as .COL= or .ROW= must not
contain any spaces between the variable name and the e.g. .COL =4 will give a syntax error.
All Laser BASIC commands will execute in immediate mode.
The extended functions are made up of a question mark'?’ followed by 3 characters, e.g. ?COL,
?ROW, etc. These can only be used to return a value to a variable and cannot be used as part of
an expression or PRINT string.

LET X=?COL: LET Y=?KBF: LET Z=?SET would be legal
LET X = ?COL*3+Y would be illegal
PRINT ?COL would be illegal

If Laser BASIC is being used with interface 1 connected then microdrive errors will cause
control to exit from the extended interpreter. When this happens the editor will no longer accept
the extended commands and syntax errors will occur each time an attempt is made to enter one
of those commands. To re-enter the extended interpreter, delete the line you are trying to enter
and simply type a hash '#’ followed by ENTER. You should now be able to continue as before. If
not, consult the earlier section - “ Using Laser BASIC with microdrives” .
To execute a BASIC program just type the keyword RUN followed by ENTER. There will be a
pause while the additional commands are tokenised and then execution will begin at the first
line of the program. If you wish to execute from a specific line of the program then you can do so
using RUN followed by the line number; e.g. RUN 1000 will RUN your program from line 1000.
There will also be a pause at the end of program execution, or on pressing BREAK, while the
additional commands are de-tokenised. Note that programs can also be executed using GOTO,
GOSUBor CONTINUE.

GETTING STARTED WITH YOUR FIRST LASER BASIC PROGRAM

At this stage it would be a good idea to load in the Laser BASIC Program and some sprites if you
have not already done so. Most of the text covering the Laser BASIC commands include
example listings which we hope, if typed in, will enlighten the newcomer to their use. Therefore,
we strongly recommend you should slowly work through this manual typing in the examples as
you go.

LOADING LASER BASIC

Firstly load in Laser BASIC by typing LOAD Stop tape when instructed to. Laser BASIC will be
ready to use once the menu has appeared on the screen. You should now load in the
“ SPRITE2A” file.

LOADING OPTION 2 SPRITES

The OPTION 2 sprites, “ SPRITE2A" are loaded by selecting option 3 of the menu and then
pressing PLAY on your tape recorder. Once sprites are loaded execute Laser BASIC by
selecting option 1 of the menu.
Remember, we are only using the example sprites since the example listings were written to use
them. When you are writing your own programs you would load in your own sprites created in
the Sprite Generator program. You are now ready to use Laser BASIC.

7

LASER BASIC
As stated earlier, all the standard Sinclair keywords are entered as normal,
eg. type

10 REM THIS IS YOUR FIRST LASER BASIC PROGRAM.
This is typed in, in exactly the same way as when using the normal Sinclair BASIC, the keyword
REM being produced by pressing the E key.
Now type in the next line which contains a Laser BASIC command.

20.COL=1
Of course there is no keyword .COL= so you have to type. (symbol shift M) COL= 1, a character at
a time. Remember, there must be no spaces between the any of the characters including the".”
or the “=” . Do not type .COL =
The extended Laser BASIC Interpreter will accept this line when you hit enter. If you have typed it
in wrongly an error will be displayed as with the normal Sinclair editor.
Now type the rest of the program.

30.ROW=1
40.HGT=20
50.LEN=30
60.INVV

You can now type RUN or GOTO 10 to execute the program.
We will now go into detail explaining the Laser BASIC commands. The best way to understand
their operation is to type in the examples and run them.

TOOLKIT FACILITIES
Four new commands have been added to ease program development, these are .RNUM,
.REMK, .TRON and .TROF.
.RNUM
This is a fairly standard renumbering utility and will renumber the program text and any line
numbers following GOTO, GOSUB or RESTORE. It executes very slowly when compared to
many of its contempories, but does not use any table space whatsoever. It will not, however,
renumber computed GOTO’s, i.e. GOTO 10*X or GOTO100*5, since the value of expression is
not computed until runtime. The syntax is:

.RNUM FIRST LINE, NEW VALUE FOR FIRST LINE, INCREMENT
So typing .RNUM 102,1000,5 would leave lines with numbers less than 102 (and references to
them) unaffected, change line 102 to have number 1000, and all subsequent lines to have
numbers increasing in increments of 5, e.g.

10.COL=1:.ROW=1:.HGT=9:.LEN=9
32 DEF FN A#(Y,X): PRINT AT Y,

X ; I N V V ":.RETN
102 GO SUB 50
118 STOP

7000 .INVV
7520.PROCFN A#(11,11)
8000 RETURN

would become

8

10.C0L=1:.ROW—1:.HGT-9:.LEN-9
32 DEF FN Att(Y.X): PRINT AT Y,

X; ". INW": .RETN
1000 GO SUB 50
1005 STOP
1010 . INW
1015.PROCFN A#<11,11)
1020 RETURN

The default line increment is 10, so if you only specify the first line and the new value for the first
line then all subsequent lines, and references to subsequent lines, will be renumbered in steps
of 10.
So typing .RNUM 102,1000 would produce the following:

10.COL—1:.ROW—1:.HGT-9:.LEN-9
32 DEF FN A#(Y,X>: PRINT AT Y,

X; ". I N W ”! .RETN
1000 GO SUB 50
1010 STOP
1020 . INW
1030.PROCFN A#(11,11)
1040 RETURN

The default ‘new line number’ for the renumbering to begin at is the ‘old line number'.
So typing .RNUM 32 would produce the following:

10.COL-1:.ROW-1:.HGT-9:.LEN-9
32 DEF FN A#(Y,X): PRINT AT Y,

X; “. I N W ”: .RETN
42 60 SUB 42
52 STOP
62 . INW
72.PROCFN A# <11,11)
82 RETURN

The default ‘first line number’ is the first line of the program
(excluding line 0).
So typing .RNUM with no following parameters would produce the following:

10.COL—1:.ROW-1:.HGT-9:.LEN-9
20 DEF FN Att(Y.X): PRINT AT Y,

X; “. INW-s .RETN
30 GO SUB 30
40 STOP
50 . INW
60. PROCFN Att < 11, 11)
70 RETURN

Errors will be generated if:
a) The new value for the start line is lower than the old value

for the previous line. This prevents lines becoming out
of sequence.

b) Renumbering would cause line numbers to exceed 10000.

9

.REMK

This command is used simply to strip a program of all its REM statements and thus save memory
when the program is getting large. It does not have any parameters and removes REM
statements throughout the whole program.
If you now type the following:

10 REM THIS IS AN EXAMPLE
20 PRINT “ HELLO" : REM THIS LINE PRINTS HELLO
30 REM THIS LINE DOES NOT PRINT GOODBYE : PRINT “ GOODBYE”

Now type .REMK, noting what happens to lines 20 and 30; you are left with
20 PRINT “ HELLO"

.TRON and .TROF
One of the difficulties with debugging BASIC programs is knowing just how the program
actually flows. The program tracing facility (.TRON) allows you to single step through your
BASIC program line by line. Each line is listed before it executes and the interpreter waits until
you press a key to execute the line, or CAPS SHIFT BREAK to exit with the option to re-execute
using CONTINUE. Executing .TRON will set the trace facility running at the next BASIC line
executed and must be included in the program (it is disabled by RUN). The trace is automatically
switched off when .TROF is executed or when the program has finished running.

10

The way in which parameters are passed to the graphics routines is slightly unusual and is
aimed at speeding up program execution. Each graphics command uses a particular subset of
the 10 graphics variables. Some commands require up to 5 parameters and in most cases more
time would be spent evaluating the 5 expressions than executing the command itself. More
often than not only one or two parameters are re-eval uated between successive executions of a
command, and so the extended commands require only those parameters which need to be
changed, to actually be changed. The other advantage of using dedicated variables is that the
routines know exactly where to find the variables and do not need to search the BASIC variables
to find the values.
There are actually 16 sets of the 10 variables and these can be individually selected using
•SET=<exp> where <exp> is in the range of 0 to 15 and can be any BASIC expression, e.g.

.SET=5*X+PEEK (58471)
The 10 variables are:

VARIABLE GENERAL USE
ROW Used to hold the row (V co-ord) in characters, measured from the top of the screen

(0-23). The top of the screen has ROW 0.
COL Used to hold the column (X co-ord) in characters, measured from the left of the

screen (0-31). The top left of the screen has COL 0.
HGT Used to hold the height in characters of the current screen window (1 -24).
LEN Used to hold the length in characters of the current screen window (1 -32).
SRW Used to hold the row (Y co-ord) within a sprite measured from the top (0 to

height-1) and in units of characters.
SCL Used to hold the column (X co-ord) within a sprite measured from the left (0 to

length-1) and in units of characters.
NPX Used to hold the size and direction of vertical scrolls. Positive scrolls are upward

and negative scrolls are downward. Units are pixels, not characters, and should
be in the range +127 to -128.

SPN Used to hold the sprite number for those commands which operate on only one
sprite. SPN should be in the range 1 to 255.

SP1 Where operations involve a sprite and a sprite window, SP1 contains the number
of the sprite which does not contain the window (1-255).

SP2 Where operations involve a sprite and a sprite window, SP2 contains the number
of the sprite which does contain the window (1 -255).

THE GRAPHICS VARIABLES

11

ASSIGNING VARIABLES

.COL= .ROW= .LEN= ,HGT= .SP1= .SP2=
,SPN= ,NPX= ,SCL= .SRW= .SET=

Using these functions, the graphics variables can be assigned values.
e.g. ,COL=5:.ROW=2:.SPN=2
Now type in the following sample program, which XORs a sprite across the screen by changing
the value in the variable COL by means of a FOR-NEXT loop.

1 REM EXAMPLE 1
5 REM USING ONE SET OF GRAPHICS VARIABLES

10.SET=0:.SPN=4:.ROW=0:.COL=-4
20 BORDER 1: BRIGHT 1: INK 6: PAPER 1: CLS :.ATOF
30 FOR l=-4 TO 32
40.PTXR:.COL=I+1:.PTXR
50 PAUSE 4
60 NEXT I
70 STOP
To execute type RUN or GOTO 1 then press ENTER.
Line 10 Graphics variable set 0 is selected, sprite number is set to 4, ROW is set to 0

(top row), and COL is set to -4
Line 20 The screens attributes are set, the screen is cleared and the attribute flag set

to off.
Line 30 is a simple loop to move sprite 4 (the duck) from column positions -4 to 32.
Line 40 XORs out the old sprite, (see .PTXR) increments the COL variable and then

XORs in the new sprite.
Line 50 pauses while the sprite is on screen.
We can now extend this simple routine, to move two sprites (in fact mirror images of the same
sprite) in opposite directions again by changing the values in COL, except in this case two
variable sets are used. (Note, if you intend to use only one variable set in a program the word
,SET= does not have to be used).
1 REM EXAMPLE 2

10 REM USING TWO SETS OF GRAPHICS VARIABLES
20 DEF FN A#(X,Y):.SET=X:.SPN=4:.ROW=Y
30.RETN
35 INK 6: PAPER 0: BORDER 0: BRIGHT 1: CLS:.ATOF
40.PROCFN A#(0,0):.PROCFN A#(1,1)
50.COL=32:.SET=0:.COL=-4
60 FOR l=-4 TO 32
65.SET=0:.PTXR:.COL=I+1:.PTXR
70.SET=1:.MIRM:.PTXR:.COL=28-I:.PTXR:.MIRM
75 PAUSE 2
80 NEXT I
90 GO TO 40

Note the FN part of .PROCFN in line 40 is the keyword FN (symbol shift 2).
This program will move two ducks across each other from either side of the screen. To run this
program just type RUN or GOTO 1 and then press ENTER.

12

Lines 20

Line 35

Line 40
Line 50
Line 60
Line 65
Line 70

Line 75

and 30 define a procedure which initialises the necessary variables of the
respective sets. The first time it is executed SET is 0 and ROW is 0 and the
second time SET is 1 and ROW is also 1. This means that the two variable sets
are identical except for the value of ROW.
sets the attribute values before clearing the screen and switching off the
attribute flow.
executes the procedure A# twice.
initialises the columns for sets 1 and 0 respectively.
is a simple loop.
moves the sprite from left to right using the variables from set 0.
reflects the sprite and moves it from right to left using the variables from set 1.
The sprite is re-reflected,
is a pause while both sprites are on the screen.

INTERROGATING VARIABLES

As well as being able to assign values to the graphics variables, it is also necessary to be able to
interrogate their current values. There are eleven functions provided for doing this.

?COL ?ROW ?LEN ?HGT ?SP1 ?SP
?SPN ?NPX ?SCL ?SRW ?SET

Using these functions, the current values can be assigned to a normal Sinclair variable, for
example:

LET X=?COL: LET ROW=?ROW: LET ST=?SET
Notice that ROW=?ROW is allowed, but don’t get confused between the normal variable ROW
and the graphics variable ROW.
The above eleven functions cannot be used as part of a normal expression, i.e.:

LET X=?COL*3+?ROW/8 would not be legal
and they cannot be included as PRINT parameters either, i.e.:

PRINT X,Y,?ROW would also be illegal.
However, the same results could be achieved by using:

LET COL=?COL: LET Y=?ROW: LET X=COL*3+Y/8 in the first case and
LET R=?ROW: PRINT X,Y,R in the second case

You can insert the following lines into the above EXAMPLE 2 to print out the two COL values as
the sprites are moved.

75.SET=0: LET X0=?COL.SET=1: LET X1=?COL
76 PRINT AT 10,16;” “ ;AT 11,16;” “
77 PRINT AT 10,12;"COL=” ;X0;AT 11,12;“ COL=";X1

Line 75 lets the variable X0 equal the COL value of set 0 and X1 equal the
value of set 1 COL.

Line 76 blanks out the old values on the screen.
Line 77 prints the new values.

13

THE EXTENDED GRAPHICS COMMANDS IN DETAIL

SPRITE UTILITIES

All the sprite utilities described in this section are available at run-time but should be used with
caution. We strongly recommend that the unfamiliar user creates all his sprites in the Sprite
Generator package.
.SPRT Used to set up a new sprite. Sprite space is extended upward so the start of sprites

remains fixed but the end of sprites is increased by 9xHGTxLEN+5 bytes. If the
sprite number has been previously allocated then the ‘old sprite’ is first deleted
(with the bottom of sprite-space remaining fixed and the top of sprite space being
reduced) before the new sprite is allocated. When a sprite is first set up it will
probably contain garbage, and data will have to be “ GOT” in it using a command
such as .GTBL.
Parameter Use
SPN Number of the sprite to be set up. (1 -255)
LEN Length of the sprite in characters. (1 -255)
HGT Height of the sprite in characters. (1 -255)

Note: Since this command extends sprite space upwards it will very seldom be used and
is included for advanced applications only. Most uses require
the next command .ISPR. Careless use of .SPRT may cause the system to
crash.

.ISPR Used to set up a new sprite. Sprite space is extended downward so the top of
sprites remains fixed but the start of sprites moves downward by 9xHGTxLEN+5
bytes. If the sprite has been previously allocated then an error is generated. If
executing .ISPR causes the .start of sprite space to move below RAMTOP the
system will crash. Remember, as with .SPRT the sprite may initially contain
garbage and data will have to be “GOT” into it using a command such as .GTBL.
Parameter Use
SPN Number of the sprite to be set up. (1 -255)
LEN Length of the sprite in characters. (1 -255)
HGTzl

Height of the sprite in characters. (1 -255)
.WSPR Used to delete a currently existing sprite. Sprite space is contracted so that the

start of sprites remains unchanged but the end of sprites is reduced. Again this
command is only used in advanced applications and sprites are normaly deleted
using .DSPR. An error Q is generated if an attempt is made to delete a non-existant
sprite.

e.g. to delete sprite 1 you would type
,SPN=1:.WSPR
Parameter Use
SPN The number of the sprite to be deleted. (1 -255)

.DSPR Used to delete a currently existing sprite. Sprite space is contracted so that the top
of sprites remains fixed but the start of sprites is moved up in memory. An error Q is
generated if an attempt is made to delete a non-existant sprite. This command will
normally be used to delete a sprite, and .WSPR will only be used in advanced
applications.
e.g. to delete sprite 2 you would type
.SPN=2: .DSPR
Parameter Use
SPN The number of the sprite to be deleted. (1 -255)

14

In example 3 below, memory is checked to see if enough memory is available for .ISPR.
5 REM EXAMPLE 3

10 REM PROCEDURE TO CHECK IF SUFFICIENT SPACE IS AVAILABLE FOR .ISPR
20 REM X=LENGTH,Y=HEIGHT
30 DEF FN T#(X,Y)
40 LET SIZE = 9*X*Y+5
50 LET SPACE = PEEK (62464)-PEEK (23730)+256*(PEEK (23731)-PEEK (62465))
60 IF SIZE > SPACE THEN PRINT “ NO ROOM AVAILABLE”
70 IF SIZE <= SPACE THEN PRINT “ ROOM AVAILABLE”
80.RETN
The procedure is entered with X and Y holding length and height, e.g. type .PROCFN T#(5,5) for a
5 by 5 sprite. The size of the sprite is calculated and compared with the length of free space
(SPST-RAMTOP) and an appropriate message generated.
5 REM EXAMPLE 4

10 REM PROCEDURE TO CHECK IF SUFFICIENT SPACE IS
20 REM AVAILABLE AND SET UP SPRITE N IF POSSIBLE
30 DEF FN S#(N,X,Y)
40 LET SIZE = 9*X*Y+5
50 LET SPACE = PEEK (62464)-PEEK (23730)+256*(PEEK (23731)-PEEK (62465))
60 IF SIZE <= SPACE THEN ,SPN=N:.LEN=X:.HGT=Y:.ISPR
70 IF SIZE > SPACE THEN PRINT “ NO ROOM”
80.RETN
The above procedure in example 4 will check if sufficient room is available; if so, execute .ISPR
and if not, generate a message, e.g. you could type
.PROCFN S#(1,2,3) to create sprite 1 of 2 by 3 characters.
5 REM EXAMPLE 5

10 REM PROCEDURE TO DELETE A SPRITE IF IT EXISTS
20 REM AND PRINT THE NUMBER OF BYTES RECLAIMED
30 DEF FN D#(N)
40.SPN=N: LET START=?TST: LET X=?HGT: LET Y=?LEN
50.DSPR: PRINT 9*X*Y+5;" BYTES SAVED"
60.RETN
The procedure in example 5 will TEST sprite N (see ?TST) to find its dimensions and then delete
it if it exists, displaying the number of bytes saved, e.g. you could delete sprite number 1 by
typing .PROCFN D#(1).

15

HORIZONTAL SCREEN SCROLLS
The horizontal screen scrolls are by 1, 4 or 8 pixels, left or right, with or without wrap. The
horizontal scroll commands are listed below.

Command Action
.WLIV Scroll left 1 pixel with wrap
.WR1V Scroll right 1 pixel with wrap
.SL1V Scroll left 1 pixel, no wrap
,SR1 V Scroll right 1 pixel, no wrap
.WL4V Scroll left 4 pixels with wrap
.WR4V Scroll right 4 pixels with wrap
.SL4V Scroll left 4 pixels, no wrap
.SR4V Scroll right 4 pixels, no wrap
.WL8V Scroll left 8 pixels with wrap
.WR8V Scroll right 8 pixels with wrap
.SL8V Scroll left 8 pixels, no wrap
.SR8V Scroll right 8 pixels, no wrap

Parameter Use
COL Column of left hand edge (0-31
ROW Row of the top edge (0-23)
LEN Length of the window (1 -32)
HGT Height of the window (1 -24)

The above commands operate on the screen, scrolling a window whose dimensions are held in
the variables LEN and HGT and is positioned at the co-ordinates held in COL and ROW.
EXAMPLE 6 will demonstrate the 1,4 and 8 pixel scrolls with wrap around,

fills the screen with data.
defines a window 20 by 10 at a position column 6 and row 2, by storing
the values in LEN, HGT, ROW and COL
to 80 scroll the window (300 times for each example).
5 REM EXAMPLE 6

10 FOR N=1 TO 55: PRINT “ LASER BASIC";: NEXT N
20.LEN=20:.HGT=10:.ROW=2:.COL=6
30 REM 1 PIXEL SCROLL
40 FOR N=1 TO 300:.WL1V: NEXT N
50 REM 4 PIXEL SCROLL
60 FOR N=1 TO 300:.WL4V: NEXT N
70 REM 8 PIXEL SCROLL
80 FOR N=1 TO 300:.WL8V: NEXT N

Replace the .WLIV scroll with .SL1V(no wrap) and see the result. You must remember that pixel
data and attribute data are different ‘chunks’ of memory and that the above scrolling commands
only scroll the pixel data.
EXAMPLE 7 will show the difference between the pixel and attribute data by scrolling data over
attributes on the screen.
Line 10 makes sure the attribute flow switch is on.
Line 20 puts sprite 34 (a fly) at position 15,2 (see .PTBL).
Line 30 defines a window the length of the screen around the sprite.
Line 50 scrolls the screen pixel data 256 times to the right with wrap, leaving the

attribute data behind.

Line 10
Line 20

Lines 30

16

5 REM EXAMPLE 7
10.ATON
20.SPN=34:.ROW=2:.COL=15:.PTBL
30.LEN=32:.HGT=2:.COL=0:.ROW=2
40 PAUSE 50
50 FOR N=1 TO 256:.WR1V: NEXT N

You are not, of course, limited to 1,4 or 8 pixel scrolls, by combining, say, three 1 pixel scrolls a 3
pixel scroll can be produced, e.g. .WR1V:.WR1V:.WR1 V
EXAMPLE 8 demonstrates this. Remember that a 9 pixel scroll, for instance, produced by
repeating .WR1V 9 times, might be more elegantly achieved by using ,WR8V:.WR1V
Line 10 prints data on the screen.
Line 20 defines the dimensions of the window (length 32 and height 1).
Line 30 is the loop, that once completed, will reassemble the scrolled screen.
Line 40 is the loop that calculates the ROW and number of scrolls on that line.
Line 50 sets the ROW variable for the scroll window.
Line 60 scrolls the window I times.

5 REM EXAMPLE 8
10 FOR N=1 TO 20: PRINT AT N,0;N;” PIXEL SCROLL”: NEXT N
20.LEN=32:.HGT=1 :.COL=0
30 FOR N=1 TO 256
40 FOR 1=1 TO 20
50 ,ROW=l
60 FOR M=1 TO l:.WR1 V: NEXT M
70 NEXT I
80 NEXT N

VERTICAL SCREEN SCROLLS

These work in a similar way to the horizontal scrolls, but in addition to setting up the window
with the four window parameters COL, ROW, HGT and LEN, a further variable NPX is used to
give the size and direction of the scroll in pixels. A positive value for NPX causes upward
scrolling and a negative value causes downward scrolling.
e.g. .NPX=-1 is one pixel down.

.NPX=1 is one pixel up.
Command Action
.WCRV Vertical scroll with wrap
.SCRV Vertical scroll, no wrap

Parameter Use
COL
ROW
LEN
HGT
NPX

Column of left hand edge
Row of top edge
Length of the window
Height of the window
Size and direction of scroll

(0-31)
(0-23)
(1-32)
(1-24)
(-128 to+127)

Note: All vertical scrolling of pixel data and/or attributes for screen or sprites, requires buffer
space. The space required is calculated by multiplying NPX by LEN. This length must not
exceed 256 bytes as the printer buffer (23296 to 23551) is used as a temporary store. A line to
check this might be:

LET X=?NPX: LET Y=?LEN: IF ABS (X)*Y<256 THEN .WCRV
Vertical scrolls, as with horizontal scrolls, can be with or without wrap around.
EXAMPLE 9 is similar to EXAMPLE 6 except that this demonstrates a 1 pixel scroll up and a 1
pixel scroll down.

17

Line 40 produces 300 1 pixel scrolls up.
Line 60 produces 300 1 pixel scrolls down.

5 REM EXAMPLE 9
10 FOR N=1 TO 55: PRINT " LASER BASIC NEXT N
20.LEN=20:.HGT=10:.ROW=2:.COL=6
30 REM 1 PIXEL SCROLL UP
40.NPX=1: FOR N=1 TO 300:.WCRV: NEXT N
50 REM 1 PIXEL SCROLL DOWN
60.NPX=-1: FOR N=1 TO 300:.WCRV: NEXT N

In EXAMPLE 10 we scroll vertical columns 1 character wide by 1 pixel. The column is picked at
random.
Line 10 prints a row of ‘A’s on the bottom of the screen.
Line 20 sets up the parameters of the screen window.
Line 30 picks a random column and stores it in the variable COL.
Line 40 scrolls the column up by 1 pixel without wrap.
Line 50 loops around.

5 REM EXAMPLE 10
10 FOR N=0 TO 31: PRINT AT 21,N;”A” : NEXT N
20.LEN=1:.HGT=22:.ROW=0:.NPX=1
30 LET X=INT (RND*33)-1:.COL=X
40.WCRV
50 GO TO 20

SCREEN ATTRIBUTE SCROLLS
Attribute scrolls are similar to the pixel scrolls but all attribute scrolls are by one character, and
with wrap. The buffer size used is equal to LEN and is therefore always less than 33 bytes.

Command Action
.ATLV Scroll attributes left 1 character with wrap
.ATRV Scroll attributes right 1 character with wrap
■ATUV Scroll attributes up 1 character with wrap
.ATDV Scroll attributes down 1 character with wrap
Parameter Use
COL Column of the left hand edge (0-31)
ROW Row of the top edge (0-23)
HGT Height of the window (1-32)
LEN Length of the window (1-24)

18

EXAMPLE 11 demonstrates the use of one of the attribute scrolls, .ATRV . In this example,
vertical columns of attributes are placed on the screen. Using a series of nested FOR-NEXT
loops the top row of attributes is scrolled by 1 character, the second row is scrolled by 2
characters etc. As this sequence is repeated patterns are formed.
5 REM EXAMPLE 11

10 INK 7: PAPER 0: BRIGHT 1: CLS
20 FOR N =OTO 703: PRINT CHR$(129): NEXT N
30.LEN=1 :.HGT=24:.ROW=0: FOR N=0 TO 31:.COL=N: INK INT (RND*7)+1:.SETV:
NEXT N
40.LEN=32:.COL=0:.HGT=1
50 FOR l=0 TO 31
60 FOR Y=1 TO 22
70.ROW=Y-1
80 FOR X=1 TO Y
90.ATRV
100 NEXT X
110 NEXTY
120 NEXT I
Line 10 sets up the attributes.
Line 20 fills the screen with CHR$ 129.
Line 30 fills the screen with random coloured columns (see .SETV).
Line 40 sets the parameters for .ATRV.
Line 50 I is the number of complete scroll operations to reset the columns.
Line 60 Y is the row.
Line 80 is the number of characters scrolled per row.
Line 90 executes the scroll.
The way in which attribute data is scrolled separately from pixel data is shown in EXAMPLE 11,
which is similar to EXAMPLE 7. In this case it is the pixel data that is left.
5 REM EXAMPLE 12

10.ATON
20.SPN=34:.ROW=2:.COL=15:.PTBL
30.LEN=32:.HGT=2:.COL=0:.ROW=2
40 PAUSE 50
50 FOR N=1 TO 32:.ATLV. NEXT N
Due to the limitations of the Spectrum, attributes can only be scrolled by 8 pixels or one
character at a time. If you change line 50 in EXAMPLE 12 to:

50 FOR N=1 TO 32:.ATLV: .WL8V: NEXT N
both the pixel and attribute data will be scrolled.

HORIZONTAL SPRITE SCROLLS

The horizontal sprite scrolls are by 1,4 or 8 pixels, left or right, with or without wrap. If the sprite
does not exist an error is generated. A list of sprite scrolls are given below.

19

Command Action
.WL1M Scroll
.WR1M Scroll
.SL1M Scroll
.SR1M Scroll
.WL4M Scroll
.WR4M Scroll
.SL4M Scroll
.SR4M Scroll
.WL8M Scroll
.WR8M Scroll
.SL8M Scroll
.SR8M Scroll

left 1 pixel with wrap
right 1 pixel with wrap
left 1 pixel, no wrap
right 1 pixel, no wrap
left 4 pixels with wrap
right 4 pixels with wrap
left 4 pixels, no wrap
right 4 pixels, no wrap
left 8 pixels with wrap
right 8 pixels with wrap
left 8 pixels, no wrap
right 8 pixels, no wrap

Parameter Use
SPN Number of the sprite to be scrolled (1 -255)

In most of the previous examples, Laser BASIC words have ended in the letter “ V". This implies
“video” . Operations ending in “V" effect only the screen, leaving all sprites in memory
unaffected.
All the above scroll commands end in "M ” which implies “ memory” , that is to say that if you
execute one of these words the sprite in memory is altered. Remember that you will not see the
change in the sprite until you have placed it back on the screen.
EXAMPLE 13 is similar to EXAMPLE 6, except a sprite is scrolled in memory and then placed on
the screen 300 times. (Note that, as with screen scrolls, only the pixel data is scrolled).
Remember that you will need the ‘SPRITE2A’ file of sprites loaded.
5 REM EXAMPLE 13

10.ROW=10:.COL=14:.SPN=49
20 REM SCROLL SPRITE BY 1 PIXEL
30 FOR N=1 TO 300:.WL1 M:.PTBL: NEXT N
40 REM SCROLL SPRITE BY 4 PIXEL
50 FOR N=1 TO 300:.WL4M:.PTBL: NEXT N
60 REM SCROLL SPRITE BY 8 PIXEL
70 FOR N=1 TO 300:.WL8M:.PTBL: NEXT N
Line 10 sets the ROW and COL positions for the sprite.
Line 30 scrolls the sprite by 1 pixel and then puts it on the screen 300 times.
Line 50 scrolls the sprite by 4 pixels and then puts it on the screen 300 times.
Line 70 scrolls the sprite by 8 pixels and then puts it on the screen 300 times (this happens

so fast that the sprite becomes a blur).

VERTICAL SPRITE SCROLLS

These work in the same way as the vertical screen scrolls where the signed variable NPX is
used to determine the size and direction of the scroll. If the sprite does not exist an error is
generated.

Command Action
.WCRM Vertical scroll with wrap
.SCRM Vertical scroll, no wrap

Parameter Use
SPN Number of the sprite to be scrolled (1 -255)
NPX Number of pixels to be scrolled (-128 to +127)

20

Note: As with the vertical screen scrolls the amount of buffer space used must not exceed 256
bytes. The length of the sprite multiplied by NPX gives the size of buffer required. The length of
the sprite can be obtained by using the ?TST function.
EXAMPLE 14 demonstrates vertical scrolling of sprites, by scrolling and placing sprite 5 (the
dancer) such that it fills the screen with scrolled sprites.

5 REM EXAMPLE 14
10 BORDER Oi.SPN = 5 :.NPX =8
20 FOR Y=0 TO 20 STEP 4
30 FOR X=0 TO 31 STEP 2
40.COL=X:.ROW=Y:.PTBL
50.WCRM
60 NEXT X
70 NEXT Y
80 GO TO 80
Line 10 sets the parameters and the border colour.
Lines 20 and 30 set the X and Y co-ordinates for placing the sprite.
Line 40 puts sprite 5 at the X,Y co-ordinates.
Line 50 scrolls the sprite upwards by 8 pixels.

SPRITE ATTRIBUTE SCROLLS
As with the screen attribute scrolls there are 4 commands to scroll the attribute data in the 4
directions by 1 character with wrap.

Command Action
.ATLM Scroll attributes
.ATRM Scroll attributes
.ATUM Scroll attributes
.ATDM Scroll attributes

Parameter Use

left 1 character with wrap
right 1 character with wrap
up 1 character with wrap
down 1 character with wrap

SPN Number of sprite to be scrolled (1 -255)

GROUP 1 PUTS AND GETS
PUTs are operations that ‘put’ a sprite to the screen or another sprite, whilst GETs are the
opposite, getting data from the screen or another sprite into a sprite. There are three groups of
GETs and PUTs. The first, and the fastest, carry out operations between a full sprite and a
previously positioned screen window. All group 1 GETs and PUTs are prefixed with ‘GT’ or 'PT‘.
This first group does not have separate commands to move pixel data and attributes but instead
uses an attribute switch (see .ATON, .ATOF) to move pixel data with or without attributes. An
error message is generated if the sprite does not exist.

Command Action
.GTBL Block move screen window into sprite
.GTOR OR screen window into sprite
.GTXR XOR screen window into sprite
.GTND AND screen window into sprite
.PTBL Block move sprite into screen window
.PTOR OR sprite into screen window
.PTXR XOR sprite into screen window
.PTND AND sprite into screen window

21

Parameter Use
COL Left hand column of target screen position (0-31)
ROW Top row of target screen position (0-23)
SPN Number of sprite to be PUT or GOT (1 -255)

Note: The dimensions of the screen window are the dimensions of the sprite, if
COL+sprite length is greater than 32 or if ROW+sprite height is greater
than 24 then the command will partially PUT the sprite.

If you now type:
.SPN=39:.ROW=1 :.COL=1 :.PTBL

you in fact place sprite 39 on the screen at ROW and COL position 1,1. This is the fastest and
simplest way of putting a sprite on the screen.
Now type .ATOF (see .ATOF) and you have stopped the flow of attributes. So if you typed
.ROW=5:.PTBL (remember there is no need to set SPN or COL as they remain the same), sprite
39 would appear on the screen again, but this time without its attributes.
Type .ATON:.PTBL and behold, it has re-appeared with its attributes.
.PTBL removes all data on the screen where the sprite appeared. You are provided with three
other operations - .PTOR, .PTXR and .PTND - which logically OR, XOR and AND the sprite to the
screen.
If you were to type:

.ATOF:.SPN=18:.ROW=10:.COL=10:.PTBL
you would have put sprite 18 (a tank) on the screen. Now if you type ,SPN=39:.PTXR you would
XOR sprite 39 over what was on the screen. Now type .PTXR and hit enter, and the sprite has
removed itself, and reset the original data.
Example 15 XORs sprite 18 (a tank) through a field of mice non-destructively.
5 REM EXAMPLE 15

10.ATOF:.SPN=6
20 FOR N=1 TO 50
30 LET X=INT (RND*32): LET Y=INT (RND*20):.COL=X:.ROW=Y:.PTBL
40 NEXT N
50.SPN=16:.ROW=10
60 FOR X=-4 TO 32
70.COL=X:.PTXR: PAUSE 4:.PTXR
80 NEXT X
90.ATON
Line 10 switches off the attribute flow and sets SPN to 6 (the mice).
Lines 20 to 40 fill the screen with 50 mice.
Line 50 sets the parameters for sprite 16.
Line 60 is a simple loop to work out the positions for COL.
Line 70 sprite 16 is XORed to the screen, a pause is executed while it is on the screen

and then the same sprite is XORed at the same position, thus removing itself
and resetting any data previously there.

If you type .SPN=18:.ROW=10:.COL=10:.PTBL sprite 18 appears on the screen as expected.
Now see what happens if you type ,COL=29:.PTBL (remember the sprite is 6 characters long).
What has happened is that as much of the sprite as possible has been placed on the screen.
Now try ,COL=-3:.PTBL
The GETs (words beginning in GT), unlike the PUTs, take data from the screen at a position
stored in ROW and COL from a window whose dimensions are those of the sprite, storing the
data in the sprite.

22

In EXAMPLE 16 a pixel is plotted in the bottom right hand corner of the screen, the window
around this area is GOT into sprite 1 (destroying the vintage car) and the sprite is then placed on
the screen. Another pixel is placed in the bottom right hand corner of the screen and sprite 1 is
re-GOT and PUT etc.

5 REM EXAMPLE 16
10.SET=0:.SPN=1:.ROW=20:.COL=28
20.SET=1 :.SPN=1 :.ROW=0:.COL=0

100 DEF FN A#()
110 LET PX=INT (RND*32): LET PY=INT (RND*16)
120 PLOT PX+223.PY
130.RETN
200 FOR Y=0 TO 20 STEP 2
220 FOR X=0 TO 32 STEP 4
240.PROCFN A#()
250.SET=0:.GTBL
260.SET=1 :.ROW=Y:.COL=X:.PTBL
270 NEXT X
280 NEXT Y
Line 10
Line 20
Line 100
Lines 110
Lines
Line 240
Line 250
Line 260

sets up SET 0 (the position of the bottom right hand corner of the screen,
sets up SET 1 (the sprite),
defines a procedure A#.
and 120 plot a pixel at a random position in the bottom left of the screen.
200 and 210 calculate the COL and ROW positions for putting sprite 1.
calls the plotting procedure.
GETs sprite 1.
PUTs sprite 1.

23

These commands allow operations between sprite windows and screen windows. Unlike the
group 1 commands, there are separate commands to move pixel data and attributes, although
the .ATON and .ATOF commands have the usual effect on their operation. Four new parameters
are introduced to specify the column and row in the sprite and the height and length of the
window within the sprite. If the window overlaps the boundaries of the sprite or screen the
command will not execute and if the sprite does not exist an error is generated. All commands in
this group are prefixed with ‘GW’ or ‘PW’.

GROUP 2 GETS AND PUTS

Command Action
.GWBL Block move screen window into sprite window
.GWOR OR screen window into sprite window
.GWXR XOR screen window into sprite window
.GWND AND screen window into sprite window
.PWBL Block move sprite window into screen window
.PWOR OR sprite window into screen window
.PWXR XOR sprite window into screen window
.PWND AND sprite window into screen window
.GWAT Block move screen window into sprite window
.PWAT Block move sprite window into screen window

Parameter Use
COL
ROW
SCL

SRW

HGT
LEN
SPN

Left hand column of target screen window (0-31)
Top row of target screen window (0-23)
Left hand column of sprite window

(0 to sprite
Top row of sprite window

(0 to sprite
Height of window (1 -24)
Length of window (1 -32)
Sprite number (1 -255)

length

height

- 1)

- 1)

In EXAMPLE 17,1 character by 1 character windows are taken at random from sprite 49 (the
teddy bear) and placed on the screen.

5 REM EXAMPLE 17
10.SPN=49:.HGT=1 :.LEN=1

200 FOR Y=C TO 20
220 FOR X=0 TO 32
230 LET GX=INT (RND*4)
240 LET GY=INT (RND*5)
250.COL=X:.ROW=Y:.SCL=GX:.SRW=GY
260. PWBL
270.PWAT
280 NEXT X
290 NEXT Y
Line 10

Lines 200
Lines 230

Line 250
Line 260
Line 270

sets up SPN with the number of the sprite and sets HGT and LEN with the
dimensions of the window.
and 210 calculate the COL and ROW positions for PUTting the 1 by 1 window,
and 240 calculate the random COL and ROW positions in the sprite for
GETting the window,
sets up these values.
GETs the pixel data from the window and PUTs it on the screen.
GETs the attribute data.

24

This group, possibly the most useful in the whole set, comprises commands which support
operations between a sprite and a window in a second sprite. All group 3 commands are
prefixed with 'PM' or ‘GM’. If the sprite window overlaps the boundaries of the sprite, the
command will not execute, and if either of the sprites does not exist an error message Q is
generated.

GROUP 3 GETS AND PUTS

Command Action
.GMBL Block move sprite pixel data into sprite window
.GMOR OR sprite pixel data into sprite window
.GMXR XOR sprite pixel data into sprite window
.GMND AND sprite pixel data into sprite window
■PMBL Block move sprite window pixel data into sprite
■PMOR OR sprite window pixel data into sprite
.PMXR XOR sprite window pixel data into sprite
.PMND AND sprite window pixel data into sprite
.GMAT Block move sprite attribute data into sprite window
.PMAT Block move sprite window attribute data into sprite

Parameter Use
SP1 Number of the first sprite (1 -255)
SP2 Number of the second sprite (containing the window)

(1-255)
SCL Left hand column of sprite window (1 - SPRITE LENGTH)
SRW Top row of sprite window (1 - SPRITE HEIGHT)

•MOVE
Used to provide simple and effective animated or non-animated sprite movement. This
command uses the exclusive OR (XOR) operation to provide non destructive sprite movement,
so if your sprite starts on screen you will need to .PTXR the sprite onto the screen before you use
.MOVE. If your sprite moves ‘on screen’ from a position ‘off screen’ then this will be catered for
automatically. The exclusive OR (XOR) operation works in the same way as Sinclair’s OVER 1
printing.

Parameters Use
COL The COL of the sprite to be moved. (0-31)
ROW The ROW of the sprite to be moved. (0-23)
HGT The HGT in characters of the movement. (-24-+24)
LEN The LEN in characters of the movement. (-32-+32)
SP1 The number of the sprite to be moved. (1 -255)
SP2 The number of the sprite after movement. (1 -255)

.MOVE XOR’s out the previously PUT sprite SP1, that is on the screen at a position held in ROW
and COL and places sprite SP2 on the screen at a position COL + LEN, HGT + ROW. ROW and
COL are then incremented by the values of HGT and LEN, and SP1 and SP2 are left exchanged.
EXAMPLE 18 moves a sprite non destructively across data from the top left towards the bottom
right. It stores in SP1 and SP2 the values of the OLD and NEW sprites (which in this case are both
6 the mouse).

Since the sprite is at the top left of the screen ROW and COL values are initially set to 0.
Now since we wish to move the sprite down and to the right by 1 character, HGT and LEN must
be set to 1. .MOVE automatically increments ROW and COL by the values held in HGT and LEN
So in fact all you have to do is type .MOVE to move the sprite.

25

5 REM EXAMPLE 18
10 FOR N=1 TO 100
20 LET X=INT (RND*32)
30 LET Y=INT (RND*21)
40 PRINT AT Y,X;”A"
50 NEXT N
60.ATOF: ,COL=0:.ROW=0:.SPN=6:.PTXR
70.HGT=1:.LEN=1
80.SP1=6:.SP2=6
90 FOR N=1 TO 25

100.MOVE
110 PAUSE 3
120 NEXTN
Lines 10 to 50 fill the screen with letter ‘A's at random positions.
Line 60 puts sprite 6 (the mouse) in the top left hand corner of the screen.
Line 70 sets the increments in HGT and LEN to both be 1.
Line 80 sets the OLD and NEW sprites to 6.
Line 90 is a simple loop.
Line 100 executes .MOVE.
You can, of course, have negative values in HGT and LEN.
Using suitable values for SP1 and SP2, .MOVE can be used to animate as well as move sprites.
In example 19 negative values are placed in HGT and LEN to give movement in the opposite
direction to those of EXAMPLE 18.
5 REM EXAMPLE 19
10 FOR N=1 TO 100
20 LET X=INT (RND*32)
30 LET Y=INT (RND*21)
40 PRINT AT Y,X;”A”
50 NEXT N
60.ATOF: ,COL=0:.ROW=22:.SPN=6:.PTXR
70.HGT=-1 :.LEN=-1
80.SP1=6:.SP2=6
90 FOR N=-1 TO 25
100.MOVE
110 PAUSE 3
120 NEXT N
In EXAMPLE 20 sprite 6 is moved around in a circle by constantly changing the values in the
increments HGT and LEN.
5 REM EXAMPLE 20
10 FOR N=1 TO 150
20 LET X=INT (RND*32)
30 LET Y=INT (RND*22)
40 PRINT AT Y,X;”A”
50 NEXT N:.ATOF
60.ROW=10:.COL=4:.SPN=6:.PTXR
70.SP1=6:.SP2=6
80.HGT=0:.LEN=0
90 LET C=4: LET R=10
100 FOR N=1 TO 30
110.COL=C:.ROW=R
120 LET C=INT (14-10*COS (N/15*PI))
130 LET R=INT (10+10*SIN (N/15*PI))
140 LET OC=?COL: LET OR=?ROW
150.LEN=(OC-C)* -1 :.HGT=(OR-R)* -1
160.MOVE
170 NEXT N
180 GO TO 100

26

Lines 10 to 50 fill the screen with ‘A's.
Line 60 puts sprite 6 on the screen.
Lines 70 to 90 set up the parameters.
Lines 100,120 and 130 calculate the COL and ROW position by calculating points on the edge of
a circle.
Lines 140 and 150 calculate the offset to be stored in HGT and LEN.
Line 160 executes .MOVE

.ATON/.ATOF
The flow of attributes is controlled by two commands which determine whether or not attributes
are to be moved with pixel data by the PUT's and GET's.

Command Action
.ATON Enable the flow of attributes between sprites

and the screen.
.ATOF Disable the flow of attributes between sprites

and the screen.

Parameter Use
Nona None

TRANSFORMATIONS
To increase the utility of the package, four words have been included to invert (1 ’s complement),
spin, reflect and enlarge. The inversion and reflection routines work for screen and sprite data
but the rotation and enlargenient commands work only for sprites and a second target sprite is
required to rotate or enlarge into.
.INVV The screen window defined by COL, ROW, HGT and LEN is inverted'(1’s

complemented), in other words all pixels which were set 'on' become set ‘o ff and
the effect is to exchange the INK and PAPER colours. If the window overlaps the
screen boundaries then it will be ‘clipped’ to lie on screen.

Parameter Use
COL Column of the left hand edge of the window (0-31)
ROW Row of the top edge of the window (0-23)
HGT Height of the screen window (1 -24)
LEN Length of the screen window (1 -32)

If you were to type .ROW=1 :.COL=1 :.HGT=5:.LEN=5:.INVV then the 5 by 5 window would have all
its pixels inverted. Another example of .INVV is demonstrated in Example 21.

5 REM EXAMPLE 21
10 BORDER 0
20 FOR N=1 TO 58: PRINT “ LASER BASIC NEXT N
30 FOR N=1 TO 10
40.HGT=22-(N*2)
50.LEN=32-(N*2)
60.ROW=N
70.COL=N
80.INW
90 PAUSE 10

100 NEXTN
110 GO TO 30

27

Example 21 produces a tunnel effect by changing the position and dimensions of the window.
Command Action
.INVM The same operation as .INW but this time it is carried out on the whole sprite

whose number is held in’SPN.
Parameter Use
SPN Number of the sprite to be inverted (1 -255)

To invert sprite 10 you simply type .SPN=10:.INVM
Command Action
.MIRV The pixel data in the screen window defined by the variables COL, ROW, HGT and

LEN is reflected about a vertical line through its centre. If the window overlaps the
screen boundaries the window will be ‘clipped’.
Parameter Use

Command
.MIRM

Command
.MARV

COL Column of the left hand edge of the window (0-31)
ROW Row of the top edge of the window (0-23)
HGT Height of the screen window (1-24)
LEN Length of the screen window (1-32)
Example 22 demonstrates .MIRV by mirroring the text on one half of the screen.
5 REM EXAMPLE 22

10 LET A$=”THIS IS AN EXAMPLE OF THE USE OF THE COMMAND .MIRV IN
LASER BASIC FOR THE SPECTRUM FROM OASIS SOFTWARE .”
20 LET Y=0: LET X=0
30 FOR S=1 TO LEN A$
40 LET C=CODE A$(S TO S)
50 IF C=32 THEN LET Y=Y+1: LET X=0: GO TO 80
60 PRINT AT Y,X;CHR$ (C);AT Y,X+16;CHR$ (C)
70 LET X=X+1
80 NEXT S
90.ROW=0:.COL=0:.LEN=16:.HGT=22:.MIRV
Line 10 sets up the string of text.
Lines 20 to 80 print out the string with one word per line.
Line 90 mirrors one half of the screen.
Action
The pixel data in the sprite whose number is held in SPN is reflected about a
vertical line through its centre. If the sprite does not exist an error message is
generated.
Parameter Use
SPN The number of the sprite whose pixel data is to be

reflected. (1 -255)
Action
The attribute data in the screen window defined by the variables COL, ROW, HGT
and LEN is reflected about a vertical line through its centre. If the window overlaps
the screen boundaries the window will be 'clipped'.
Parameter Use
COL Column of the left hand edge of the window (0-31)
ROW Row of the top edge of the window (0-23)
HGT Height of the screen window (1 -24)
LEN Length of the screen window (1 -32)

28

Command Action
.MARM The attribute data in the sprite whose number is held in SPN is reflected about a

vertical line through its centre. If the sprite does not exist an error message is
generated.
Parameter Use
SPN

Command Action

The number of the sprite whose attribute data is
to be reflected. (1-255)

.SPNM

Note:

Rotate 90 degrees clockwise sprite SP2 into sprite SP1. This command involves
an operation between two sprites with transposed dimensions. If, for example, a
sprite with dimensions 8 by 3 is to be spun into a second sprite, this second sprite
must have dimensions 3 by 8. If the second sprite does not have the transposed
dimensions of the first then the command will simply not execute. Pixel and
attribute data are both rotated.
Parameter Use
SP1 Number of the sprite to be rotated (1 -255)
SP2 Number of the sprite to be rotated into (1 -255)
Sprite SP1 should be cleared using .CLSM before data is rotated into it.

In EXAMPLE 23 sprite 5 (the dancer) is rotated into the cleared sprite 1 and then placed on the
screen. Sprite 1 (which is now a 90 degree rotation of sprite 5) is now rotated back into the
cleared sprite 5, thus producing a 180 degree rotated sprite 5. This process is continued.
5 REM EXAMPLE 23

10.ATOF:.COL=15:.ROW=10:.SPN=5:.PTBL
20 FOR N=50 TO 1 STEP -1
30.SPN=1:.CLSM:.SP2=1:.SP1=5:.SPNM
40.ROW=10:.COL=15:.HGT=1 :.LEN=-1 :.SP1 =5:.SP2=1
50.MOVE: PAUSE N
60.SPN=5:.CLSM:.SP2=5:.SP1=1 :.SPNM
70.ROW=11 :.COL=14:.HGT=-1 :.LEN=1 :.SP1=1 :.SP2=5
80.MOVE: PAUSE N
90 NEXT N
Line 10
Line 20
Line 30
Line 40
Line 50
Line 60
Line 70
Line 80

places sprite 5 on the screen.
is a FOR-NEXT loop'that controls the delay while the sprite is on the screen.
clears sprite 1 and rotates sprite 5 into it.
sets up parameters for a .MOVE operation.
executes .MOVE with a pause.
clears sprite 5 and rotates sprite 1 into sprite 5.
sets up the parameters for a .MOVE operation.
executes the .MOVE with a pause.

Command Action
.DSPM Enlarge sprite SP2 into sprite SP1. Sprite SP1 must have exactly

double the dimensions of sprite SP2 or the command will not execute.
Pixel and attribute data are enlarged together.
Parameter Use
SP1
SP2

Number of target sprite
Number of sprite to be enlarged

(1-255)
(1-255)

In EXAMPLE 24 sprite 51, which is a one character space invader, is enlarged into sprite 32,
which is two characters high and wide.
5 REM EXAMPLE 24

10.ROW=0:.COL=0:.SPN=51 :.PTBL
20.SP1 =32:.SP2=51 :.DSPM
30.COL=2:.SPN=32:.PTBL

29

Line 10 puts sprite 51 on the screen.
Line 20 enlarges sprite 51 into sprite 32.
Line 30 puts sprite 32 on the screen.

MISCELLANEOUS WORDS
Command Action
.SETV Set the attributes to the permanent INK and PAPER colours in the window defined

by HGT, LEN, COL and ROW.
Parameter Use
COL Column of the left hand edge of the window (0-31)
ROW Row of the top edge of the window (0-23)
HGT Height of the screen window (1 -24)
LEN Length of the screen window (1 -32)

in EXAMPLE 25 a 5 by 5 square is filled with random attributes at random screen positions.
5 REM EXAMPLE 25

10.LEN=5:.HGT=5
20.COL=INT (RND*28)
30.ROW=INT (RND*18)
40 PAPER INT (RND*7)
45 BRIGHT INT (RND*1)
50.SETV
60 GO TO 20
Line 10 sets the LEN and HGT.
Lines 20 and 30 set the ROW and COL positions.
Line 40 sets a random PAPER colour.
Line 50 executes a .SETV
Line 60 loops around.
Command Action
.SETM Set the attributes to the permanent INK and PAPER colours in the sprite whose

number is held in SPN.
Parameter Use
SPN Number of the sprite whose attributes are to be set.

(1-255)
In EXAMPLE 26 sprite 2 is repeatedly put on the screen, and has its PAPER colour changed
using .SETM
5 REM EXAMPLE 26

10.SPN=2: INK0: BRIGHT 1
20 FOR X=0 TO 32 STEP 4
30 FOR Y=0 TO 21 STEP 2
40.COL=X:.ROW=Y
50 PAPER INT (RND*6)+1
60.SETM
70.PTBL
80 NEXT Y
90 NEXT X

30

Line 10 sets the parameters.
Lines 20 and 30 are the loops for putting the sprite on the screen.
Line 50 picks the paper colour.
Line 60 executes .SETM
Line 70 puts the sprite on the screen.
Command Action
■CLSV Clear the screen window defined by variables HGT, LEN, COL and ROW and set

the attributes to the permanent INK and PAPER colours.
Parameter Use

Command
.CLSM

Command
.ADJM

Command
.ADJV

COL Column of left hand edge of the window (0-31)
ROW Row of the top edge of the window (0-23)
HGT Height of the screen window (1 -24)
LEN Length of the screen window (1 -32)
Action
Clear the pixel data of the sprite whose number is held in SPN. Attribute data is
unaffected.
Parameter Use
SPN Number of sprite whose pixel data is to be cleared.

(1 -255)
Action
This command is used to adjust the values in the variables COL, ROW, HGT, LEN,
SCL, SRW, SPN so that a particular sprite can be'partially PUT or GOT’ to or from
the screen using the group 2 PUTs or GETs. The value in the PUT variables COL,
ROW, HGT, LEN, SCL and SRW may all be changed by the execution of this
command. Before execution SCL and SRW must be zero, HGT and LEN are
ignored and the HGT and LEN of the sprite whose number is held in SPN are used.
Parameter Use
SPN Sprite to be PUT or GOT (1 -255)
COL Target column (0-31)
ROW Target row (0-23)
SCL Set to 0 before execution
SRW Set to 0 before execution
Action
Essentially the same idea as ADJM but this time the screen window defined by
HGT, LEN, COL and ROW is adjusted to be 'on-screen'.
Parameter
COL
ROW
HGT
LEN

Use
Target column
Target row
Height of window
Length of window

(0-31)
(0-23)
(1-24)
(1-32)

31

ASSIGNMENTS
There are 12 assignments in all:

.COL= ,ROW= ,HGT= ,LEN= .SP1= .SP2=
,SPN= ,SRW= .SCL= ,NPX= ,SET=

The commands assign the expressions (which can be any legal BASIC expression, but none of
the extended functions) to the graphics variable. See the section on graphics variables.

THE EXTENDED FUNCTIONS IN DETAIL

There are 16 functions in all:
?COL ?ROW ?HGT ?LEN
?SPN ?SP1 ?SP2 ?SET
?SCL ?SRW ?NPX ?KBF
?SCV ?SCM ?TST ?PEK

They are all used in the form:
LET Var = ?FUN

where Var is any normal BASIC variable (including arrays) and ?FUN is any of the above 16
functions.
Note that these functions cannot be used as part of normal BASIC expressions, nor on the left of
the above 12 graphics variable assignments, nor as part of a print statement.
e.g. Function Description

?COL Returns the current value for COL
?ROW Returns the current value for ROW
?HGT Returns the current value for HGT
?LEN Returns the current value for LEN
?SPN Returns the current value for SPN
?SP1 Returns the current value for SP1
?SP2 Returns the current value for SP2
?SCL Returns the current value for SCL
?SRW Returns the current value for SRW
?SET Returns the current value for SET
?NPX Returns the current value for NPX
?KBF This function is provided for the quick detection of multiple key presses.

All it does in fact is test the specified key and return a non-zero result if
the specified key was pressed or a zero if it was not. The variables COL
and ROW are used to specify the row and half column of the particular
key. For a full description of the columns and rows of the Spectrum
keyboard, see page 160 of the Spectrum manual. Below is a summary.

(Spectrum+ keyboard users must note that they should not include the various extra shift keys in
the COL and ROW values.)

Row Keys
1 CAPS SHIFT to V
2 A to G
3 Q to T
4 1 to 5
5 0 to G
6 Pto Y
7 ENTER to H
8 SPACE to B

32

Columns are organised from 1 to 5 and counted from the outside in. This is the order above.
?KBF will return a true value (non zero) whenever a key whose ROW and COL values are stored
in the said variables is pressed. Hence if we wished to write a routine to print 'Hello' every time
the ‘A’ key was pressed we would need to first work out its ROW and COL values, these being 2
and 1 respectively, then use a routine such as:

10.ROW=2:.COL=1: LET K=?KBF: IF K O O THEN PRINT "HELLO”;
20 GO TO 10

The ability of ?KBF to see if a key is pressed or not means that you can in effect scan ail the keys
on the keyboard to discover which keys are being pressed at an instance.
EXAMPLE 27, (although rather long-winded), scans all the top row, (keys 1 to 0) and calculates
the total value of the keys that are being pressed.

5 REM EXAMPLE 27
10 LET T=0
20.ROW=4
30.COL=1: LET K=?KBF: IF K O O THEN LET T=T+1
40.COL=2: LET K=?KBF: IF K O O THEN LET T=T+2
50.COL=3: LET K=?KBF: IF K O O THEN LET T=T+3
60.COL=4: LET K=?KBF: IF K O O THEN LET T=T+4
70.COL=5: LET K=?KBF: IF K O O THEN LET T=T+5
80.ROW=5
90.COL=1: LET K=?KBF: IF K O O THEN LET T=T+0

100.COL=2: LET K=?KBF: IF K O O THEN LET T=T+9
110.COL=3: LET K=?KBF: IF K O O THEN LET T=T+8
120.COL=4: LET K=?KBF: IF K O O THEN LET T=T+7
130.COL=5: LET K=?KBF: IF K O O THEN LET T=T+6
140 PRINT AT 10,10;” “ ;AT 10,10;T
150 GO TO 10
?SCV The character cell of the screen position defined by COL and ROW is scanned for

pixel data. If data is found, a non-zero result is returned, otherwise a zero result is
returned. If COL or ROW are off-screen a random result is returned.

This is probably one of the most useful functions as it can be used for sprite crash detection. The
character square ahead of a moving sprite can be checked to see if it contains data, and if there
is then a crash can be reported.

33

In EXAMPLE 28 you are asked to input the values for ROW and COL and the character square at
this position is scanned for data.
5 REM EXAMPLE 28

10 INPUT ;"COL= “ ;C: IF CKO OR 0 3 1 THEN GO TO 10
20 INPUT ;” ROW= “ ;R: IF R<0 OR R>24 THEN GO TO 20
30.ROW=R:.COL=C
40 LET T=?SCV
50 IF T=0 THEN PRINT “ NO DATA THERE GO TO 10
60 PRINT “THERE IS DATA THERE”: GO TO 10
Lines 10 and 20 take the values of ROW and COL and check they lie on the screen.
Line 30 sets ROW and COL.
Line 40 scans the character square.
Lines 50 and 60 report the result.
Example 29 uses ?SCV to check for objects in the path of a line of sprites, these objects, the
letter ‘A’, are then avoided by scanning for possible clear paths.

5 REM EXAMPLE 29
10.SPN=51
20 FOR N=1 TO 100
30 LET X=INT (RND*32)
40 LET Y=INT (RND*22)
50 PRINT AT Y,X;”A”
60 NEXT N
70 LET R=10: LET C=0
80 LET C=C+1: GO SUB 160: IF G=1 THEN GO TO 80
90 LET C=C-1

100 LET R=R+1: GO SUB 160: IF G=1 THEN GO TO 80
110 LET R=R-1
120 LET R=R-1: GO SUB 160: IF G=1 THEN GO TO 80
130 LET R=R+1
140 LET C=C-1: GO SUB 160: IF G=1 THEN GO TO 80
150 PRINT AT 0,0;"TRAPPED": STOP
160 LET G=0:.ROW=R:.COL=C: LET S=?SCV
170 IF C=32 THEN PRINT AT 0,0;"SUCCESS”: STOP
180 IF S=0 THEN LET G=1:.PTBL
190 RETURN
Lines 20 to 60 fill the screen with randomly positioned “A” ’s .
Lines 80 to >40 calculate the movement of the sprite.
Lines 160 to 190 are the scanning routines that also report if the sprite has reached the other
side.

?SCM

?TST

NOTE:

The sprite whose number is held in SPN is scanned for pixel data. If data is found, a
non-zero result is returned, otherwise a zero result is returned. If SPN does not
exist an error is generated.
The sprite whose number is held in SPN is searched for. If it is not found, an error Q
is generated, otherwise the address of the sprite in memory is returned and HGT
and LEN are set to contain the dimensions of the sprite.
Sprites are stored in memory in the following format:
First byte
Second byte
Third byte
Fourth byte
Fifth byte
8xHGTxLEN bytes
HGTxLEN bytes '

sprite number
least significant byte of the address of the next sprite
most significant byte of the address of the next sprite
sprite length
sprite height
pixel data
attribute data

This means that each sprite actually occupies 9*HGTxLEN+5 bytes.

34

In EXAMPLE 30 sprites 1 to 50 are interrogated using ?TST and their addresses in memory and
dimensions are printed.
5 REM EXAMPLE 30

10 FOR N=1 TO 50
20.SPN=N
30 LET AD=?TST
40 LET H=?HGT
50 LET L=?LEN
60 PRINT AD;" SPRITE “ ;N;" ";H;” HGT “ ;L;" LEN”
70 NEXT N

Line 10 is the loop for the sprites.
Line 30 lets AD = the address in memory.
Lines 40 and 50 read the HGT and LEN values set by ?TST.
Line 60 prints the data on the screen.

?PEK<exp> This is a 16 bit version of PEEK and unlike the other functions is followed by an
expression which represents the address from which the function should read.

LET X = ?PEK(62464) is equivalent to LET X=PEEK (62464)+256*PEEK (62465)
LET X = ?PEK(X+3*Y) is equivalent to LET X=PEEK (2+3*Y)+256*PEEK (2+3*Y+1)

ADDITIONAL COMMANDS
.POKE X,Y

This is a 16 bit version of the normal BASIC POKE. It places the least significant byte of Y into X
and the most significant byte of Y into X+1. Y must be in the range 0 to 65535 and X must be in the
range 0 to 65534.

POKE X,Y is equivalent to POKE X,INT (Y/256): POKE X+1, Y-256*(INT (Y/256))

PROCEDURES
One of the most powerful features of structured programming languages such as PASCAL and
some advanced BASICS, e.g. BBC BASIC, is the facility to utilise procedures. So what is a
procedure?

Quite often a particular piece of code or sequence of instructions is executed at a number of
different places within a program. For this reason most languages have some facility for
subroutines. The Z80 has a CALL instruction, BASIC has GOSUB, and other languages usually
have an equivalent. As often as not the user needs to pass particular values to a subroutine and
he also needs to know that the subroutine will not corrupt variables used in other parts of the
program. This involves local variables and is a feature not supported by the standard Sinclair
BASIC.
Local and Global Variables

When a procedure is defined, the definition contains a list of parameters which can be string or
numeric but not array variables, e.g.

10 DEF FN A#(X,Y,Z,A$,B$)
(Remembering DEF FN is the keyword SYMBOL SHIFT KEY 1).
The variables X, Y, Z, A$ and B$ are now local variables (as far as the parameter is concerned).
This means that values they are assigned within the procedure will have no effect on any other
variables called X, Y, Z, A$ and B$ that have been used in other parts of the program. This is a
very powerful feature as will be seen.
Any other variables encountered in the procedure, however, will have the global value. This
means that they will have the value that they would have had anywhere else in the program and if
they are assigned values within the procedure, will return with this new value.

35

invoking Procedures
To execute the procedure above you could use:

.PROCFN A#(3,2,K,"HELLO” ,B$)
(where FN is the keyword SYMBOL SHIFT 2).
This would make the local variables in the definition take on the values of the parameters in the
above invocation, i.e.

X=3, Y=2, Z=K, A$=” HELLO” and B$=B$
A procedure must always end with the word .RETN which is similar to the keyword RETURN in
subroutines. The procedure will execute up until the first .RETN and then control returns to the
next instruction after the invocation. It is worth noting that procedure execution, like user
defined function execution, is speeded up if the definition is put closer to the beginning of the
program.
If BASIC comes across a procedure definition it will not execute any of the definition and control
will jump to the next command after the corresponding .RETN.
Up to 52 procedures (single letter names or single letters followed by $) can be defined and to
distinguish procedures from user defined functions the letter of the procedure name is followed
by a #.

e.g DEF FN A#()
DEF FN C$#()
DEF FN C#() etc.

36

A procedure definition can contain a procedure invocation, but it is important to remember that if
this is done then the values for the local variables in the latest invocation become the values for
both invocations.
This section will be new to most users, and probably rather confusing. So here are a few
examples.
If, for example, you wished to write a procedure to print “ HELLO” on the screen it would look like
EXAMPLE 31. (Note the two empty two brackets, this is because no parameters are going to be
passed to the procedure).

5 REM EXAMPLE 31
10 DEF FN AS#(>
20 PRINT "HELLO"
30.RETN
To call the procedure you would need to execute .PROCFN A$#().(Remember the FN part of
.PROCFN is the Sinclair keyword FN under the 2 key).
Now if we wished to specify the X and Y position on the screen where the “ HELLO” is printed,
you will have to set up these two parameters in the Brackets, see EXAMPLE 32.

5 REM EXAMPLE 32
10 DEF FN AS#(X,Y>
20 PRINT AT X,Y;"HELLO"
30.RETN

To print “ HELLO” at the X position 1 and the Y position 10, you would type;
.PROCFN A$#(1,10).

If instead of printing “ HELLO”, we wished to write a procedure that prints any string. The string
parameter will have to be included in the brackets, see EXAMPLE 33.

5 REM EXAMPLE 33
10 DEF FN AS#(X,Y,AS)
20 PRINT AT X,Y;AS
30.RETN

To print ‘GOODBYE’ at the X position 5 and Y position 8 you would type;
.PROCFN A$#(5,8,“GOODBYE”)
Finally run example 34 to see how local variables are independant of variables with the same
name in the main program.

5 REM EXAMPLE 34
10 DEF FN AS#(X,Y,AS)
20 PRINT AT X,Y;AS
30.RETN
40 LET AS="GOODBYE": LET X=l:
LET Y=2
50 PRINT Y,X;AS
60.PROCFN ASt3,4,"HELLO”)
70 PRINT Y,X,AS

WARNING
The inclusion of PROCEDURES in Laser BASIC, interferes with the Spectrum's own stack
security and therefore it is important to execute RETURNS from GOSUBs and .RETN's from
PROCEDURES in the correct order. Failure to do so may cause the system to crash.

NESTING PROCEDURES

37

PROGRAMMING TECHNIQUES

The following section is designed to give Laser BASIC newcomers a few hints on programming
techniques.

MOVING SOFTWARE SPRITES

The chief problem facing the programmer who wants to move software sprites around the
screen, is choosing from the numerous schemes available. We will now consider some of these
methods, each with its own merits for speed, simplicity, smoothness and memory.
We will begin with the easiest to implement and then work up to some of the more elaborate
techniques.

SCREEN SCROLLING UNDER KEYBOARD CONTROL

This could be used where a sprite on the screen, is moved within a window on the screen, that
does not contain any other sprites or data.
Type in the following example, which scrolls a window on the screen by 1 pixel under keyboard
control using the ?KBF function.
5 REM EXAMPLE PT1

10 INK 6: PAPER 0: BRIGHT 1: BORDER 0: CLS
20.COL=14:.ROW=10:.SPN=2:.PTBL
30.SET=5:.COL=5:.ROW=4
40.SET=6:.COL=3:.ROW=5
50.SET=7:.ROW=10:.COL=0:.LEN=32:.HGT=2
60.SET=5: LET KB=?KBF: IF KB<>0 THEN ,SET=7:.WL1V
70.SET=6: LET KB=?KBF: IF KB<>0 THEN ,SET=7:.WR1V
80 GO TO 60
Line 10 sets the screen attributes.
Line 20 puts the sprite on the screen.
Line 30 SET 5 points to the ROW and COL position of the 5 key to move left.
Line 40 SET 6 points to the ROW and COL position of the 8 key to move right.
Line 50 sets up the parameters of the window around the screen.
Line 60 if the 5 key is pressed then the window is scrolled left.
Line 70 if the 8 key is pressed then the window is scrolled right.

,SET=5 = the 5 key (move left)
.SET=6 = the 8 key (move right)

SIMPLE PUTTING

Another fairly simple means of moving sprites around the screen is to simply PUT sprites with a
blank border around them and simply change the ROW and or COL values.
The sprite required for this type of movement should have a one character border of space
around it.
The sprite we will use is sprite 30 which is 3 by 3 characters.
Firstly clear the pixel data in the sprite by typing:

.SPN=30:.CLSM

38

Now put sprite 51 into the centre of sprite 30. Since sprite 51 is only 1 character high and wide
there will be a one character empty space all around it to rub itself out as it is moved.
So type:

.SP1 =51 :.SP2=30:.SCL=1 :.SRW=1 :.GMBL
We can now write a routine to move the sprite around the screen under keyboard control using
the cursor keys being scanned by ?KBF. The sprite is simply put at a ROW and COL position, the
old data being simply removed by the blank part of the sprite.
Type in the following program:

5 REM EXAMPLE PT2
10.ATOF: INK 5: BRIGHT 1: PAPER 0: BORDER 0: CLS
20.SET=1 :.ROW=4:.CQL=5
30.SET=2:.ROW=5:.COL=5
40.SET=3:.ROW=5:.COL=4
50.SET=4:.ROW=5:.COL=3
60.SET=7:.ROW=10:.COL=13:.SPN=30
70 LET X=13: LET V=10
80.SET=1: LET KB=?KBF: IF KB<>0 THEN LET X=X-1
90.SET=2: LET KB=?KBF: IF KB<>0 THEN LET Y=Y+1

100.SET=3: LET KB=?KBF: IF KB<>0 THEN LET Y=Y-1
110.SET=4: LET KB=?KBF: IF KB<>0 THEN LET X=X+1
120 IF X>30 THEN LET X=30
130 IF X<-1 THEN LETX=-1
140 IF Y>22 THEN LET Y=22
150 IF Y<-1 THEN LET Y=-1
160.SET=7:.COL=X:.ROW=Y:.PTBL
170 GO TO 80
Line 10 sets the attributes of the screen.
Lines 20 to 50 set the ROW and COL values for the keys 5, 6, 7 and 8 (cursor keys).
Line 60 sets the parameters for sprite 30.
Line 70 sets X and Y to the COL and ROW positions of sprite 30.
Lines 80 to 110 scan the keyboard and adjust the values of X and Y depending on

which key has been pressed.
Lines 120 to 150 check that X and Y do not put the sprite off the screen.
Line 160 puts sprite 30 on the screen (the empty border around it removes any data on

the screen).
.SET=1 = key 5 left
.SET=2 = key 6 down
,SET=3 = key 7 up
.SET=4 = key 8 right
X=COL position of sprite
Y=ROW position of sprite

The great limitation of this routine is, however, that data such as other sprites, already on the
screen, will be removed as the sprite is PUT over it.
We will now look at logical operations available to the Laser BASIC user.

39

LOGICAL OPERATIONS

There are three types of logical operation that are used in Laser BASIC; these are OR, XOR and
AND. To get the best out of this package it is important to fully understand these operations.
If a GET or PUT postfixed with “ BL" is executed, then data is block moved from the source which
may be part of the screen, a sprite, or a sprite window, in such a way that whatever was
previously held at the destination, which may also be part of the screen, a sprite, or a sprite
window, is obliterated and replaced by whatever was at the source. This may not always be the
desired effect and quite often the user will want to merge characters or remove parts of the
characters and so on. Hence the need for the 3 logic functions which are commands postfixed
with “ OR” , "XR” and “ ND", below isa truth table that explains what the result of these operations
are on the individual pixels.
If two sprites are “ OR”ed together, the resulting sprite will have pixels set where pixels were set
in either or both of the sprites being “ OR”ed.
If two sprites are “ AND”ed together, the resulting sprite will have pixels set where pixels were
set in both of the sprites being “AND”ed.
If two sprites are "XOR”ed together, the resulting sprite will have pixels set where pixels were
set in either, but reset where pixels were set or reset in both.
These results are summarised as follows and should make things a little clearer:
SOURCE DESTINATION OPERATION RESULT
PIXEL PIXEL OR PIXEL
PIXEL NO PIXEL OR PIXEL
NO PIXEL PIXEL OR PIXEL
NO PIXEL NO PIXEL OR NO PIXEL
PIXEL PIXEL AND PIXEL
PIXEL NO PIXEL AND NO PIXEL
NO PIXEL PIXEL AND NO PIXEL
NO PIXEL NO PIXEL AND NO PIXEL
PIXEL PIXEL XOR NO PIXEL
PIXEL NO PIXEL XOR PIXEL
NO PIXEL PIXEL XOR PIXEL
NO PIXEL NO PIXEL XOR NO PIXEL

USE OF OR
One way of moving a sprite around the screen without destroying any data is to BLOCK PUT the
moving sprite and then “ OR” the rest of the screen data after each move.
Example PT3 operates in exactly the same way as example PT2 except that every time sprite 30
is placed on the screen the subroutine at line 300 is called, which “OR"s the data (4 sprites) on
the screen using .PTOR .

5 REM EXAMPLE PT3
10.ATOF: INK 4: BRIGHT 1; PAPER 0: BORDER 0: CLS
20.SET=1 :.ROW=4:.COL=5
30.SET=2:.ROW=5:.COL=5
40.SET=3:.ROW=5:.COL=1
50.SET=4:.ROW=5:.COL=3
60.SET=7:.ROW=10:.COL=13:.SPN=30: GO SUB 300
70 LET X=13: LET Y=10
80.SET=1: LET KB=?KBF: IF KBO O THEN LET X=X-1
90.SET=2: LET KB=?KBF: IF KBO O THEN LET Y=Y+1

100.SET=3: LET KB=?KBF: IF K BO O THEN LET Y=Y-1
110.SET=4: LET KB=?KBF: IF K BO O THEN LET X=X+1
120 IF X>30 THEN LET X=30
130 IF X<-1 THEN LET X=-1
140 IF Y>22 THEN LET Y=22
150 IF Y<-1 THEN LET Y=-1

40

160.SET=7:.COL=X:.ROW=Y:.SPN=30:.PTBL: GO SUB 300
170 GO TO 80
300.COL=5:.ROW=10:.SPN=5:.PTOR
301 ,COL=15:.ROW=7:.SPN=15:.PTOR
302.COL=24:.ROW=13:.SPN=23:.PTOR
304.COL=17:.ROW=19:.SPN=32:.PTOR
305 RETURN
The above method is quite acceptable when the position and quantity of data is known.
If, however, the data on the screen is variable a different approach will be required, and XOR
should be used.
USE OF "XOR"
In example PT4 the sprite is XORed on the screen, when a key is pressed to move it, the sprite is
XORed out and XORed back to the screen in a new position. This means that a sprite can move
freely around a screen of variable data without rubbing any of it out.

5 REM EXAMPLE PT4
10 INK 0: PAPER 5: BORDER 5: CLS:.ATOF
20.SET=1:.ROW=4:.COL=5
30.SET=2:.ROW=5:.COL=5
40.SET=3:.ROW=5:.COL=4
50.SET=4:.ROW=5:.COL=3
60 FOR N=1 TO 100
70 LET X=INT (RND*32)
80 LET Y=INT (RND*22)
90 PRINT AT Y,X;”* ”

100 NEXTN
110.SET=7:.COL=13:.ROW=10:.SPN=47:.PTXR
120 LET X=13: LET Y=10
130.SET=1: LET KB=?KBF: IF KB<>0 THEN LET X=X-1
140.SET=2: LET KB=?KBF: IF KB<>0 THEN LET Y=Y+1
150.SET=3: LET KB=?KBF: IF KB<>0 THEN LET Y=Y-1
160.SET=4: LET KB=?KBF: IF KB<>0 THEN LET X=X+1
170.SET=7: LET S=?COL: LET T=?ROW: IF S=X AND T=Y THEN GO TO 130
180 IF X>29 THEN LET X=29
190 IF X<0 THEN LET X=0
200 IF Y>19 THEN LET Y=19
210 IF Y<0 THEN LET Y=0
220.PTXR:.COL=X:.ROW=Y:.PTXR
230 GO TO 130
Line 10 sets up the attributes.
Lines 20 to 50 set the COL and ROW values for the keyboard.
Lines 60 to 100 print * ’s at random positions on the screen.
Line 110 sets up the parameters fora sprite (the lunar lander) and put it on the screen.
Lines 130 to 160 scan the keyboard for keys to be pressed and change the values of X

and Y if a key has been pressed.
Line 170 checks to see if the sprite needs to be moved, by comparing its present

position with X and Y, and if they are the same, goes back to scan the
keyboard again.

Lines 180 to 210 check that the sprite is always on the screen.
Line 220 XORs out the sprite, adjusts ROW and COL and XORs the sprite back on the screen.

41

.MOVE

.MOVE achieves what line 220 of example PT4 does. Once the values of ROW and COL have
been set up, and the increments set in HGT and LEN, every execution of .MOVE will increment
ROW and COL. So to move a sprite in a particular direction, XORing over data, you would just
have to execute a series of .MOVE commands. Example PT5 demonstrates the use of .MOVE to
bounce a ball around the screen, over data.

5 REM EXAMPLE PT5
10 INK 0: PAPER 6: BRIGHT 1: BORDER 7: CLS :.ATOF
20 FOR N=1 TO 100
30 LET X=INT (RND*32): LET Y=INT (RND*22)
40 PRINT AT Y,X;”* ”
50 NEXT N
60 LET DR=1:.HGT=DR: LET DC=1:.LEN=DC
70.SP1 =50:.SP2=50: LET R=10:.ROW=R: LET C=13:.COL=C:.SPN=50:.PTXR
80.MOVE
90 LET C=?COL: LET R=?ROW

100 IF C=29 OR C=0 THEN LET DC=DC*-1:.LEN=DC: BEEP 0.01,5
110 IF R=19 OR R=0 THEN LET DR=DR*-1:.HGT=DR: BEEP 0.01,5
120 GO TO 80
Line 10 sets the attributes.
Lines 20 to 50 fill the screen with stars.
Line 60 sets up the initial incrementation values.
Line 70 sets up the parameters for .MOVE .
Line 80 executes .MOVE .
Line 90 reads the new values of ROW and COL.
Lines 100 and 110 check to see if the ball has hit the side and changes its direction accordingly.
You may have noticed in other examples that ROW and COL can have values that lie outside the
dimensions of the screen, e.g. values < 0 and >31 for COL and values <0 and >23 for HGT. If
.MOVE or group 1 GETs and PUTs are used a sprite can be placed partially “off screen” .
Two sprite numbers (stored in SP1 and SP2) are required for .MOVE , if the values in SP1 and
SP2 are different, a two sprite animation sequence can be achieved.

HIRESOLUTION PUTTING
Laser BASIC does not include commands to directly PUT a sprite onto the screen with pixel
resolution. For those who wish to move a sprite about the screen with a finer resolution, the
following methods can be used.
If you wished to move a sprite from left to right by 2 pixels without scrolling the screen, you would
first have to use the Sprite Generator Program to create 4 sprites, each one succesively shifted
to the right by 2 pixels, such that if the 4 sprites are sequentially placed, the data in the sprite will
have moved 8 pixels with a 2 pixel resolution. If these sprites were numbered 1 to 4, the routine to
move them could be:

10 FOR C=0 TO 31
20.COL=C:.SPN=1:.PTBL:.SPN=2:.PTBL
30.SPN=3:.PTBL:.SPN=4:.PTBL
40 NEXT C

Each time all 4 sprites have been placed, COL is incremented and the sequence repeated,
(remember, in the above example the sprite must have a trailing blank column to remove the data
as it goes along).
In the demo program a yellow bouncing character is shown, hopping across the screen. The
animation is obtained by the above method using 4 sprites.

42

COLLISION DETECTION

Two words are provided to enable collision detection, these are ?SCV and ?SCM .
?SCV is used to scan a particular character position of the screen. If any data is present in the
character position specified by COL and ROW, then a non-zero value will be returned (a 0 value
is returned if there is no data there).
?SCV is demonstrated in example PT6, which places a random number of stars on the screen,
which is then scanned (an X is placed on the screen after the character has been scanned so
that you can keep track) and the total number calculated.

5 REM EXAMPLE PT6
10 LET E=INT (RND*50)
20 FOR N=0 TO E
30 LET X=INT (RND*32)
40 LET Y=INT (RND*22)
50 PRINT AT Y,X;"*"
60 NEXT N
70 LET C=0
80 FOR Y=0 TO 21
90.ROW=Y

100 FOR X=0 TO 31
110.COL=X
120 LET S=?SCV
130 IF S<>0 THEN LET C=C+1: PRINT AT Y,X;" BEEP 0.01,40: GO TO 160
140 PRINT AT Y,X;”X": BEEP 0.01,10
150 NEXT X
160 NEXTY
170 PRINT AT 0,0;”THERE WHERE “ ;C;” STARS.”
Lines 10 to 60 put a random number of stars on the screen as data.
Lines 80 to 110 calculate the COL and ROW positions of the characters on the screen

using FOR-NEXT loops and set COL and ROW.
Line 120 scans the character square pointed to by ROW and COL and sets S with the

result.
Line 130 if any data is there, (the *), the count (C) is incremented by 1 and the star

rubbed out.
Line 140 now prints an X where the character was scanned.
Line 170 prints the number of squares that contained data.
Often it is insufficient to determine whether a particular character square contains data or not.
and for this reason the slower, but more powerful command ?SCM, has been included for the
advanced user. This will scan the sprite whose number is held in SPN and return a non-zero
result if the sprite contains pixel data, or a zero result if it does not. ?SCM is normally used to
perform one of three functions:

1. To see if data will collide.
2. To detect an exact pattern.
3. To detect the presence of a pattern.

Collision detection is most commonly used to detect a collision between a sprite moving across
the screen and any data which lies in its path. Often the sprite can pass through an occupied
character position without a collision occurring, so the ?SCN command is insufficient. The
procedure is basically to load a dummy sprite with the section of screen into which the sprite is
about to be PUT, “AND" it with the sprite about to be PUT and then use ?SCM. If a non-zero value
is given then the dummy sprite contains data and therefore a collision has occurred. This is all
very well, but a problem occurs if the new sprite position overlaps the old sprite position,
because this means that the old sprite has to be removed from the screen before beginning the
above detection procedure and subsequently PUTting the new sprite. This delay causes flicker.
The easiest solution is to work with "XOR” s so that the window can be GOT, "XOR”ed with the
old sprite in memory to remove the old sprite data, and then to do the detection followed finally
by the blotting and then immediate PUTting.

43

Once an impending collision is detected it is frequently useful to determine what the sprite has
collided with. To begin with, let’s assume that the screen window we’re examining contains one
of a known set of objects and that no other data is present in the window. The method is to load
the dummy sprite with the object to be tested and then compare it against the set of sprites with
which a match is being sought. To compare the dummy sprite with a known sprite, all you need
to do is XOR the sprite being tested into the dummy and do a ?SCM. If the result is zero, an exact
match was found, if not, do a second XOR into the dummy to restore it and test the next
candidate.
Finally, consider the case where the object being tested contains extraneous data in addition to
one of the possible sprites. This time, the dummy sprite is loaded with the contents of the screen
window, but the candidates are first “ AND"ed into the dummy to remove extraneous data before
the XOR and ?SCM. Finally the dummy needs to be reloaded from the screen before the next
test. This latter test is limited by the fact that its conclusion is only that the screen contained all
the parts of the sprite with which a comparison was made. In the extreme case of the screen
window containing all pixels set, then an agreement would be found with all the sprites tested.

SCROLLING LANDSCAPES
Scrolling landscapes are an integral part of so many video games that it is worth a brief
description of how they can best be produced using Laser BASIC.
The first and most obvious point is never to scroll more than you have to. If, for instance, you are
moving a mountain range where the variation takes place over the top three characters, then
only the top three characters need to be stored and moved.
The simplest and most effective method of producing smooth scrolls is to sacrifice a column of
the screen for transactions with the sprite being scrolled. Suppose you are scrolling a sprite of 4
or 5 screens width which uses rows 8 to 10 (3 rows). Suppose we require pixel scrolling and
there is no horizontal variation in attributes. It doesn't really matter which column we sacrifice,
far right (column 31) or far left (column 0), but let’s, for this example, use column 0. All that we
need to do is set up a window 1 character wide and 3 characters high on the far left of the
landscape to have the same INK and PAPER colours. This means that pixel data cannot be seen
in this region. Use the .SETV command to do this. To begin with, 31 columns of the sprite are
PUT to the active part of the screen using the .PWBL command. If scrolling is to the left, then the
dummy column should be loaded with the next column to the right of the sprite now 'on screen'.
If scrolling is to the right then the column to the left of the sprite window should be inserted. The
full 32 column screen window is now wrapped in the appropriate direction until a total of + or - 8
pixels has been accrued. The dummy column is then loaded from the appropriate sprite column
and so on.

REDEFINING CHARACTER SETS AND UDGs

The 21 UDGs available on the Spectrum should not be used as they would corrupt the program.
However, as many users know, there is a Sinclair system variable known as CHARS which
points to the address in memory 256 bytes less than where the data for the character set is in
ROM, starting with character 32 up to character 128. Users can poke new values into CHARS
and make it point to new data that will be treated as the character set. The obvious place for
Laser BASIC users to store character sets is in sprites.
In EXAMPLE PT7 the data for a little man is poked into sprite 1 and then the system variable
CHARS is changed to point to that data and so that every time the space (character 32) is printed,
the little man is printed instead.

5 REM EXAMPLE PT7
10.SPN=1
20 LET A=?TST
30 LET A=A+5
40 FOR N=0 TO 7
50 READ D
60 POKE A+N,D
70 NEXT N

44

80.POKE23606,(A-256)
90 STOP

100 DATA 24,24,0,255,60,60,36,102
110.POKE23605,15360
Line 10 se tsS P N to l.
Line 20 finds out the address in memory of sprite 1 using ?TST .
Line 30 REMEMBER THE FIRST 5 BYTES OF SPRITE DATA ARE THE SPRITE

NUMBER AND POINTERS, DATA SHOULD BE LOCATED 5 BYTES PAST
THE VALUE FOUND BY ?TST. HENCE A=A+5.

Lines 40 to 70 poke the 8 bytes of data from line 100 into the sprite starting 5 bytes after
the value of ?TST.

Line 80 pokes CHARS (address 23606) with the address of the data minus 256.
Line 100 is the data for the little man.
Line 110 since all the other characters in the character set have not been redefined

they will appear as rubbish. Use POKE 23606,15360 to restore the character
set by re-setting the original value of CHARS. (Type GOTO 110).

Using data statements is a slow way of creating character sets in sprites. It is far better to create
the character sets in the Sprite Generator Program. If you create a sprite, you must note that data
in sprites is stored serially such that the first data is the top line of pixels in the sprite, the next is
the second line of pixels etc.
A sprite used for a character set will need to be 1 character wide and the required number of
characters high.

THE VARIABLE SETS
Making full use of the 16 variable sets will considerably speed up program execution. If, for
instance, you wished to scroll 4 windows on the screen, you could set up the parameters ROW,
COL, HGT and LEN of each window in a different variable set.
e.g. .SET=1 :.HGT=5:.LEN=5:.ROW=0:.COL=0

.SET=2:.HGT=4:.LEN=6:.ROW=0:.COL=5

.SET=3:.HGT=6:.LEN=4:.ROW=0:.COL=12
SET=4:.HGT=7:.LEN=3:.ROW=0:.COL=18

To execute the scrolls all you would need to type would be:
.SET=1:.WR1V:.SET=2:.WL2V:.SET=3:.WL8V:.SET=4:.WR1V

Not only is memory saved by not needing to redefine ROW, COL, HGT and LEN every time you
wish to scroll a window, but also, execution time is speeded up enormously since less
evaluation is done.

LOADING AND SAVING LASER BASIC PROGRAMS
When a Laser BASIC program is running, the extended commands are semi-compiled into what
is referred to as a ‘tokenised’ form. This means that care needs to be exercised when loading
and saving from within tokenised programs and a few simple rules need to be observed.
Programs can be loaded and saved in command mode (typed in directly) or from within
programs, so let’s deal with the former case first.

LOADing and SAVEing in Command Mode
To save a ‘non-auto-run’ Laser BASIC program directly use:

SAVE "filename” for tape
SAVE * ” m” ;N;”filename” for microdrive

NOTE: If you wish, you can put a number of saves and loads into one direct statement,
such as:
SAVE "filename”: LOAD” filename"CODE for tape
SAVE *"m";N;“filename” :LOAD * “ m";N;“ filename”CODE for microdrive

45

If you wish to execute further standard BASIC commands in the same direct statement line, or if
you do not have interface 1, then you should proceed as normal. If, however, you wish to execute
further commands in the same statement, and you are using microdrives as opposed to tape,
then you will need to execute a RANDOMISE USR 58841 between loads and saves, and the
extended commands, e.g.
SAVE * ” m";N;"filename": LOAD * ” m” ;N;”filename',CODE: RANDOMISE USR
58841 :.REMK:.RNUM
In point of fact, most people would simply split the statement line into statements, in which case
there is no need for the USR call, i.e.

SAVE *"m ” ;N;"filename":LOAD * ” m” ;N;”filename”CODE
followed by

,REMK:.RNUM
would be perfectly legal.

SAVEIng an ‘Auto-Run’ Program in Command Mode
With the above rules in mind, the auto-run facility is used in the normal way, i.e.

SAVE "filename” LINE N for tape
SAVE * ” m” ;N;”filename” LINE N for microdrive

The program being saved however, must execute one of the following statements before
encountering any of the extended commands.

RUN, GOTO or GOSUB for tape
RANDOMISE USR 58841 followed by for microdrive
RUN, GOTO or GOSUB

For example, if using tape:
10 PRINT “ LOADED”: GO TO 20
20.COL=4:.ROW=4:.LEN=1:.HGT==5:.INVV
30 STOP

would be saved using
SAVE “TEST” LINE 10

and using microdrive:
10 PRINT “ LOADED”: RANDOMISE USR 58841: GO TO 20
20 ,COL=4:.ROW=4:.LEN=1 :.HGT=5:.INVV
30 STOP
SAVE * ” M” ;1;”TEST” LINE 10

NOTE: Programs saved in direct mode are not tokenised when they are loaded back in.
The GOTO, GOSUB and RUN commands check to see if a program is tokenised,
and if not, will tokenise it. Hence the procedure. Programs saved in direct mode
using this format
can only be loaded back, in direct mode.

46

SAVEing a ‘Non-Auto-Run’ Program from within a Program
The program will be saved in a tokenised form and can therefore only be loaded back from
within a program. The loaded program will be de-tokenised on return to command mode.

SAVEing an 'Auto-Run' Program from within a Program
The program will be saved in a tokenised form and can therefore only be loaded back from
within a program. If the program is loaded from tape, it will simply execute; if it is loaded from
microdrive then the loaded program will need to execute a RANDOMISE USR 58841 before
continuing with the rest of the program.
To summarise, then, programs saved in direct mode are loaded back in direct mode. Programs
saved from within a program are re-loaded from within a program. Before using any of the above
schemes, Laser BASIC must be resident and running.

47

THE SPRITE GENERATOR PROGRAM
by Paul Newnham

INTRODUCTION

The Sprite Generator Program is used for the creation and editing of software sprites that are
going to be used in your Laser Extended BASIC programs. In fact sprites are created on the
screen, then GOT into memory before being saved to tape.
The program is supplied in tape format, but it can be simply modified for use on microdrives.

LOADING

Clear the Spectrum by typing RANDOMISE USR 0. Insert the tape and type LOAD"SPTGEN" or
LOAD"".
If you wish to save the sprite generator program, break into it using the break key in the normal
fashion then type GOTO 9999 and the two parts of the program will be saved to tape and then
Verified.
You will have to reload the program before you can run it.
To save the sprite generator program to microdrive, first edit line 2:
change LOAD’" ’CODE:
to LOAD * ” M” ;1;” G” CODE:
Using a formatted cartridge in drive 1 type GOTO 9998. This will save and verify the program to a
microdrive cartridge.
You can load in the sprite generator program by typing:

PRINT USR 0
LOAD * ” M";1;"S"

GETTING STARTED

First load in the Sprite Generator Program. You will be prompted with COLD or WARM start. This
is the first time you are running the program, so type C for COLD start, and Y for yes. The working
screen will now be displayed.

GLOSSARY OF TERMS

COLD START

If you enter the sprite generator program via a COLD start, then all sprites previously stored will
be cleared and all system variables reset. The program must always be initially entered via a
COLD start.

WARM START

If you enter the program via a WARM start then all sprites will be conserved and all system
variables left unchanged. It is provided principally for re-entering the program after an
accidental BREAK or ERROR. If you do accidentally BREAK; type: GOTO 3 and then enter via the
WARM start. You will lose, however, any data on the screen. You could type GOTO 100 which
will put you back at command level.

48

THE CHR$ SQR
CHR$ SQR is the abbreviation used throughout this text for the character square, and refers to
the 8 by 8 grid to the left of the sprite screen. This is the area used to create and edit sprites one
character at a time.

THE SPRITE SCREEN

This is the area of screen 15 characters by 15 characters on which sprites are created,
developed, transformed and generally worked on.

THE CHR$ SQRCURSOR

This is the non-destructive flashing cursor which is used to design and edit the character
currently held in the CHR$ SQR.

THE SPRITE SCREEN CURSORS

These are the two flashing cursors, displayed in the row beneath the sprite screen and the
column to the right of the sprite screen. They are used to indicate the position of the top left hand
corner of the screen window currently being operated upon. The actual cursor positions are
measured from the top left hand corner of the sprite screen and are displayed in real time on the
screen as X POS (column) and Y POS (row). Top left is X POS1 Y POS1. Bottom right is X POS F
Y POS F.

SPRITE SCREEN WINDOW

The area of the screen currently being worked on is referred to as the screen window. Its
position is defined by X POS and Y POS, which correspond to the positions of the sprite screen
cursors, and its dimensions are defined by SPRITE HEIGHT and SPRITE LENGTH. To see the
screen window you are currently working on just press F. The window will flash.

SPRITES

Once you have finished creating your sprites they can be saved off to tape or microdrive ready to
be loaded into Laser Extended BASIC for use in your programs. When saving your finished
sprites you are given two saving options:
OPTION 1: This is the editing save, which saves off your sprites in a form such that

they can be loaded back into the Sprite Generator Program for re-editing
etc. Sprites saved via OPTION 1 cannot be used in Laser BASIC
programs.

OPTION 2: This saves off the sprites ready to use in Laser BASIC. You should note
down the loading values and SPST and SPND values that are presented
to you. Sprites saved in this option cannot be loaded back into the Sprite
Generator Program.

For those who do not possess an artistic ability, two sets of sprites have been saved on tape for
you in OPTION 1 format ready to be loaded into the Sprite Generator.
SPRITE1A This is a file of 50 sprites of various arcade characters.
SPRITE2A This is a file of all the sprites used in the Laser BASIC demo.
The Sprite Development Program allows sprites to be loaded and saved to and from microdrive
cartridge. Before a cartridge can be used to store sprites, it has to be specially formatted. This is
done from the Sprite Generator Program by hitting Symbol Shift F (TO). This will format the
cartridge and set up five dummy files numbered 1 to 5. From nowon whenever you save a file of
sprites, the old file of that number will be erased to conserve cartridge storage.

49

THE INFORMATION RECTANGLE
MEMORY LEFT 7488 X POS 1 Y POS1

SPRITE HEIGHT - 2
SPRITE LENGTH - 4

SPRITE NUMBER - 1

SPRITE 60218
SPST 60218
SPND 65279

MEMORY LEFT:
X POS Y POS:

SPRITE:
SPST:

SPND:
SPRITE HEIGHT:

SPRITE LENGTH:

SPRITE NUMBER:

The Text Line:

The text line
This indicates how much memory is available for sprites.
These are the current positions of the SPRITE SCREEN X and Y
cursors with reference to the figures on top and to the left of the
SPRITE SCREEN.
This indicates the position, in memory, where your defined sprite is.
This indicates the SPrite space STart point, in memory. (Before any
sprites are defined this has an initial value of 65218).
This indicates the SPrite space eND point, in memory.
This indicates the height of your defined sprite, in character squares,
as indicated by the figures at the top and to the left of the SPRITE
SCREEN. (This has an initial value of 1).
This indicates the length of your defined sprite, in character squares,
as indicated by the figures at the top and to the left of the SPRITE
SCREEN. (This has an initial value of 1).
This indicates the sprite currently defined. (This has an initial value
of 1).

To show the current function and the available options.

50

SPRITE GENERATOR KEY FUNCTION SUMMARY
All the functions of the Sprite Generator are invoked by pressing the appropiate key (or SYMBOL
SHIFT key). A list of the functions is given below.
KEY
A Activates the ATTRIBUTE switch.(same as .ATOF..ATON)

Press 1 to set switch ON.
Press 0 to set switch OFF.

B Activates the BRIGHT variable.(same as Sinclair Bright)
Press 1 to set BRIGHT to ON.
Press 0 to set BRIGHT to OFF.

C Activates the PAPER variable.(same as Sinclair PAPER)
Press any key between 0 and 7 to activate the colour indicated
above the key.(paper 8 and 9 not included).

SYMBOL
SHIFT
C
(?)

CREATION OF LARGE SPRITES
Allows the creation of a sprite, whose number is held in the sprite
number variable, of user definable dimensions in the range 1 -255
characters. The sprite can be said to be empty as no data will have been
“ GOT” into it.

D Activates DIRECT DATA INPUT.
Accepts 8 bytes of data, one byte at a time, followed by ENTER, via the
keyboard, to the position on the sprite Screen indicated by the cursors.
Inputted data must be in the range 0 to 255 Decimal or, H00 to HFF HEX (the
character H must precede Hex entry).
NOTE: If Attribute switch = 1, then the four current attributes will be set at the
same position as well.

E Activates the SCREEN FUNCTIONS.
You will be given three options: press 1,2 or 3.
1 INVERT (same as .INW)
Option 1, INVERT, sets all OFF pixels to ON and all ON pixels to OFF in a
window whose length is held in the "Sprite length” variable and whose height
is held in the "Sprite height” variable. The inversion will take place from the
position of the sprite screen cursors, i.e. at the intersection of an imaginary
line drawn from each cursor.
2 MIRROR (same as .MIRV)
Option 2, MIRROR, ‘Flips’ a window whose height is held in the “Sprite
height” variable and whose length is held in the “Sprite length” variable. The
Mirroring will take place about the vertical centre of the screen window.
3 MIRROR ATTRIBUTES (same as MARV)
Option 3, MIRROR ATTRIBUTES, ‘Flips’ the attributes in a window whose
height is held in the “ Sprite height" variable and whose length is held in the
“ Sprite length” variable. The Mirroring of Attributes will take place about the
vertical centre of the screen
window.

F Activates FLASH WINDOW.
Flashes the current screen window whose height is held in the SPRITE
HEIGHT variable and whose length is held in the SPRITE LENGTH variable.
The Flash will take place at the position of the sprite screen cursors.
Flash is used to check the position of the sprite screen cursors, to check that
the height and length parameters are as required or to check that the window
is correctly positioned.

51

SYMBOL
SHIFT
F
(TO)
G

H

SYMBOL
SHIFT

(AT)

J

SYMBOL
SHIFT
J
(-)

K

L

M

N
O

Format Sprite Cartridge
This is used to format a microdrive cartridge ready for saving
sprites to. It sets up five dummy files numbered 1 to 5.

Activates GET SPRITE function.
Gets a sprite of the dimensions held in the “Sprite height” and "Sprite length"
variables, using the number held in the “Sprite Number" variable and at the
window indicated by the sprite screen cursors - and stores it in memory.
NOTE: If the Attribute switch = 1, the sprite and attributes are stored; if the
Attribute switch = 0, then any Attributes will be ignored. If a sprite is defined
with the Attribute switch = 0, then the attribute data will probably be garbage.
Activates the SPRITE HEIGHT Variable.(same as .HGT=) Permits the input of
the height of a sprite window in the range of 1-15 characters.
Activates the ATTRIBUTE DUMP function.
This fills the window of dimensions held in the “ sprite height" and "sprite
length" variables with the current attribute values.
Activates the SCROLL WINDOW RIGHT BY 1 PIXEL function.
(same as .WRIV)
This scrolls the window whose dimensions are held in the SPRITE
HEIGHT and SPRITE LENGTH variable by 1 pixel to the right with wrap
around.
Activates the move CHR$ SQR TO SPRITE SCREEN function.
Dumps the bit pattern set in the CHR$ SQR to a character square in the sprite
screen, indicated by the sprite screen 6cursors.
NOTE: If the Attribute Switch = 0, no Attributes will move with the pattern. If the
Attribute switch = 1, then the Attributes held in the Attribute Variables will
move with the pattern.
Activates the LOAD SPRITES facility.
Sprites can be loaded in from tape or microdrive. Three groups
of data will be loaded. Once loaded the text line will clear.

NOTE: Any sprites in memory will be destroyed when this command is
executed.
Activates the MOVE SPRITE SCREEN CHARACTER TO CHR$ SQR function.
Picks up the Character Square indicated by the Sprite Screen Cursors, into
the CHR$ SQR.
NOTE: ATTR = 0 ignores Character Attributes. ATTR= 1 takes the Attributes of
the character and loads them into the Attribute Variables.
Activates the SPRITE LENGTH variable.(same as .LEN)
Permits the input of the length of a Sprite Window in the range of 1-15
characters.
Activates the Sprite Functions.
You will be given three options which act in the same way as the 'SCREEN
FUNCTIONS E’, except that these functions operate on the sprite in memory
only and have no effect directly on the screen.
Activates the No, negative response to (Y/N) questions.
Activates the Sprite Logic functions.
You will be given three options. Each option GETS an area of the sprite
screen, the dimensions of which are specified as those of the defined sprite,
having a top left-hand corner at the sprite screen cursor positions and
logically GETs the data into the defined sprite — whose number is in the
Sprite Number Variable.

52

p

Q
SYMBOL
SHIFT
Q
K =)

R

S

SYMBOL
SHIFT
S
(NOT)

T

SYMBOL
SHIFT
T(»

NOTE: ATTR = 0 leaves the sprite attributes as they are. ATTR = 1 takes the
attributes from the screen and places them into the sprite.
1 GETORS, ORs the screen data with the pre-defined sprite, and leaves the
result in the sprite (screen display unaffected).
2 GETXRS, XORs the screen data with the data of a pre-defined sprite, and
leaves the result in the sprite, (screen display unaffected).
3 GETNDS, ANDs the screen data with the data of a pre-defined sprite, and
leaves the result in the sprite (screen display unaffected).
Activates the PUT SPRITE function.(same as .PTBL)
This PUTs the sprite whose number is held in the "SPRITE NUMBER”
variable onto the sprite screen at the position indicated by the sprite screen
cursors.
NOTE: You will get an error message if the sprite does not exist or will not fit
on the screen.
Activates the CLEAR CHR$ SQR function. Sets all CHR$ SQR bits to OFF.
Activates the CLEAR SPRITE SCREEN function. Clears the sprite
screen of all data and attributes.

Activates the ROTATE SPRITE function.(same as .SPNM)
Rotates a sprite, in memory, by 90 degrees, leaving the original sprite
unaffected. The new Rotated sprite must be given a new sprite number, as
asked for. Attributes are automatically Rotated with the pixel data.
Activates the SPRITE NUMBER variable.(same as .SPN=) Permits the defining
of sprites and asks for a sprite number in the range 1 to 255
NOTE: If a sprite to be defined is given an existing sprite number, a warning is
displayed, advising you of this fact. The existing sprite, or the new sprite, are
in no way corrupted.
Activates the SAVE SPRITES facility.
All files will be verified. Once the programs have verified,
the sprite development program will return to command level with
the text line cleared.
NOTE: If the program breaks because of failure to verify, type GOTO 100 and
your data will not be lost.
Activates the TEST SPRITE function.(same as ?TST)
Performs a test on the sprite whose number is held in the “Sprite Number"
variable, and does the following:
1. Places the sprite height into the “ Sprite height” variable.
2. Places the sprite length into the “Sprite length” variable.
3. Places the address in memory of where the sprite data starts, into the

"Sprite” variable.
4. Places the address of the start of sprite space into the variable “SPST".
5. Places the address of the end of sprite space into the variable “SPND” .
6. Calculates the remaining memory available for sprite storage and places

it into the “ Memory Left” variable.
NOTE: The screen display of these variables will be updated if necessary.
Activates the SCROLL WINDOW LEFT BY 1 PIXEL function.
(same as .WL1V)
This scrolls the window whose dimensions are held in the SPRITE
HEIGHT and SPRITE LENGTH variables by 1 pixel to the left with wrap
around.

53

u

SYMBOL
SHIFT
U
(OR)
V

W

X

Y
SYMBOL
SHIFT
Y
(AND)
BREAK
and
SPACE

5
6
7
8

Activates the PICK UP ATTRIBUTES function.
Picks up the attributes of the character from the sprite screen, indicated by
the position of the sprite screen cursors and Loads them into the four Attribute
variables.
Activate the SCROLL WINDOW UP BY 1 PIXEL function (same as .WCRV).
This scrolls the window whose dimensions are held in the SPRITE
HEIGHT and SPRITE LENGTH variables by 1 pixel up with wrap around.

Activates the FLASH variable. This is one of the four attributes.
(same as Sinclair Flash)
Press 1 to put switch ON.
Press 0 to put switch OFF.
Activates the WIPE SPRITE function.(same as .DSPR)
Wipes the sprite indicated by the "Sprite number” variable totally from
memory. All other sprites stored in memory below that sprite are moved up to
fill the space previously occupied by the Wiped sprite.
Activate the INK variable which is one of thefour attributes, (same as Sinclair
INK)
Press any key between 0 and 7 to set the colour indicated above the key.
Activates the YES, positive response to (Y/N) questions.
Activates the SCROLL WINDOW DOWN BY 1 PIXEL function.
(same as .WCRV)
This scrolls the window whose dimensions are held in the SPRITE
HEIGHT and SPRITE LENGTH variables by 1 pixel down with wrap around.
Activates the PLACE SPRITE INTO SPRITE WINDOW facility.
This allows you to place a sprite of smaller dimensions into
a second sprite of greater dimensions, at a position of ROW, COL in the
greater sprite in memory - the smaller sprite is left unaltered.
NOTE: ATTR = 0, Attributes of smaller sprite ignored.
ATTR = 1, Attributes of smaller sprite taken and placed with
sprite.
Four options are given:
1 GETBLS: GETs the smaller sprite directly into the window of

the larger sprite.
2 GETORS: GETs the smaller sprite and ORs it into the window

of the larger sprite.
3 GETXRS: GETs the smaller sprite and XORs it into the window

of the larger sprite.
4 GETNDS: GETs the smaller sprite and ANDs it into the window of

the larger sprite.
Activates the MOVE CHR$ CURSOR 1 place to the left - non-destructive.

Activates the MOVE CHR$ SQR CURSOR 1 place down - non-destructive.
Activates the MOVE CHR$ SQR CURSOR 1 place up - non-destructive.
Activates the MOVE CHR$ SQR CURSOR 1 place to the right — non
destructive.

54

9 Activates the
0 Activates the
(%) Activates the
SYMBOL
SHIFT
5)
(&) Activates the
SYMBOL
SHIFT
6)
n Activates the
SYMBOL
SHIFT
7)
(() Activates the
SYMBOL
SHIFT
8)

SET CHR$ ON at current position.
SET CHR$ OFF at current position.
MOVE SPRITE SCREEN CURSOR 1

MOVE SPRITE SCREEN CURSOR 1

MOVE SPRITE SCREEN CURSOR 1

MOVE SPRITE SCREEN CURSOR 1

place to the left.

place down.

place up.

place to the right.

55

THE LASER BASIC SPRITE GENERATOR EXAMPLE SESSION

This chapter is written to enable the user to gain experience and understanding of the use of the
Sprite Generator Program supplied with the package.

You will first need some sprites to work with. Position the tape so as to be ready to load the
SPRITE1A file. Type SYMBOL SHIFT J (LOAD SPRITES) and type Y for yes, press PLAY on the
tape recorder and the file of OPTION 1 saved sprites will be loaded into the memory of the Sprite
Generator Program. (Please note that Sprites are loaded and Saved in 3 parts)

SG1. Let’s firstly familiarise ourselves with the use of the two screens.

THE CHR$ SQR

This is the grid square on which you create and edit sprites a character at a time. To move the
cursor:

1. Press the 5 key for each movement to the left.

2. Press the 6 key for each movement downward.

3. Press the 7 key for each movement upward.

4. Press the 8 key for each movement to the right.

Now that you know how to move the cursor, let’s fill in a few squares:

1. Move the cursor to any square that you like and release the keys.

2. Press the 9 key to set the square.

3. Now move the direction keys and fill in a few more squares.

Now that we have set some squares, what about deleting a few of them? This is simple:

1. Move the cursor to a square that you have set and release the keys.

2. Press the 0 key to clear the square.

Now have a go at setting and clearing some squares, just to get used to it.

THE SPRITE SCREEN CURSORS

Moving the sprite screen cursors:

1. Move the X cursor by pressing SYMBOL SHIFT and the 5 or 8 key to move left or right
respectively.

2. Move the Y cursor by pressing SYMBOL SHIFT and the 7 or 6 key to move up or down
respectively.

56

CLEARING THE SCREENS

1. Press the Q key and respond to the prompt in the text line by pressing Y and the CHR$ SQR
will clear.

Just to get you used to a similar function, let’s clear the Sprite Screen as well, even though
it's clear:

1 As you can see, to clear the CHR$ SQR press Q, to clear the sprite screen press SYMBOL
SHIFT Q.

SG2. EDITING A SPRITE BY A CHARACTER AT A TIME USING THE CHR$ SQR

1. Move the X and Y cursors to 1 and 1 respectively.

2. Press the S key to select a sprite number.

3. Input the number 51 and hit ENTER.

4. Now type P (PUT sprite) and hit Y for yes.

(You have now PUT sprite 51 on the screen without any attributes.)

5. Press the K key and hit Y for yes to load the CHR$ SQR with the data of the character
pointed to by the sprite screen cursors.

(You can now edit the character held in the CHR$ SQR using the 5,6,7,8 keys to move the
non-destructive cursor and the 9 or 0 keys to set or unset the pixels.)

6. Once you have edited the character, hit the F key to flash the cursor in the sprite to check
that it is in the right position.

7. Press the J key to move the data on the CHR$ SQR to the sprite screen, pressing Y for yes.

SG3. INPUTTING DATA VIA THE DIRECT DATA INPUT FUNCTION
1. Press SYMBOL SHIFT Q to clear the sprite screen.
2. Press the D key, answer Y to the question, and enter the following, very carefully, pressing

ENTER after each entry:
a) H24 126 HDB 255 HFF 153 129 102

3. You should have a space invader type character.
This is the DIRECT DATA INPUT. Direct Data characters are built up from 8 bytes of data, one
byte at a time.
NOTE: Data can only be entered using values in the range 0 to 255 Decimal or H00 to HFF

HEX. The character H must precede a HEX entry.

57

SG4. SETTING THE ATTRIBUTE VALUES
1. Clear the sprite screen (SYMBOL SHIFT Q)
2. Press X to activate the INK variable and then set it to 2.
3. Press C to activate the PAPER variable and then set it to 7.
4. Press B to activate the BRIGHT switch and then press 1 to switch it ON.
5. Press V to activate the FLASH variable and then press 0 to switch it OFF.
6. Press A to activate the ATTRIBUTE switch and then press 1 to switch it ON.
(You will have noticed, that both PAPER and FLASH were already set to 7 and 0 respectively
from the COLD start; we only run through them all for completeness and to get used to usina
them.) 3

7. Now if you repeat example SG3, because the ATTRIBUTE switch is set to 1, attributes will
be used, hence you have defined a RED invader.

SG5. GETTING A SPRITE INTO MEMORY
1. Let’s imagine we have designed a sprite on the screen, so type S for input sprite number

and input 6.
2. Type P for PUT SPRITE and hit Y for yes.
(You now have a mouse of 2 characters by 2 characters which we can say is the data we wish to
get.)
3. Type W and Y for yes to wipe sprite 6 from memory.
4. The mouse data is 2 characters wide so type L for length and input 2 for the length of the

window.

5. The mouse data is 2 characters high so type H for height and input 2 for the length of the
window.

6. Type F to flash the current window to check that its dimensions and position cover the data
you want to get as the sprite.

7. Type S and input 6 as the number of the sprite.
8. Now type G and Y to GET the sprite into memory.
9. You can check that the sprite was correctly got into memory by moving the sprite screen

cursors and putting the new sprite somewhere else on the screen.

SG6. SPRITE SCREEN FUNCTIONS
1. Firstly clear the sprite screen using SYMBOL SHIFT Q.
2. Set the sprite number variable to 19 using the S key.
3. PUT the sprite on the screen using the P key.
(You will see a ship of 7 characters long by 2 high.)
4. If you type E and Y for Sprite Screen functions and then type 1 for INVERT, all pixels that

were ON are now OFF and all the pixels that were OFF are now ON.
5. If in this function you type 2 for MIRROR, the data (not the attributes) will be mirrored about a

central vertical axis, reversing the direction of the ship.
6. Function 3 in this mode will do the same as function 2, except that the attributes, not the

pixel data, will be mirrored.

(All the above three operations are local operations, that is to say sprite 19 has not been affected
only the data on the screen.)

58

SG7. SPRITE FUNCTIONS
The same operations as SG6 are available using the M key, however these operations operate
in memory, permanently changing the sprite being operated on.

SG8. SPRITE ROTATION
This enables a sprite to be rotated through 90 degrees (clockwise).
1. PUT sprite 9 on the screen using the S and P keys, and you should have a bi-plane.
2. To rotate this sprite hit the R key and Y for ROTATE.
3. You will have to input a new number of a sprite that sprite 9 is going to be rotated into, so

type 100. Sprite 9 is left unaffected, but sprite 100 contains the rotated sprite 9.
4. Use the S and P keys to PUT sprite 100 on the screen.

SG9. SETTING ATTRIBUTES INTO WINDOWS
Now let’s look at attribute handling in more detail - position the X and Y cursors to X POS 1 Y
POS1. The following two examples will show how to download and pick-up attributes between
the attribute variables and the sprite screen:
1. Press X (INK) and set to 3 (magenta).
2. Press C (PAPER) and set to 2 (red).
3. Press V (FLASH) and set to 1 (ON).
4. Press B (BRIGHT) and set to 0 (OFF).
5. Press A (ATTR) and set to 0.
6. Set the window length to 5 using the L key.
7. Set the window height to 5 using the H key.
8. Press I (ATTRIBUTE DUMP) - the attributes will appear on the sprite screen in the 5 by 5

character window. Any data in that window will remain, but its attributes will have changed.
9. Now set all the attributes, X, C, V, B, and A to 0.
10. Press U (PICK UP ATTRIBUTES) and the attributes on the screen will be loaded into the

attribute variables.

SG10. SCROLLING SPRITE WINDOW DATA
1. First put a sprite on the screen, at X pos 1, Y pos 1, using the S key for'Input Sprite Number’

and inputting the number 10.
2. Type P for PUT sprite, you will see a helicopter appear on the screen.
3. Now set both the window height and length values to 10 using the H and L keys.
4. You can now scroll, with wrap, the helicopter within the window by 1 pixel using the

SYMBOL SHIFT key in conjunction with the T, Y, U or I keys.
One way of achieving fast, smooth, hi-resolution animation of sprites, is to define a series of
sprites in different positions, offset by a few pixels. Then by sequentially placing these sprites
hi-resolution animation can be obtained.

59

SG11. SAVING SPRITES
You may now wish to save off all the sprites that you have just created in a form that they can be
loaded back into the Sprite Generator Program at a future date. You will have to save the sprites
in the OPTION1 format.
1. Type SYMBOL SHIFT S for save sprites.
2. Type Y for yes.
3. Type 1 for OPTION1 sprites.
4. Now save sprites to tape or pre-formatted microdrive, inputting the file name.
5. Sprites are saved off in 3 parts, which will be verified, this means once saved, the tape will

have to be rewound.
Once all your sprites are finished you can save them off in OPTION2 format ready to load into
LASER BASIC.
1. Type SYMBOL SHIFT S for save sprites.
2. Type Y for yes.
3. Type 2 for Option2.
4. Input the file name.
5. Note down the CODE values that are displayed on the screen.
6. The code will be verified next, so rewind the tape after it has been saved.

60

CREATING SPRITES IN THE SPRITE GENERATOR PROGRAM

A SUMMARY
Step 1 Load in the Sprite Generator Program and execute a COLD start.
Step 2 Set the Attribute flag to 1 using the A key.
Step 3 Set the INK and PAPER colours.
Step 4 Create your sprite, a character at a time, using either the CHR$ SQR or the direct

data entry method.
Step 5 Enlarge the flashable window so that it takes up the dimensions of your sprite,

using the H key to set the height and the L key to set the length.
Step 6 Position the sprite screen cursors to the top left of your sprite.
Step 7 Flash the window using the F key to make sure all the sprite data will be “ GOT" into

memory.
Step 8 GET the sprite into memory, using the G key.
Step 9 Test to see that the sprite is OK by moving the sprite screen cursors to a free part of

the screen and “ PUT” the sprite, using the P key.
Step 10 Carry out any other operations or create more sprites.
Step 11 Save off the sprites in OPTION1 format so that they can be loaded in the sprite

generator program for editing etc. at a later stage.
Step 12 Save off the sprites in OPTION2 format for use with Laser BASIC, noting down the

values of the "Sprite start address” .
Step 13 Clear the machine by typing RANDOMIZE USR 0.
Step 14 Load in Laser BASIC by typing LOAD'” '
Step 15 Load the sprites using option 2 of the loader menu. The loader will prompt you for

the “ Sprite start address” and you should type in the value you noted down at step
12.

61

APPENDIX 1 LASER BASIC COMMANDS(IN ALPHABETICAL ORDER)
WORD PARAMETERS ACTION
.ADJM SPN, COL, ROW Adjust COL, ROW, HGT, LEN, SCOL, SROW

such that GETS and PUTS lie on the screen
.ADJV HGT, LEN, COL,

ROW
Adjust the screen window to lie on
the screen.

.ATDV HGT, LEN, COL,
ROW

Scroll the window attributes 1 character
down with wrap.

.ATDM SPN Scroll the sprite attributes 1 character
down with wrap.

.ATLM SPN Scroll the sprite attributes 1 character
left with wrap.

.ATLV HGT, LEN, COL,
ROW

Scroll the window attributes 1 character
left with wrap.

.ATOF Disable attribute switch.

.ATON Enable attribute switch.

.ATRM SPN Scroll the sprite attributes 1 character
right with wrap.

.ATRV HGT, LEN, COL,
ROW

Scroll the window attributes 1 character
right with wrap.

■ATUM SPN Scroll the sprite attributes 1 character
up with wrap.

.ATUV HGT, LEN, COL,
ROW

Scroll the window attributes 1 character
up with wrap.

.CLSM SPN Clear the sprite.

.CLSV HGT, LEN, COL,
ROW

Clear the screen window and fill with
the current attributes.

?COL Assign the value in the Graphics
variable COL to a BASIC variable.

.COL= BASIC EXPRESSION Assign the value of the BASIC expression
to the Graphics variable COL.

DEF FN N#0 Define a procedure N.
.DSPM SP1, SP2 Enlarge sprite SP2 into sprite SP1.
.DSPR SPN Delete sprite and recover bytes from

below.
.GMAT SP1.SP2, SCOL,

SROW
Block move attributes of sprite SP1
into sprite SP2 at SCOL,SROW.

.GMBL SP1.SP2, SCOL,
SROW

Block move sprite SP1 into sprite
SP2 at SCOL,SROW.

.GMND SP1.SP2, SCOL,
SDROW

Logically AND sprite SP1 into sprite
SP2 at SCOL,SROW.

.GMOR SP1.SP2, SCOL,
SROW

Logically OR sprite SP1 into sprite
SP2 at SCOL,SROW.

.GMXR SP1.SP2, SCOL,
SROW

Logically XOR sprite SP1 into sprite SP2
at SCOL,SROW.

.GTBL SPN, COL, ROW Block move screen data from screen to
sprite.

62

.GTND SPN, COL, ROW Logically AND screen data into sprite data.

.GTOR SPN, COL, ROW Logically OR screen data into sprite data.

.GTXR SPN, COL, ROW Logically XOR screen data into sprite data.

.GWAT SPN, COL, ROW,
SCOL, SROW, HGT,
LEN

Block move attributes from screen window
into sprite window.

.GWBL SPN, COL, ROW,
SCOL, SROW, HGT,
LEN

Block move screen data from screen window
into sprite window.

.GWND SPN, COL, ROW,
SCOL, SROW, HGT,
LEN.

Logically AND screen data from screen window
into sprite window.

.GWOR SPN, COL, ROW,
SCOL, SROW, HGT,
LEN

Logically OR screen data from screen window
into sprite window.

.GWXR SPN, COL, ROW,
SCOL, SROW, HGT,
LEN

Logically XOR screen data from screen window
into sprite window.

?HGT Assign the value in the Graphics variable
HGT to a BASIC variable.

.HGT= BASIC EXPRESSION Assign the value of the BASIC expression
to the Graphics variable HGT.

.INVM SPN Invert sprite data.

.INW HGT, LEN, COL,
ROW

Invert screen window.

.ISPR SPN, HGT, LEN Create sprite and move current sprites
down to accommodate.

?KBF COL, ROW Detect multi key presses.
?LEN Assign the value in the Graphics variable

LEN to a BASIC variable.
.LEN= BASIC EXPRESSION Assign the value of the BASIC expression

to the Graphics variable LEN.
.MARM SPN Mirror sprite attributes about centre.
.MARV HGT, LEN, COL,

ROW
Mirror screen window attributes about
centre.

.MIRM SPN Mirror sprite about its centre.

.MIRV HGT, LEN, COL,
ROW

Mirror screen window about its centre.

.MOVE SP1.SP2, HGT,
LEN, COL, ROW

Move and animate.

?NPX Assign the value in the Graphics variable
NPX to a BASIC variable.

,NPX= BASIC EXPRESSION Assign the value of the BASIC expression
to the Graphics variable NPX.

?PEK PEEK a 16 bit number.
.PMAT SP1.SP2, SCOL,

SROW
Block move attributes of window at
SCOL, SROW of sprite SP2 into sprite SP1.

63

.PMBL SP1.SP2, SCOL,
SROW

Block move window at SCOL,SROW of sprite
SP2 into sprite SP1.

.PMND SP1.SP2, SCOL
SROW

Logically AND window at SCOL,SROW of
sprite SP2 into sprite SP1.

.PMOR SP1.SP2, SCOL,
SROW

Logically OR window at SCOL,SROW of
sprite SP2 into sprite SP1.

.PMXR SP1.SP2, SCOL,
SROW

Logically XOR window at SCOL,SROW of
sprite SP2 into sprite SP1.

•POKE N.M Poke a 16 bit number M at N.
.PROCFN N#() Call the procedure N.
.PTBL SPN, COL, ROW Block move sprite data from sprite to

screen.
.PTND SPN, COL, ROW Logically AND sprite data into screen data.
.PTOR SPN, COL, ROW Logically OR sprite data into screen data.
.PTXR SPN, COL, ROW Logically XOR sprite data into screen data.
.PWAT SPN, COL, ROW,

SCOL, SROW, HGT,
LEN

Block move sprite window attributes
into screen window.

.PWBL SPN, COL, ROW,
SCOL, SROW, HGT,
LEN

Block move sprite data from sprite window
into screen window.

.PWND SPN, COL, ROW,
SCOL, SROW, HGT,
LEN

Logically AND sprite window data into
screen window.

.PWOR SPN, COL, ROW,
SCOL, SROW, HGT,
LEN

Logically OR sprite window data into
screen window.

.PWXR SPN, COL, ROW,
SCOL, SROW, HGT,
LEN

Logically XOR sprite window into screen
window.

.REMK Remove all REM statements in a program.

.RETN Return from procedure.
?ROW Assign the value in the Graphics variable

ROW to a BASIC variable.
.ROW= BASIC EXPRESSION Assign the value of the BASIC expression

to the Graphics variable ROW.
.RNUM Renumber lines.
?SCL Assigns a Sinclair variable with the

current value of SCL.
.SCL= Store a value in the variable SCL.
?SCM SPN Scan the sprite for data. 0 = no data, 1 = data.
?SCV ROW, COL Scan a character square at ROW, COL

for data. 0 = no data, 1 = data.
.SCRM SPN Scroll the sprite vertically without

wrap by NPX pixels.
.SCRV HGT, LEN, COL,

ROW, NPX
Scroll the window vertically without
wrap by NPX pixels.

64

?SET Assigns the value in the Graphic variable
SET to a BASIC variable.

.SET= BASIC EXPRESSION Assign the value of the BASIC expression
to the Graphics variable SET.

.SETM SPN Fill the sprite with the current attributes.

.SETV HGT, LEN, COL,
ROW

Fill the screen window with the current
attributes.

.SL1M SPN Scroll the sprite 1 pixel left without
wrap.

.SL4M SPN Scroll the sprite 4 pixels left without
wrap.

.SL8M SPN Scroll the sprite 8 pixels left without
wrap.

.SL1V HGT, LEN, COL,
ROW

Scroll the window 1 pixel left without
wrap.

.SL4V HGT, LEN, COL,
ROW

Scroll the window 4 pixels left without
wrap.

.SL8V HGT, LEN, COL,
ROW

Scroll the window 8 pixels left without
wrap.

.SPNM SP1.SP2 Rotate sprite SP2 90 degrees clockwise
into sprite SP1.

?SPN Assign the value in the Graphics variable
SPN to a BASIC variable.

.SPN= BASIC EXPRESSION Assign the value of the BASIC expression
to the Graphics variable SPN.

?SP1 Assign the value in the Graphics variable
SP1 to a BASIC variable.

.SP1 = BASIC EXPRESSION Assign the value of the BASIC expression
to the Graphics variable SP1.

?SP2 Assign the value in the Graphics variable
SP2 to a BASIC variable.

.SP2= BASIC EXPRESSION Assign the value of the BASIC expression
to the Graphics variable SP2.

.SR1M SPN Scroll the sprite 1 pixel right without
wrap.

.SR4M SPN Scroll the sprite 4 pixels right without
wrap.

.SR8M SPN Scroll the sprite 8 pixels right without
wrap.

.SR1V HGT, LEN, COL,
ROW

Scroll the window 1 pixel right without
wrap.

.SR4V HGT, LEN, COL,
ROW

Scroll the window 4 pixels right without
wrap.

.SR8V HGT, LEN, COL,
ROW

Scroll the window 8 pixels right without
wrap.

•SPRT SPN, HGT, LEN Create sprite at free space after last
sprite.

65

.TROF

.TRON
?TST SPN
.WORM SPN

.WCRV HGT, LEN, COL.
ROW, NPX

.WL1M SPN

.WL4M SPN

.WL8M SPN

.WL1V HGT, LEN, COL,
ROW

.WL4V HGT, LEN, COL,
ROW

.WL8V HGT, LEN, COL,
ROW

.WSPR SPN

.WR1M SPN

.WR4M SPN

.WR8M SPN

.WR1V HGT, LEN, COL,
ROW

.WR4V HGT, LEN, COL,

.WR8V HGT, LEN, COL,
ROW

Switch off trace function.
Switch on trace function.
Test sprite.
Scroll the sprite vertically with wrap
by NPX pixels.
Scroll the window vertically with wrap
by NPX pixels.
Scroll the sprite 1 pixel left with wrap.
Scroll the sprite 4 pixels left with wrap.
Scroll the sprite 8 pixels left with wrap.
Scroll the window 1 pixel left with wrap.

Scroll the window 4 pixels left with wrap.

Scroll the window 8 pixels left with wrap.

Delete sprite and recover bytes from above.
Scroll the sprite 1 pixel right with wrap.
Scroll the sprite 4 pixels right with wrap.
Scroll the sprite 8 pixels right with wrap.
Scroll the window 1 pixel right with wrap.

Scroll the window 4 pixels right with wrap.
ROW
Scroll the window 8 pixels right with wrap.

66

APPENDIX 2 SPRITE1A’ AND ‘SPRITE2A’ SPRITES
Example sprites for use in users own Laser BASIC games or the Sprite Generator Program.
SPRITE DESCRIPTION LEN HGT INK PAPER FLASH BRIGHT
1 Vintage car 4 2 5 0 0 1
2 Van 4 2 6 0 0 1
3 Dragster 4 2 3 0 0 1
4 Duck 3 3 6 0 0 1
5 Dancer 2 4 7 0 0 1
6 Mouse 2 2 7 0 0 1
7 Spaceship #1 4 2 5 0 0 1
8 Tank #1 4 2 0 4 0 1
9 Bi-plane 4 2 1 5 0 0
10 Helicopter #1 4 2 0 5 0 0
11 Spaceship #2 4 2 5 0 0 1
12 Spacetank 4 2 0 6 0 1
13 Rocket 4 2 7 1 0 1
14 Jet fighter #1 5 2 1 5 0 1
15 Spaceship #3 5 2 5 0 0 1
16 Spaceship #4 4 2 6 0 0 1
17 Jet fighter #2 4 2 2 5 0 1
18 Tank #2 6 3 0 4 0 0
19 Liner 7 2 0 5 0 1
20 Jet fighter #2 5 2 3 5 0 1
21 Alien 4 2 7 2 0 1
22 Spaceship #5 4 2 4 0 0 1
23 Spaceship #6 6 2 5 0 0 1
24 Spaceship #7 6 2 7 0 0 1
25 Tank #3 6 3 4 7 0 0
26 Helicopter 7 2 0 5 0 1
27 Tri-plane 4 2 2 5 0 1
28 Bulldozer 5 2 0 3 0 1
29 Spaceship #8 5 2 7 0 0 1
30 Frog 3 3 4 0 0 1
31 Rabbit 2 3 7 3 0 1
32 Ghost 2 2 6 0 0 1
33 Pac-men 2 2 5 0 0 1
34 Fly 3 2 7 0 0 1
35 Jet fighter #3 5 3 0 5 0 1
36 Crocodile 6 3 4 1 0 1
37 Hovercraft 5 3 1 6 0 1
38 Submarine 8 2 5 1 0 1
39 Tank destroyer 6 3 0 4 0 1
40 Jet fighter #4 5 2 1 7 0 1
41 Space buggy 5 3 0 6 0 1
42 Cannon 5 3 4 0 0 1
43 Soldier 3 6 0 4 0 1
44 Diamond 3 3 7 1 0 1
45 Sword 6 2 6 0 0 1
46 Truck 8 2 5 0 0 1
47 Lunar lander 3 3 6 0 0 1
48 Jet fighter #5 5 2 0 4 0 1
49 Teddy 4 5 6 0 0 1
50 Ball 3 3 0 5 0 1
These sprites can be loaded by the loader program or by hand. To load these sprites in by hand
type:

CLEAR 51512: LOAD"SPRITE2A"CODE 51513: .POKE 62464, 51513.

67

The sprites that were used in the Laser BASIC demo, available to be used in your Laser BASIC
Programs or the Sprite Generator Program.

APPENDIX 3 SPRITE1B’ AND SPRITE2B’ SPRITES

SPRITE DESCRIPTION LEN HGT INK PAPER FLASH BRIGHT
1 Tortoise 4 2 5 0 0 0
2 Mouse 4 2 7 0 0 1
3 Hare 4 2 6 0 0 1
4 Flower 2 4 4 0 0 1
5 Car 4 2 3 0 0 0
6 Road section 3 2 _ _
7 Bouncing man #1 5 4 6 0 0 1
8 Bouncing man #2 5 4 6 0 0 1
9 Bouncing man #3 5 4 6 0 0 1
10 Bouncing man #4 5 4 6 0 0 1
11 Bouncing man #5 2 4 6 0 0 1
12 Girder section 2 2 4 0 0 0
13 Ground 15 1 4 0 0 1
14 Invader 3 3 0 6 0 1
15 Landscape #1 15 3 6 0 0 1
16 Landscape #2 15 3 6 0 0 1
17 Landscape #3 2 3 6 0 0 1
18 Spaceship 3 3 7 1 0 1
19 Planet with ring 3 3 5 0 0 1
20 Quill 3 3 7 0 0 1
21 Top of space

vehicle
8 4 5 0 0 1

22 Lantern 4 3 _ _ _ _
23 Spiders web 4 3 7 0 0 1
24 Planet with moon 3 3 4 0 0 1
25 Clock 3 3 6 0 0 1
26 Track of space

vehicle
8 2 5 0 0 1

27 Turned track of
space vehicle

8 2 5 0 0 1

28 Spinner cap 3 3 5 0 0 1
29 Bell 3 3 7 0 0 1
30 Screw jack 3 3 4 0 0 1
31 Lever 3 3 4 0 0 1
32 Chess piece 2 4 0 7 0 1
33 Oasis logo 12 4 — _ _ _
34 Top of train 11 2 5 0 0 1
35 Train wheels #1 11 1 7 0 0 0
36 Train wheels #2 11 1 7 0 0 0
37
38

Train wheels #3
Train wheels #4

11
11 1

1
70

7
0

0
0

0 0

39 Dot 1 1 7 0 0 0
40 Radar dish #1 1 2 5 0 0 1
41 Radar dish #2 1 2 5 0 0 1
42 Radar dish #3 1 2 5 0 0 1
43 Radar dish #4 1 2 5 0 0 1
44 Radar dish #5 1 2 5 0 0 1
45 Radar dish #6 1 2 5 0 0 1
46 Radar dish #7 1 2 5 0 0 1
47 Radar dish #8 1 2 5 0 0 1
48 Top of coach 10 2 _
49 Wheels of coach #1 10 1 7 0 0 0
50 Wheels of coach #2 10 1 7 0 0 0

68

51 Track 8 1 7 0 0 1
52 Rotating face

0 degrees
2 2 4 0 0 1

53 Rotating face
90 degrees

2 2 4 0 0 1

54 Rotating face
180 degrees

2 2 4 0 0 1

55 Rotating face
270 degrees

2 2 4 0 0 1

56 Helicopter #1 3 3 5 0 0 1
57 Helicopter #2 3 3 5 0 0 1
58 Key #1 3 3 7 0 0 1
59 Key #2 3 3 7 0 0 1
These sprites can be loaded using the loader program or by hand. To load these sprites by hand
type:

CLEAR 50303: LOAD”SPRITE2B”CODE 50304: .POKE 62464, 50304.

69

APPENDIX 4 THE LASER BASIC DEMO EXPLAINED

This appendix is a brief outline of the Laser BASIC Demo. It’s aim is to help users to familiarise
themselves with the operation of some of the commands.
The Demo was written as a series of subroutines which run independantly of each other, so they
can be simply executed by typing GOSUB (line number) without having to run the whole
program.

THE INTERMEDIATE OASIS LOGO SCREEN
Execution variables to be set on entry.
GOSUB 1000 none.

1000 INK 4: PAPER 0: BRIGHT 1:
BORDER 0: CLS
1001.C0L=9:.ROW=6:.SPN=60:.ATON:
.PTBL:
1002 PRINT AT 13,11; INK 5; "BASI
C DEMO";AT 11,10; INK 5;" LAS
ER
1003 PLOT 73,90: DRAW 108,0: DRA
W 0,-14: DRAW -108,0: DRAW 0,14
1004 PLOT 73,74: DRAW 108,0: DRA
W 0,-14: DRAW -108,0: DRAW 0,14
1005.NPX=1:.COL=10:.HGT=1:.LEN=1
2
1006 FOR N=0 TO 192: . ROW=l 1: . WL1
V:.ROW=13:.WCRV: NEXT N: PAUSE 5
0: RETURN
In this screen the OASIS logo sprite is placed on the screen. Text is placed under it with boxes
drawn around the text using the Sinclair DRAW commands.
Line 1005 defines a window which will fit over the text but inside the boxes.
Line 1006 scrolls the top text horizontally and the bottom text vertically
246 times by 1 pixel.

THE SPRITES MOVING THROUGH THE PILLARS SCREEN
Execution variables to be set on entry.
GOSUB 770 none.

770.ATOF: INK 4: PAPER 0: BRIG
HT 1: BORDER 0:.HGT=24:.LEN=32:.
ROW=0:,COL=0: CLS :.SETV
771 INK 5: PAPER 5:.LEN=3:.HGT

=22:.ROW=0: FOR N=8 TO 26 STEP 8
:.COL=N:.SETV: NEXT N
772 INK 1: PAPER 1:.LEN=2:.HGT=
22:.ROW=0: FOR N=10 TO 29 STEP 8
:.COL=N:.SETV: NEXT N
774 INK 4: PAPER 1:.LEN=1:.HGT

=12:.R0W=8: FOR N=6 TO 26 STEP 8
:.COL=N:.SETV: NEXT N
775 INK 4: PAPER 5:.LEN=1:.HGT=
12:.R0W=8: FOR N=5 TO 26 STEP 8:
.COL=N:.SETV: NEXT N
776.SPN=33:.COL=0:.R0W=15:.PTBL
: PAUSE 50:.HGT=6:.LEN=32: FOR N
=1 TO 300:.SR1V: NEXT N
780.SP1=14:.SP2=14:.LEN=1:.HGT=
0: FOR N=1 TO 20::.ROW=INT (RND*
10)+8:.COL=—4: FOR X=-4 TO 32:.M
OVE: NEXT X: NEXT N:.ATON: RETUR
N

70

In this screen, the invader sprites and the Oasis logo appear to move in front of, and behind blue
and cyan pillars. The way this is achieved, is in fact, quite simple. The pillars that the data moves
in front of, are in fact, just columns of attributes with INK set to green. You cannot see the green
INK until some pixel data (the sprites or logo) pass over it. In order to give the impression of the
sprites moving behind the larger pillars, the INK colours of these pillars are set to the same
colour as the PAPER colour. Data still passes over the attributes as with the small pillars, but you
cannot see it as there is no difference between the INK and PAPER colours.
The attribute flag must be set to off (.ATOF) for the above method to work (See line 770).
Lines 771 and 772 create the foreground pillars.
Lines 774 and 775 create the background pillars.
Line 776 places sprite 33 (the Oasis logo) on the screen and a window, the length of the

screen, is defined around it. The data is then simply scrolled by 1 pixel 300
times without wrap.

Line 780 moves sprite 14 across the screen from left to right using .MOVE.

THE FIRST JUMPING MAN SCREEN
Execution variables to be set on entry.
GOSUB160 none.

160. ATON: INK 5: PAPER 0: BORDE
R 0: CLS :.SET=4:.HGT=3:.LEN=3:.
C0L=12:-ROW=11:.SPN=25:.PTBL:.SE
T=5:.C0L=7:.R0W=21:.SPN=30:.PTBL
:.C0L=4:.PTBL:.COL=l:.PTBL:.HGT=
3:.LEN=9:.SET=6:.ATOF:.SPN=19:.C
OL=0:.R0W=3:.PTBL:.ATON:.LEN=32:
.HGT=3:.SET=1
161. COL=13:.ROW=20:.SPN=60:.PTB

L:.C0L=28:.ROW=20:.SPN=23:.PTBL:
.ROW=6: FOR N=2 TO 32 STEP 8:.CO
L=N:.SPN=22:.PTBL: NEXT N
162. R0W=18:.SPN=12: FOR N=-30 T

O 32 STEP 2:.COL=N:.PTBL: NEXT N
163. R0W=14: FOR I=-30 TO 40 STE

P 2: . COL=I
164.SPN=7:.PTBL: GO SUB 165:.SP

N=8:.PTBL: GO SUB 165:.SPN=9:.PT
BL: GO SUB 165:.SPN=10:.PTBL: GO
SUB 165: NEXT I: RETURN
165. SET=4: .MIRV: ,SET=5: .MIRV: .S

ET=6:.WLIV::.SET=1: PAUSE 2: RET
URN
In this screen a little man hops across the screen from left to right, while a planet scrolls above. A
clock and some objects that look like fly presses are also animated.
Lines 160 to 162 place all the scenario data on the screen.
Line 163 is a loop to set the value of COL in the range -30 to 40. A sequence of 4 sprites

(7,8,9 and 10) are used to animate
the little man.

Line 165 mirrors the clock and the sprites in the bottom left of the screen, as well as
scrolling the planet and taking a PAUSE of 2 to slow the movement down.

Once the sequence of 4 sprites has been placed the COL value is incremented by 2. The trailing
blank edge of the sprite removes any data left by the old sprite.

THE ARRAY OF INVADERS ON THE CYAN BACKGROUND
Execution variables to be set on entry.
GOSUB 680 none.

71

680 BRIGHT 0: INK 0: PAPER 5:
BORDER 5:. HGT=24: .LEN-32:.ROW-0:
.COL-0: CLS :.SETV:.ATOFi.COL-8!
. ROW-15:. SPN-33: . PTBL
681.ATOF:.SPN-15:.ROW-21:.CUL-0
:.PTBL:.COL-15:.SPN-16:.PTBL:.CO
L—30:.SPN—17:.PTBL:.SPN-14:.ROW-
0: GO SUB 720:.ROM—3: GO SUB 720
:.ROW-6: GO SUB 720:.ROW-9: GO S
UB 720
602.ROW-0:.COL-0:.HGT-12:.LEN-3
2: FOR N-l TO 160:.WR1V: NEXT N
683. ROW-0:.COL-20:.HGT-15:.LEN-
12:. NPX— 1: FOR N=1 TO 24:.WCRV:
NEXT N
684. ROW-3:.COL-0:.HGT-12:.LEN-3
2: FOR N-l TO 88:.WL1V: NEXT N
690 .SP1—14:.SP2—14:.HGT—1
691 FOR M—1 TO 16
695 LET X-INT (RND*4>: LET Y-IN
T <RND>4):.COL— (X$3)+9:.ROW— (Y*3
) +3
696 LET S-7SCV: IF S-0 THEN GO
TO 695
698.LEN—INT (RND*5)-2: FOR N-l
TO 30:.MOVE: PAUSE 1: NEXT N: NE
XT M:.ATON: BRIGHT 1: RETURN
720.COL-0:.PTBL:.COL-3:.PTBL:.C

OL-6:.PTBL:.COL-9:.PTBL: RETURN

In this screen an array of 16 invaders scroll across the screen and then break off one at a time.
Line 681, which uses line 720 as a subroutine, places the 16 invaders (sprite 15) on the

screen.
Lines 682, 683 and 684 scroll the array of invaders by creating a window around them

and then scrolling them by 1 pixel horizontally, vertically and then horizontally
again.

Lines 690 to 698 scan the area of screen now occupied by the invaders for data using
?SCV (line 696). If any data (the invader) exists there, then the sprite is moved
off screen using .MOVE. This process is repeated until all the sprites have
been removed.

THE CIRCLE OF COLOURED SQUARES
Execution variables to be set on entry.
GOSUB 670 none.

670.HGT-4:.LEN—4: GO SUB 100: F
OR M-l TO 3: FOR N-l TO 40:.COL-
14-10*COS <N/20*PI>:.ROW—10+10SS
IN (N/20SPI)
671 INK 0: PAPER INT <RND*7)+1
:.SETV: NEXT N: NEXT M: RETURN

In this screen a subroutine starting at line 100 is called which puts some text and the Oasis logo
on the screen.

72

100.ATOF: INK 7: PAPER 0: BORDE
R 0: BRIGHT 1: CLS
101 PRINT AT 4,8;"THE LASER BAS
IC“;AT 6,4;"EXTENDED INTERPRETER
FROM"
102.C0L=9:.ROW=l1:.SPN=33:.PTBL
:.ATONr PAUSE 100: RETURN

Line 670 is a simple circle calculating routine.
Line 671 sets windows of 3 by 3 characters with a random PAPER colour and a

constant INK colour using .SETV.

FALLING INVADERS OVER A STAR FILLED BACK DROP
Execution variables to be set on entry.
GOSUB 380 none.

3B0.ATOF: INK 7: BORDER 1: PAPE
R 1: BRIGHT 1: CLS
390 FOR N=1 TO 300: PLOT INT <R

ND*255),INT (RND*175): NEXT N:.C
OL=0:.ROW=0:.SPN=33:.PTBL:.C0L=2
0:.R0W=5:.SPN=19:.PTBL:.ROW=20:.
COL=0:.SPN=16:.PTBL:.SPN=17:.COL
=15:.PTBL:,SPN=15:.C0L=17:.PTBL
399 FOR V=1 TO 20
400. SPN= 14:. ROW=—3 : . COL=I NT (RN

D*5> +13:.HGT=1:.LEN=INT <RND*3>-
1:.SP1=14:.SP2=14
410 FOR N=—4 TO 24:.ROW=N:.MOVE
: PAUSE 1: NEXT N
420 NEXT V:.ATON: RETURN

In this screen .MOVE is used to non-destructively move sprite 14 (the invader) down from a
position above the top of the screen over data below.
Line 390 plots 300 pixels on the screen. Places the ringed planet (sprite 19), the Oasis

logo (sprite 33), and the landscape sprites (sprites 15,16 and 17) on the screen

Lines 399, 400,410 and 420 move twenty invaders down the screen from a random COL
position. A random value is set in LEN (-1 to 1). .MOVE is used to move the
sprites.

THE SECOND JUMPING MAN SCREEN (THE MOVING FLOOR)
Execution variables to be set on entry.
GOSUB 210 none.

73

210 BORDER 0: INK 4: PAPER 0: B
RIGHT 1: CLS :.C0L=9:.ROW=0:.SPN
=60:.PTBL
211.ROW=5:.SPN=22: FOR N=2 TO 3
2 STEP 8:-COL=N:-PTBL: NEXT N
212.SPN=24:.ROW=8:.C0L=3:.PTBL:
.C0L=23:.PTBL:.ROW=l1:.C0L=9:.PT
BL:.C0L=29:.PTBL:.SET=5:.HGT=3:.
LEN=32:.COL=0:.SET=1
220.ROW=20:.SPN=12: FOR N=0 TO
20 STEP 2:.COL=N:.PTBL: NEXT N:.
COL=30:.PTBL:.C0L=28:.PTBL
230.SET=1:.C0L=-4:.ROW=16
231.SET=2:.COL=20:.ROW=20:.LEN=
8:.HGT=2
240 FOR I=—28 TO 32 STEP 2:.SET
= 1:.COL=I:.SPN=7:.PTBL:.SET=2:.U
R4V: GO SUB 244
241.SPN=8:.PTBL:.SET=2:.WR4V: G

O SUB 244
242.SPN=9:.PTBL:.SET=2:.WR4V: G
O SUB 244
243.SPN=10:.PTBL:.SET=2:.WR4V:
GO SUB 244: NEXT I: RETURN
244.SET=5:.ROW=8:.WL1V:.ROW=l1:
■WR1V:-SET=1: PAUSE 4: RETURN

In this screen the jumping man moves on screen and syncronises his jump with a part of the
floor which is moving.
Lines 211, 212 and 220 place all the data on the screen.
Line 230 sets up SET 1 for the man.
Line 231 sets up SET 2 for moving the floor.
Lines 240 to 243 move the man, scrolling the planets and the floor after each movement.
The little man is animated using four sprites (7,8,9 and 10), which, when sequentially put, move
the data 2 characters to the right, hence the need for the STEP2 in the controlling FOR-NEXT
loop (line 240).

THE RAT RACE SCREEN
Execution variables to be set on entry.
GOSUB 350 none.

350 INK 7: PAPER 0: BRIGHT 1: B
ORDER 0: CLS :.ATOF
360 LET PI =5: LET P2=2: LET L=1
6: LET H=3: LET C=8: LET R=l: GO
SUB 2000: PRINT AT 2,10;"THE RA
T RACE"
365.SPN=2:.LEN=32:.COL=0:.HGT=2
: INK 0: FOR N=1 TO 7:.R0W=5+(N*
2): PAPER N:.SETV:.PTBL: NEXT N
370 FOR N=1 TO 1000: LET R=INT
<RND*7)+1:.R0W=5+(R*2):.WR1V: NE
XT N:.ATON: RETURN

74

In this screen the 7 colours from Blue to White are used to form 7 tracks 32 characters long by 2
high. Seven rats. 1 in each track, are placed on the screen.
Line 376 picks one of the tracks at random and scrolls it by 1 pixel to the right (.WR1V).

This is repeated 1000 times giving a race with a random outcome.
The window and shadow that contains the text THE RAT RACE’ is created in a subroutine at line
2000 (see later).

THE THIRD JUMPING MAN SCREEN (THROUGH THE PILLARS)
Execution variables to be set on entry.
GOSUB 450 none.

450 PAPER 0: INK 6: BRIGHT 1: B
ORDER 0: CLS
451 INK 6: PAPER 5:.LEN=3:.HGT=
24:.ROW-0:.COL-4:.SETV:.COL-14:.
SETV:.COL—24:.SETV
453 INK 1: PAPER 1:.LEN=2:.HGT—

24:.ROW=0:.C0L=8:.SETV:.C0L=18:.
SETV:.C0L=28:.SETV
460.SPN-12:.ROW-20: POR N-0 TO

6 STEP 2:.COL-N:.PTBL:.COL-N+10:
.PTBL:.COL-N+20:.PTBL:.COL-N+30:
.PTBL: NEXT N
461 INK 5: PAPER 5:.LEN-1:.HGT-
24:.ROW-0:.COL-7:.SETV:.COL-17:.
SETV:.COL-27:.SETV
462.LEN-2:.HGT-5:.ROW-15: INK 6
: PAPER 1:.COL-5:.SETV:.COL-15:.
SETV:.COL-25:.SETV
470. ATOF: .ROW-16: FOR 1— 4 TO 3
2 STEP 2:.COL—I
480 .SPN-7:-PTBL: PAUSE 8:.SPN-
B:.PTBL: PAUSE 8:.SPN-9:.PTBL: P
AUSE 8:.SPN-10:.PTBL: PAUSE 8: N
EXT I:.ATON: RETURN

In this screen the same technique as in ‘The Sprites moving through the pillars screen’, was
used to build up purely attribute based pillars. Their INK and PAPER colours are set such that
data would appear to go either behind or in front of them.
Lines 470 to 480 sets the attribute switch off (.ATOF). The sprites 7,8,9 and 10 are animated in
the previously described manner across the screen from a COL value of -4 to a value of 32 in '
steps of 2.
(Note the PAUSE 8 after each movement in line 480)

THE ANIMATION SCREEN

Execution variables to be set on entry
GOSUB 870 none.

75

B70.ATON: BORDER 0: INK 7: PAP
ER 0: BRIGHT 1: CLS :.C0L=18:.R0
W=20: . SPN=60: . PTBL: . ATOF: LET C=
20: LET R=0: LET L=ll: LET H=3:
LET PI =6: LET P2=4: GO SUB 2000:
PRINT AT 1,21;"ANIMATION"
871. LEN=3: . HGT=3 : . R0W=5: . COL= 12
: GO SUB 860:.R0W=8:.C0L=8: GO S
UB B60:.COL=16: GO SUB B60:.ROW=
12:.C0L=5: GO SUB 860:.COL=19: G
O SUB 860:-ROW=16:.COL=B: GO SUB
860:.C0L=16: GO SUB 860:.R0W=19
:.COL=12: GO SUB 860
872 FOR N=1 TO 40:.SPN=5B: GO S

UB 850: PAUSE 3:.SPN=59: GO SUB
850:.SPN=58: PAUSE 3: NEXT N:.AT
ON: RETURN

The subroutine at line 2000 is used to draw the window and shadow in which the text
“ANIMATION” is printed.
Line 871 fills windows, the size of the sprites (3x3), with random INK. Using a

subroutine at line 860.

860 PAPER 0: INK INT (RND*6>+2:
.SETV: RETURN

Line 872 places sprite 58 on the screen and then, after a pause, sprite 59 is placed,
(both use the subroutine at line 850). After a second pause, line 872 is
repeated giving two frame animation.

850.R0W=5:.COL=12:.PTBL:.ROW=B:
.COL=8:-PTBL:,C0L=16:.PTBL:-ROW=
12:.C0L=5:.PTBL:.C0L=19:.PTBL:.R
OW=16:.C0L=8:.PTBL:.C0L=16:.PTBL
:.R0W=19:.C0L=12:.PTBL: RETURN

THE TORTOISE AND THE HARE SCREEN
Execution variables to be set on entry.

GOSUB 600 none

600 INK 6: PAPER 0: BORDER 0: C
LS :. SPN=60:. R0W=15:. COL=10:. PTB
L
601 LET C=3: LET R=19: LET H=3:
LET L=28: LET Pl=7: LET P2=5: G

O SUB 2000: PRINT AT 20,4;"THE T
ORTOISE AND THE HARE"
605.SPN=39: FOR N=0 TO 31:.C0L=
N:.ROW=l: GO SUB 630:.ROW=6: GO
SUB 630:.ROW=7: GO SUB 630:.ROW=
12: GO SUB 630: NEXT N
606.LEN=32:.COL=0:.ROW=3:-HGT=2
: INK 5:-SETV
607.SPN=1:.PTBL:.SPN=3:.R0W=9:.
PTBL
610.LEN=32:.HGT=2:.COL=0: FOR M
=1 TO 256:.R0W=9:.SR1V: GO SUB 6
27: . SR8V: NEXT M
611 RETURN

76

627 IF M<180 THEN .ROW=13: RETU
RN
62B.R0W=3: RETURN

630 INK INT <RNDt7>+l: PAPER 0:
SETM:.PTBL: RETURN

In this screen the two race tracks for the tortoise and the hare are outlined by sprite 39 which is
put on the screen in the Subroutine at line 630. Since the characters are to be scrolled, the
attributes in their respective screen windows need to be set before the scrolling can begin.
The hare is scrolled by 1 pixel (.SR1V) and the tortoise is scrolled by 8 pixels (.SR8V).

THE RANDOM COLOUR FLOWERS SCREEN
Execution variables to be set on entry.
GOSUB 550 none

550.ATON:.SPN=4: .HGT=1:.LEN=2:
INK 0: PAPER 0: BORDER 0: CLS
555 FOR N=0 TO 200:.COL=INT (RN
D*30):.ROW=INT (RND*22)
560.PTBL: INK INT (RND*7)+1:.SE
TV: NEXT N: PAUSE 50: RETURN

In this screen sprite 4 is “ PUT” on the screen at random COL and ROW positions. A random INK
colour is set and the flower’s petals coloured using .SETV.

THE FOURTH JUMPING MAN SCREEN (RIDE ON THE MOVING PLATFORM)
Execution variable to be set on entry.
GOSUB 510 none.

77

510 INK 6: PAPER 0: BORDER 0: B
RIGHT 1: CLS :.SPN=60:.R0W=16:.C
0L=7:.PTBL
511. LEN=2:.HGT=24:.ROM=0:.COL=0
: INK 1: PAPER 1:.SETV:.COL=30:.
SETV
512. LEN=3:.C0L=2: INK 5: PAPER
5:.SETV:.C0L=27:.SETV
513. LEN=1:-C0L=5: INK 6:.SETV:.
C0L=26:.SETV
514. LEN=2:.HGT=4:.ROW=1:.COL=3:
INK 6: PAPER 1:.SETV:.C0L=27:.S

ETV
515. R0W=9:.C0L=3:.SETV:.CQL=27:
-SETV
516. R0W=17:,C0L=3:.SETV:.COL=27
:.SETV
517. HBT=3:.R0W=5:-C0L=3: INK 4:
.SETV:.C0L=27:.SETV
518. R0W=13:-COL=3:.SETV:.C0L=27
:.SETV
519. R0W=21:.C0L=3:.SETV:.C0L=27
:.SETV
520. HGT=3:.LEN=1:.RDW=5:.C0L=5:
INK 4: PAPER 5:.SETV:.C0L=26:.S

ETV
521. ROW=13:.C0L=5:.SETV:.C0L=26
:.SETV
522. R0W=21:.C0L=5:.SETV:.C0L=26
:.SETV
523. LEN=20:.HGT=3:.R0W=5:.C0L=6
: INK 4: PAPER 0:.SETV:.R0W=13:.
SETV:.R0W=21:.SETV
524 .SPN=12:.ATOF:.R0W=5:.C0L=3
:.PTBL:.C0L=16:.PTBL:.R0W=13:.PT
BL:.C0L=3:.PTBL:.R0W=21:.PTBL:.C
0L=16:.PTBL:.SPN=31:.COL=15:.ROW
=1:.PTBL:.SPN=25:.C0L=21:.R0W=18
:.PTBL
530.LEN=26:.HGT=3:.R0W=9: FOR I
=-36 TO 32 STEP 2:.C0L=I
531.SPN=7:.PTBL: GO SUB 540:.SP
N=8:.PTBL: GO SUB 540:.SPN=9:.PT
BL: GO SUB 540:.SPN=10:.PTBL: GO
SUB 540: NEXT I
532.AT0N: RETURN

In this highly animated screen, the little man is seen to hop in time with a moving platform as it
scrolls across the screen.
Lines 511 to 522 create the pillars from which the man and platforms appear to emerge.

The pillars are created from attributes with no pixel data present. The
technique is described in a previous
section.

Line 523 sets attributes for the parts of the screen that are going to be occupied by the platforms.
Line 524 places the various sprites on the screen. The animation sequence, used in previous
example, is used to animate the man, calling the subroutine at line 540 after each sprite has been
placed.

78

540.C0L=15:.R0W=1:.LEN=3:.MIRV:
.R0W=18:.C0L=21:.MIRV:.LEN=26:.R
□W—5:.C0L=3:.WR1V:.R0W=21:.WR8V:
.ROW=13:.WR4V:.R0W=9:.COL=I: RET
URN
This subroutine produces all the other animation that is seen on the screen by mirroring two
sprites and scrolling the 3 platforms by 1,4 and 8 pixels with wrap around.

THE DIFFERENT COLOURED COLUMNS MOVING ACROSS THE SCREEN
Execution variables to be set on entry.
GOSUB250 none.

250 GO SUB 100:.ROW=0:.COL=0:-L
EN=2:.HGT=8
260 INK 0: FOR M=1 TO 500:.INVV
270 PAPER INT (RND*7)+1:.SETV
280 LET X=?COL: LET Y=?LEN: IF
X+Y>=32 THEN LET X=-1:.COL=0
290.COL=X+1
300 LET X=?ROW: LET Y=?HGT: IF
X+Y>=25 THEN .ROW=l: LET X=-l
310.ROW=X+l
320 NEXT M: RETURN

This screen starts by inverting a window of length 2 and height 8, using the .INVV command. It’s
attributes are then set with a random paper colour using .SETV.
Lines 280 to 320 calculate the ROW and COL position of the window.

THE TRAIN SCREEN
Execution variables to be set on entry.
GOSUB130 none.

130 INK 6: PAPER 0: BORDER 0: C
LS :.C0L=9:.ROW=20:.SPN=60:.PTBL
131 LET Pl=7: LET P2=6: LET R=4
: LET C=2: LET H=3: LET L=28: GO
SUB 2000: PRINT AT 5,3;"UP TO 2
55 SOFTWARE SPRITES"
132. COL=0: . R0W=13:.SPN=48:.PTBL
:.COL—10:.PTBL:.COL=20:.SPN=34:.
PTBL
133. R0W=15:.SPN=49:.COL=0:.PTBL
:.COL=10:.PTBL:.COL=20:.SPN=35:.
PTBL
134. R0W=16:-SPN=51: FOR N=0 TO

32 STEP 8:.COL=N:.PTBL: NEXT N
135.SET=1:.COL=0:.R0W=16:.HGT=1
:.LEN=32
136.SET=2:.COL=20:.ROW=15
137.SET=3:.ROW=15:.COL=0
139 FOR 1=1 TO 200
140.SET=2:.SPN=35:.PTBL:.SET=3:

.SPN=49: GO SUB 150
141. SET=2: . SPN=36 : . PTBL: . SET=3:

.SPN=50: GO SUB 150
142.SET=2:.SPN=37:.PTBL:.SET=3:

.SPN=49: GO SUB 150
143.SET=2:.SPN=3B:.PTBL:.SET=3:

. SPN=50: GO SUB 150
144 NEXT I: RETURN

79

In this screen, 4 sprites (35 to 38) are successively placed to animate the wheels of the
locomotive. The coach is animated using 2 sprites that make up the wheels. These are sprites
49 and 50. The track is scrolled with wrap around.
Lines 131 to 134 place the sprites on the screen.
Lines 139 to 143 call up a subroutine at line 150 which animates the wheels of the

coach.

150.COL=0: .PTBL:.COL=10:.PTBL:
SET=1:.WL1V: RETURN

THE HORIZONTAL SCROLLING DEMO
Execution variables to be set on entry.

GOSUB 330 None

330.ATOF: INK 1: PAPER 1: BORDE
R 1: BRIGHT 0: CLS
332.LEN=32s.HGT=16:.COL=0:.ROW=
5: INK 0: PAPER 6:-SETV
333 LET P1=0! LET P2=2: LET L*=2
2: LET R=2: LET H=3: LET C=5: GO
SUB 2000: PRINT AT 3,6;"HORIZON
TAL SCROLLING"
334.SPN=15:.COL=0:.ROW=7:.PTBL:
.SPN=16:.COL=15:.PTBL:.SPN=17:.C
OL=30:.PTBL
335 PLOT 0,20: DRAM 255,0:.COL=
0:.R0W=1A:.SPN=1G:.PTBL:.RON=10:
.COL=l:.PTBL:.COL=4:.ROW=13:.PTB
L
340.COL=0:.LEN=32
341 FOR N=1 TO 500:,HGT=3:.ROW=

7:.WL1V:.HGT=3:.ROW=10:.MR4V:.RO
W=13:.UR1V:.ROW=16:.MRSV: NEXT N
:.ATON: RETURN

In this screen the landscape is seen to scroll left by 1 pixel, with wrap while the 3 spaceships are
seen to scroll in the opposite direction by 4,1 and 8 pixels respectively. The subroutine at line
2000 is used to define a window and it's shadow, in which the text, HORIZONTAL SCROLLING'
is printed.
Lines 344 and 335 PUT all the scenario data on the screen. The landscape is built up of 3

sprites, numbers 15,16 and 17, which are 15,15 and 2 characters long.
Line 341 scrolls the landscape and the 3 spaceships in the window whose length is 32

columns.

THE FIFTH JUMPING MAN SCREEN (THE EIGHT PLANETS)
Execution variables to be set on entry.
GOSUB 640 none.

80

640 BORDER 0: INK 6: PAPER 0: C
LS :.HGT=24s.LEN=32:.ROW=0:.COL=
0: .SETV
641. COL=10:.R0W=15:.SPN=60:.PTB
L:.R0W=5:.SPN=12: FOR N=0 TO 30
STEP 2::.COL—N:.PTBL: NEXT N
642. ATOF:.SPN=19:.HGT=3:. LEN=3:
.ROW=8:.COL=l: INK 7:.SETV:.PTBL
:.COL=7:.RON=14: INK 2s.SETVs.PT
BLs.COL=l1:.ROW=9: INK 3s.SETVs.
PTBL
643. COL=9s.ROW=21s INK 4s.SETVs
.PTBLs.COL=18s.ROW=l1s INK5s.SE
TVs.PTBLs.COL=29s.ROW=10: INK 6s
■SETVs.PTBLs.C0L=24s-R0W=14s INK
7s.SETVs.PTBLs.C0L=21s.ROW=21s.
SETVs-PTBL
645.ROW—1s FOR I=-30 TO 36 STEP
2s.COL=I
646.SPN=7s.PTBLs GO SUB 660s.SP
N=8s.PTBLs GO SUB 660s.SPN=9s.PT
BLs GO SUB 660s.SPN=10:.PTBLs GO
SUB 660s NEXT Is.ATONs RETURN

In this screen the now familiar man moves across a platform at the top of the screen whilst 8
planets of various colours are being animated.
Lines 612 and 613 set attributes in 3 by 3 windows on the screen using .SETV. The

planet sprite is now placed in these windows with the attribute switch set to
off (.ATOF).

Line 660 is used as a subroutine which animates the sprites by mirroring the planet
sprite data in the 3 by 3 windows.

660.COL=l:.ROM=8:-MIRV:-COL=7:.
ROW=14:.MIRV:.COL=24:.MIRV:.COL=
11s.ROUI=9:.MIRVs.C0L=9:.R0W=21:.
MIRV:-C0L=18s-ROW=lIs.MIRVs.COL=
29:.ROW=10:.MIRV:-C0L=21:-R0W=21
:.MIRV:.COL=I:-ROW=l: RETURN

THE BOUNCING PLANET SCREEN
Execution variables to be set on entry.

GOSUB110 none

110 GO SUB 100: INK 0: LET DR=1
:.HGT=DR: LET DC=1:.LEN=DC:.SP1=
19:.SP2—19: LET R=0:.ROH=R: LET
C=0:.COL=C:.SPN=19:.PTXR
115 FOR N=1 TO 1000:.MOVE
116 LET C=?COL: LET R=?ROW
117 IF C=29 OR C=0 THEN LET DC

=DC*-1:.LEN=DC: GO SUB 120
118 IF R=20 OR R=0 THEN LET DR

=DR*-1:.HGT=DR: GO SUB 120
119 NEXT N: RETURN

81

The original data on the screen is set up by a subroutine at line 100.
Lines 115 to 118 move the planet (sprite 19) about the screen using .MOVE. Every time the edge
of the screen is hit its paper colour is changed by the subroutine at line 120.

120 PAPER INT (RND*7j+1s.SETMs
RETURN

THE SMOOTH SCROLLING SCREEN
Execution variable to be set on entry.
GOSUB 500 none.

500 BORDER 7: INK Is PAPER 7s
BRIGHT 0s CLS s.ATOFs.R0W=16s.CO
L=Is.SPN=33 s.PTBL
501 LET PI =6s LET P2=0s LET L=1
Is LET H=5s LET R=7s LET C=4s GO
SUB 2000s PRINT AT 8,5;"SMOOTH”
;AT 10,5;"SCROLLING"
502. ATOFs.C0L=25s.R0W=19s.SPN=2

0s.PTBL
503. C0L=25s.ROW—0s.LEN=3s.HGT=2
2s.NPX=ls FOR N=1 TO 134s PLOT 2
12,ls.UCRVs NEXT N
504. COL=0s.R0W=2s.LEN=32s.HGT=3
s FOR N=1 TO 170s PLOT 212,136s.
WLIVs NEXT Ns.ATONs PAUSE 50s RE
TURN

In this screen a quill appears to draw a blue line vertically and then horizontally.
This effect is achieved very simply. A window is defined around the quill sprite and that data is
scrolled. A pixel is placed right at the edge of the window. After every scroll is executed, a pixel is
plotted, drawing the line.
Line 503 is the vertical scroll (.WCRV).
Line 504 is the horizontal scroll (.WL1V).

THE ATTRIBUTE SCROLLING SCREEN
Execution variable to be set on entry.
GOSUB 760 none.

760 GO SUB 100s INK 0s.LEN=ls.H
GT=13s.R0W=3s FOR N=3 TO 29s.COL
=Ns PAPER INT (RND*6)+2s.SETVs N
EXT N
761 LET L=19s LET H=3s LET R=19
■ LET C=7s LET P1=7s LET P2=4s G
O SUB 2000s PRINT AT 20,8;"ATTRI
BUTE SCROLLS"s.LEN=27s.C0L=3s.HG
T=ls FOR 1=3 TO 29s FOR Y=3 TO 1
6s.ROW=Y—1
762 FOR X=1 TO Ys.ATRVs NEXT Xs
NEXT Ys NEXT Is PAUSE 50s RETUR

N

82

The screen is set up using the subroutine at line 100.
Line 760 sets up 26 widows with INK 0 and a random PAPER colour. These windows

are 1 character wide by 13 high.
Line 761 creates the window that contains the text "ATTRIBUTE SCROLLS” , via the

subroutine at line 2000.
The top line of attributes is now scrolled by 1 character to the right, the second line is scrolled by
2 characters, the third by 3 e tc ., until the bottom is reached. This process is repeated until the
attributes have reformed in their original columns.

THE SPACE TANKS WITH ROTATING RADAR DISHES SCREEN
Execution variable to be set on entry.
GOSUB 800 none.

800 INK 4: PAPER 0: BORDER 0: C
LS
801 .SPN=15:.ROW—6:.COL=0:.PTBL
:.C0L=15:.SPN—16:.PTBL:.COL=30:.
SPN=17:.PTBL
802.SPN=21:.RON-9:.COL-13:.PTBL
:.COL—5:.PTBL:.SPN=27:.ROM—13:.C
0L=13:.PTBL:.SPN-26:.C0L=5:.PTBL
803.ATOF:.SPN=13:.COL-0:.ROW-15
:.PTBL:.C0L=13:.PTBL:.C0L=27:.PT
BL:.ATON: PAPER 4:.LEN=32:.HGT-6
:.RON-16:.COL=0:.SETV
805 PAPER 0: . HGT=3: . LEN=32: . RON

=0:.COL=0: INK 5:.SETV:.RON=3: I
NK 7:.SETV:.ATOF
806.SPN=18:.RON-0:.COL-6:.PTBL:
.COL—23:.PTBL:.RON-3:.COL=15:.PT
BL
807 LET L=18: LET H=3: LET Pl-6
: LET P2=l: LET R=17: LET C=12:
GO SUB 2000: PRINT AT 18,13;"SPR
ITE ANIMATION"
810 FOR M=1 TO 50: FOR N=40 TO
47:.SPN=N: GO SUB 820: NEXT N: N
EXT M:.ATON: RETURN
In this screen space vehicles are displayed with rotating radar dishes. To obtain the animation
the 8 sprites are sequentially PUT , like frames from a cartoon. Sprites 40 to 47 are used.
Lines 801, 802,803 and 806 build up the screen scenario.
Line 807 uses the subroutine at line 2000 to set up the window and shadow that the text

is printed in.
Line 810 animates the radar dishes by sequentially putting a sequence of 8 sprites.
Line 820 is used as a subroutine to scroll the spaceships overhead.

820.COL-15:.RON-9:.PTBL:.COL-7:
.PTBL:.HGT—6:.RON-0:.COL-0:.LEN-
32:.NR8V: RETURN

THE ROTATING SCREEN
Execution variables to be set on entry.
GOSUB 830 none.

83

830 BORDER 0: INK 6: PAPER 0:
BRIGHT 1: CLS :.C0L=18:.ROW=20:.
SPN=60:.PTBL:.ATOF: LET C=21: LE
T R=0: LET L=10: LET H=3: LET PI
=7: LET P2=4: GO SUB 2000: PRINT
AT 1,22;“ROTATION"
840.LEN=2:.HGT=2:.ROW=5:.C0L=12
: GO SUB 860:.R0W=8:.C0L=8: GO S
UB 860:.COL=16: GO SUB 860:.ROW=
12:.C0L=5: GO SUB 860:.COL-19: G
O SUB 860:.R0W=16:.C0L=8: GO SUB
860:.C0L=16: GO SUB 860:.ROW=19
: . C0L=12: GO SUB 860
841 FOR N=1 TO 19:.SPN=52: GO S

UB 850: PAUSE 20-N:.SPN=53: GO S
UB 850: PAUSE 20-N:.SPN=54: 60 S
UB 850: PAUSE 20-N:.SPN=55: GO S
UB 850: PAUSE 20-N: NEXT N
842.AT0N: RETURN

In this screen 8 faces are rotated. These sprites are in fact, rotated copies of sprite 52. Sprites
53,54 and 55 were created in the sprite generator program. The 4 sprites are sequentially “ PUT”
to achieve a rotation effect on the screen.
Line 840 sets up the attributes of the rotating characters. Using a subroutine at line 860.

860 PAPER 0: INK INT <RND*6>+2:
■SETV: RETURN

Line 841 places the sprites on the screen with a decrementing pause after each PUT
operation. The sprites are placed by calling a subroutine at line 850.

850.ROW=5:.COL-12:.PTBL:.ROW=B:
.C0L=8:.PTBL:.C0L=16:. PTBL: . ROW=
12:.C0L=5:.PTBL:.COL=19:.PTBL:-R
□W=16:.C0L=8:.PTBL:.C0L=16:.PTBL
:.R0W=19:.COL=12:.PTBL: RETURN

THE ATTRIBUTE TUNNEL SCREEN
Execution variables to be set on entry.
GOSUB 570 none.

570 GO SUB 100: INK 0: FOR M=1
TO 10
573 BORDER INT (RND*7>+1: FOR
N=16 TO 1 STEP -1
575 .COL=(16—N):.ROW=(16—N>:.HG
T=N+8:.LEN=(N»2): PAPER INT (RND
*7)+l:.SETV: NEXT N
580 BORDER INT (RND*7)+1: FOR

N=1 TO 16
585 .COL=(16—N):.ROW=(16—N):.HG
T=N+B:.LEN=(N*2): PAPER INT (RND
*7)+1:.SETV: NEXT N
590 NEXT M: RETURN

84

In this screen the data is placed on the screen from the subroutine at line 100, then using a
simple routine, the dimensions and position of the window are changed and a random PAPER
colour is set in it using .SETV.

THE SIXTH JUMPING MAN SCREEN (THE STAIRCASE)
Execution variables to be set on entry.
GOSUB 730 none.

730 INK 6: PAPER 0: BORDER 0: B
RIBHT 1s CLS :.COL=0:.ROM-16:.SP
N—60:.PTBL
731.ROM=0:.COL=28:.SPN-23:.PTBL
:.R0W=4s.COL=20:.SPN=22:.PTBL:.R
OM-12:.COL-28:.PTBL:.SPN=25s.COL
=3:.ROM-12:.PTBL
740.SPN—12:.COL=0:.ROM-4:.PTBL:
.COL-2:.PTBL: FOR N=4 TO 24 STEP
2:.ROM-N:.COL-N:.PTBL:.COL=N+2:
.PTBL: NEXT N:.ROM-22: FOR N-0 T
0 32 STEP 2:.COL-N:.PTBL: NEXT N
750.NPX— 1:.H8T-6:.LEN-3:.ROM-0
: FOR 1— 10 TO 6 STEP 2:.C0L=I:
751.SPN-7:.PTBL: PAUSE 8:.SPN-8
:.PTBL: PAUSE 8:.SPN-9:.PTBL: PA
USE 8:.SPN-10:.PTBL: PAUSE 8: NE
XT I
752 LET R-0: FOR 1-8 TO 24 STEP
2:.COL-I: LET R-R+2
753 FOR Y—1 TO 16:.HCRV: NEXT Y
:.ROW-R:.SPN-7:.PTBL: PAUSE 8:.S
PN-8:.PTBL: PAUSE 8:.SPN-9:.PTBL
: PAUSE 8:.SPN-10:.PTBL: PAUSE 8
: NEXT I
754.ROM-18: FOR 1=26 TO 34 STEP
2:. COL—I:
755.SPN-7:.PTBL: PAUSE 8:.SPN-8
:.PTBL: PAUSE 8:.SPN=9:.PTBL: PA
USE 8:.SPN-10:.PTBL: PAUSE 8: NE
XT I:.ATON: RETURN

In this screen the now familiar Jumping Man is seen to jump down a staircase.
Lines 730 to 740 place all the scenario data on the screen.
Lines 750 to 751 animate the man until he reaches a COL value of 6.
Lines 752 and 753 sequentially PUT the man to give the impression of leaping. He is

then scrolled down in a window defined around him onto the step below. The
ROW and COL values for the new position of the man are set and the process
repeated.

Lines 754 to 755 animate the man once he has reached the bottom of the staircase. He is
moved ‘off screen’ from COL position 26.

THE HELICOPTER ANIMATION SCREEN
Execution variables to be set on entry.
GOSUB 880 none.

85

880.ATOF: INK S: PAPER 0: BRI6H
T 1: BORDER 0: CLS :.HGT—24:.LEN
=32s .ROW=0: .COL=0: .SETV: FOR N-0
TO 300: PLOT INT <RND«256>,INT
<RND*143): NEXT N:.HGT-3:.LEN-3:
INK 6:.C0L=5:.ROW-10:.3PN=19:.P

TBL:.SETV:.C0L=28:.ROW-7:.PTBL:
INK 4:.SETV
881 LET L=11: LET R=0: LET H=3:
LET C=9: LET Pl=7: LET P2-3: 60
SUB 2000: PRINT AT 1,10;"ANIMAT
ION": .ATOF:.ROW-21:.SPN-57: FOR
N=1 TO 28 STEP 3:.COL-N:.PTBL:
NEXT N
882 FOR C=1 TO 5
883.ROW-22:.COL-l + INT (RND*9> *3
: LET S-7SCV
884 IF S-0 THEN GO TO 883
885.ROW-21: FOR T-30 TO 1 STEP
-4:.SPN-56:.PTBL: PAUSE T:.SPN-5
7:.PTBL: PAUSE T: NEXT T
886 FOR T—1 TO 10:.SPN-56:.PTBL
: PAUSE 3:.SPN-57:-PTBL: PAUSE 3
: NEXT T
887. LEN—INT <RND*3)-1: . H6T— 1:
FOR T—1 TO 22:.SP1—57:.SP2—56:.M
OVE: PAUSE 3:.SP1-56:.SP2-57:.MO
VE: PAUSE 3: NEXT T: NEXT C:.ATO
N: RETURN
In this screen helicopters with rotating rotor blades are seen to take off and fly across a starry
background.
Line 80 plots the stars on the screen and puts the planet sprite.
The text ‘ANIMATION’ is placed in a window created in the subroutine at line 2000. The
helicopters are animated and moved over the stars using the .MOVE command. The sprite
numbers of the two sprites are stored in SP1 and SP2, and swapped after each execution by
.MOVE.
Line 883 picks the helicopter to be flown at random using ?SCV (to see if the helicopter

has yet to be flown). The helicopter is animated over the stars using .MOVE.

THE .MOVE SCREEN
Execution variables to be set on entry.
GOSUB 900 none.

900 BRIGHT 0: INK 0: PAPER 6:
BORDER 6: . HGT-24: . LEN-32: . ROW-0 :
■COL-0: CLS :.SETV:.ATOF:.COL-18
:.ROW-20:.SPN-33:.PTBL: LET L-8:
LET H—3: LET C-0: LET R-19: LET
PI—5: LET P2-0: GO SUB 2000: PR
INT AT 20,1;".MOVE"
901. ATOF:.SPN-14:.ROW-0: GOSUB
720:.ROW-3: GO SUB 720:.ROW-6:
GO SUB 720:.ROW-9: GO SUB 720
902. ROW-0:.COL-0:.HGT-12:.LEN-3
2: FOR N-l TO 80:.WR1V: NEXT N
905.ROW-0:.COL-10:.HGT-18:.LEN-
12:.NPX——1: FOR N=1 TO 40:.WCRV:
NEXT N

86

906 FOR M=0 TO 15:.SET=M
907 LET X=INT (RNDS4)i LET Y=IN

T (RND*4):.ROW=<Y*3)+5:.C0L=(X*3
)+10
908 LET S=?SCV: IF S=0 THEN GO
TO 907
909.SP1=14:.SP2=14: GO SUB 920s
FOR N=1 TO 30:.MOVE: NEXT N: NE

XT M
910 FOR M=0 TO 15:.SET=M: LET H
=?HGT: LET H=H*-1:.HGT-H: LET L=
?LEN: LET L=Lt-l:.LEN=L
911 FOR N=1 TO 30:.MOVE: NEXT N
: NEXT M
912. ROW=0:.COL=10:.HGT=1B:.LEN=
12:.NPX=1: FOR N=1 TO 40:.UCRV:
NEXT N
913. ROW=0:.COL=0:.HGT=12:.LEN=3
2: FOR N=1 TO B0:.UL1V: NEXT N
919 RETURN

In this screen an array of invaders are scrolled into the middle of the screen and then fly off, one
at a time in different directions. Once all the invaders have flown they reassemble the array and
scroll off again. This screen not only demonstrates the full use of .MOVE, but also the use of
.SET1 to store and recall the positions of the sprites stored in the various variable sets.
Line 901 places the array of sprites on the screen by calling the subroutine at line 720

which was also used by the other invader array screen.
Lines 902 and 905 scroll the invaders, using .WR1V and .WCRV.
The invaders are then moved off at random after using ?SCV to find them on the screen. A
random number between -2 and 2 is stored in both HGT and LEN. These values are checked to
make sure they are not both zero which would mean the sprite would not move.

920•LEN=INT CRND*5>-2:.HBT=INT
<RND*5>-2: LET L=?LEN: LET H=?HG
T: IF L=0 AND H=0 THEN GO TO 92
0
921 RETURN

Since a different variable set is used for each invader, the direction of the invaders can be
reversed by negating HGT and LEN, reassembling the array.
Lines 912 to 913 scroll the array off the screen.

THE SCROLLING OASIS LOGO ACROSS THE ATTRIBUTES SCREEN
Execution variables to be set on entry.
GOSUB 930 none.

930.SET=2:.HGT=4:.LEN=32:.ROW=l
0:.COL=0:.SPN=33: PAPER 0: BORDE
R 0: INK 7: CLS :.ATOF:.PTBL:.SE
T=l: FOR M=1 TO 9
931 FOR N=1 TO 16 STEP 2
932.COL=N:.R0W=3+N/2:.HGT=(17-N
):.LEN=2*(17-N): PAPER INT (RND*
6):.SETV: GO SUB 940: NEXT N
933 FOR N=15 TO 1 STEP -2
934 .C0L=N:.R0W=3+N/2:.HGT=(17-

N):.LEN=2*(17-N): PAPER INT (RND
*6):.SETV: GO SUB 940: NEXT N
935 NEXT M: RETURN

87

In this screen a white Oasis logo is seen to scroll from left to right across the screen over
flashing attributes.
Line 930 places the logo (sprite 33) on the screen.
Lines 931 to 934 create a window of decreasing and then increasing dimensions. The

PAPER colour is set to a random value while the INK colour remains white. A
subroutine at line 940 is called each time, to scroll the logo using .WR1V.

THE HORIZONTAL SCROLLING GRAPH SCREEN
Execution variables to be set on entry.
GOSUB 950 none.

950 INK 7: PAPER 1: BORDER 1: B
RIGHT 1: CLS :.ATOFi.R0W=3|.COL=
9:.SPN=33:.PTBL
951 LET Pl=7: LET P2=4: LET L=3

0: LET H=7: LET R=7: LET C=0: GO
SUB 2000
952 LET PI-6: LET P2=5: LET L=2
2: LET H=3: LET R=19: LET C=4: G
0 SUB 2000: PRINT AT 20,5;"HORIZ
ONTAL SCROLLING"
955.LEN=28:.HGT=5:.R0W=8:.COL=l
: LET X=92
956 FOR M=1 TO 500: LET I=INT (
RNDS3) —1
957 LET X=X+I
958 IF X=112 THEN LET X=lll
959 IF X=71 THEN LET X=72
960 PLOT 8,X:.SRIV: NEXT M: RE

TURN

In this screen a graph appears to emerge from the left and scroll to the right where it disappears.
This is achieved by plotting on the left of the scrolling window after every scroll operation.
Line 955

Lines 956

Lines 958

Line 960

defines the window of length 28 and height 8. The original V position for the
pixel plotting is 92.
and 957 selecta random number in the range -1 to 1 and this is added to the V
position for the plot to produce the random wavey line.
and 959 check that the pixel is never plotted outside the window that is being
scrolled.
plots the pixel and then scrolls the window using .SR1V. This sequence is
repeated 500 times.

88

THE LAST JUMPING MAN SCREEN (THE CHESS BOARD)
Execution variables to be set on execution.
GOSUB 970 none.

970 INK 6: PAPER 0: BRIGHT 1:
BORDER 0: CLS :.SET=7 : .LEN=32:.H
GT=4:.R0W=9:.COL=0:.SET=0:.ATOF
971 FOR Y-0 .TO 16 .STEP 4: FOR
X=0 TO 28 STEP 4
972.HGT=2:.LEN=2:.ROW=Y:.COL=X:
PAPER 4:.SETV:.C0L=X+2:.ROW=Y+2
:.SETV: PAPER 1:.HGT=1:.COL=X:.R
0W=Y+2:.SETV:.C0L=X+2:.R0W=Y+4: .
SETV: NEXT X: NEXT Y
973.SET=2:.HGT=4:.LEN=32:.SPN=3
2:.C0L=5:.ROW=0:.PTBL:.COL=0:.SE
T=3:.R0W=4:.COL=20:.SPN=32:.PTBL
: .HGT=4:.LEN=32:.COL=0:.SET=4:.S
PN=32:.R0W=16:.C0L=28:.PTBL:.HGT
=4:.LEN=32:.COL=0:.SET=0
975.ROW=20:.COL=0:.SPN=60:.ATON
:.PTBL:.ATOF:.SET=0:.R0W=9: FOR
I=-33 TO 32 STEP 4:.C0L=I
976.SPN=7:.PTBL: GO SUB 980:.SP

N=B:.PTBL: GO SUB 980:.SPN-9:.PT
BL: GO SUB 980:.SET=7:.SR8V: GO
SUB 980:.SET=0:.SPN=10:.C0L=I+2:
•PTBL: GO SUB 980:: NEXT I
977.ATON: RETURN

In this screen the Jumping Man moves across the screen which is being patrolled by 3 scrolling
chess pieces.
Lines 971 and 972 build the chequered pattern out of attributes, with their INK colours

set to yellow and the paper colours set to CYAN, BLUE and BLACK.
Line 973 places the sprites on the screen and define the windows around them.
Lines 975 and 976 animate the little man calling a subroutine at line 980 which will scroll

the 3 chess pieces by swapping between the variable sets.

980.SET=2:.WL1V:.SET=3:.WR1V:.S
ET=4:.WL1V:.SET=0: PAUSE 2: RETU
RN

89

THE TORTOISE EATING THE PLANTS SCREEN
Execution variables to be set on entry.
GOSUB990 none.

990 INK 4: PAPER 0: BORDER 0:
CLS :.C0L=9:.R0W=3:.SPN=60:.PTBL
:.ATOF:
991 PAPER 4: .LEN=32:.HGT—6:.ROW
=12:.COL-0:.SETV
992.SPN=4:.R0W=9: FOR N=4 TO 31
STEP 2:.COL=N:.PTBL: NEXT N
993.ATON:.ROW=10:.SPN-1:.COL=0:
■ PTBL
994 FOR N=4 TO 31 STEP 2:.ROW-9
: . H6T=3: . LEN=2: . COL=N: . NPX— 1: F
OR G=1 TO 24:.SCRV: NEXT G
995 BRIGHT 0: INK 5: PAPER 0:.S

ETV:.COL=N—4:.LEN=6: FOR G=1 TO
16:.WR1V: NEXT G: NEXT N
996 PRINT AT 8,28;"BURP": PAUSE
50: PRINT AT 8,28,...... .MIRV
997. LEN-32:.R0W=9:.HGT=4:.COL-0
: FOR N—1 TO 256:.SL1V: NEXT N
998. ATON: RETURN

In this screen the tortoise is seen to walk from left to right eating the plants as it goes along.
Line 992 places the plants (sprite 4) on the screen.
Line 993 places the tortoise (sprite 1) on the screen.
The plant directly in front of the tortoise is scrolled down. The attributes of the tortoise are set in
front of it and the tortoise is scrolled forward on to the next plant. This process is repeated until
the tortoise has reached the end of the screen where it is mirrored and then scrolled all the way
back.

THE TEXT WINDOW SUBROUTINE
Execution variables to set on entry.
GOSUB 2000 L = the length of the window.

H = the height of the window.
R = ROW position.
C = COL position.
P2 = the paper colour of the shadow.
P1 = the paper colour of the window.

2000 .LEN=L:.HGT=H:.ROW=R+1:.COL
=C+1: PAPER P2: INK 9:.SETV
2001 .ROW=R:.COL=C: PAPER P1:.SE
TV
2002 LET C=C*8: LET R=175-(R*8):
LET H=H*8-1: LET L=L*8-1

2003 PLOT C,R: DRAW L,0: DRAW 0,
-H: DRAW -L,0: DRAW 0,H
2004 RETURN

This subroutine is used to create the coloured windows in which the titles of the various screens
are placed. The window is in fact cleared twice, the first time with an offset of one character to
the right and down to produce the shadow effect. The colour of the shadow is defined by the
variable P2. The main window colour is defined in the variable P1.

90

