

W H ITE LIGHTNING

by OASIS SOFTWARE

Copyright Notice

Copyright © 1984 by Oasis Software. No part of this manual m y be
reproduced on any media without prior written permission from Oasis
Software.

This Manual

Piracy has reached epidemic proportions and it is with regret that we are
forced to reproduce this manual in a form which cannot be photocopied. Our
apologies for the inconvenience this m y cause to our genuine customers. A
reward will be paid for information leading to the successful prosecution
of parties infringing this Copyright Notice.

Copyright © by Oasis Software

CONTENTS

INTRODUCTION

OPERATING INSTRUCTIONS

SPRITE GENERATOR PROGRAM
Introduction
Operating Instructions
Gettiner Familiar with the Function Keys

SPECTRA FORTH
Introduction
Input/Output Operators
Mathematical Operators
Stack Operations
Other Operations
Colon Definitions
Control Structures
Conditional Branching
Constants and Variables
Other Commonly Used Forth Words
Using the Editor
Forth Error Messages

IDEAL
Introduction
IDEAL Variables
Errors
Sprite Buffer Organisation
Loading Sprites from Tape
The Buffer
Background Scrolling
IDEAL Mnemonics
General Points
Sprite Utilities
Scrolling
GETS and PUTs
Sprite Transformations
Interrupt Related Words
BASIC Interface Words
Miscellaneous Words
Forth/BASIC Words
Foreground/Background
Logical Operations
Collision Detection and Sprite Recognition
The BASIC Interface
Program Development
Table of Screen Addresses
Function Key Sotmary
Arcade Graphics Library
Demo Sprite Library

1

3

4
4
6
6

18
19
19
21

8
3

8
8

8
8

6
2

3
8

6
8

2
8

8
1

3
8

6
6

6
6

6
6

6
6

8
8

8

8
8

8
8

3
8

8
K

Page

FIG-FORTH GLOSSARY 91

IDEAL GLOSSARY 119

FORTH/BASIC GLOSSARY 124

USR CALLS 125

EXTENDED SPECTRA FORTH GLOSSARY 125

THE D E M O -A BRIEF DESCRIPTION 126

SOME SIMPLE PROGRAMMING EXAMPLES 129

OPERATING INSTRUCTIONS

1) Rewind the tape narked "White Lightning". Disconnect interface
1 if fitted.

2) Load using LOAD"" then stop the tape. White Lightinig will auto-run.

3) Once loaded, you will get the prcnqpt LOAD SPRITES Y/N.

4) If it's the first time you've used the package, type Y to load the
demonstration sprites, which follow directly after White Lightning on the
same tape. There is a section of data before the sprites which doesn't
load, but don't worry about this, this is information used by the sprite
development package. Once loaded, the LOAD SOURCE Y/N prompt will appear.
Press N to enter White Lightning or, if you wish to Load same source code
place the appropriate cassette in the recorder, press PLAY and then type Y.

5) To RUN the demonstrations, just LOAD using LOAD"" and the program will
auto-run.

6) To RUN the Sprite Development Software just type LOAD"" and again the
program will auto-run.

TO THE NEWCOMER

When you have run the demonstration tape and have seen what can be done, this may
give you the incentive to learn all you can to produce full specification games
for yourself. The author of this manual knew nothing of White Lightning before
starting this project, but can premise you that after only a few hours of
experimentation, became fairly adept and had the confidence to want to go further.
It may all look a little complicated at first, but please be assured, that after a
short time, and only a little effort, the fog really does clear!

Mike Butler.

3

SECTION 1

THE SPRITE GENERATOR PROGRAM
by Paul Newnham

INTRODUCTION

The Sprite Generator Program was developed to oarrpliment the White Lightning
language. The language is comprised of commands for manipulating sprites and
screen data but does not have the facility to directly design graphics characters.
This means there are two phases to games creation. The first involves designing
and editing your graphics characters with the sprite generator program, and the
second involves the writing of the game itself using the White Lightning language.
In practice the two areas of work will probably be carried out simultaneously.
For those of you who are not artistically inclined, there are two sets of
previously defined graphics characters ready to use.

The Arcade Character Set

The arcade character set is an integral part of the sprite generator program - 167
characters are provided in all. To see these, LOAD and run DEMO B using LOAD
The DEMO will auto-run. This will tell you which characters can be called up by
which number, using Function Key Z. These characters are summarised as the
penultimate part of this section.

The Demonstration Sprites

Directly after White Lightning on side A you will find the demonstration sprites.
By running the tape past White Lightning and using the LOAD SPRITES FROM TAPE
faciltity, these can be Loaded and edited for your cwn use. The various sprites
are tabulated at the end of this section.

USING SPRITES W ITH W H ITE LIGHTNING

Once you have completed an editing session, the sprites generated should be Saved
to tape for further editing sessions, or for use with the White Lightning language
itself. To Load your sprites into White Lightning:

1. Load White Lightning using LOAD ""

2. Insert the tape containing your sprites into the tape recorder and press Y in
response to the "LOAD SPRITES Y/N" prompt. The sprites will be Loaded at the
address at which they were saved using the sprite generator program.

COLD START

If you enter the sprite generator program via a COLD start, then all sprites
previously stored will be cleared and all system variables reset. If, for
instance, you wish to use the demonstration sprites, you would enter via a COLD
start. The program must always be initially entered via a COLD start.

W ARM START

If you enter the program via a WARM start then all sprites will be conserved and
all system variables left unchanged. It is provided principally for re-entering
the program after an accidental EKEAK or ERROR. If you do accidentally BREAK;
type: GOTO 3 and then enter via the WARM start.

4

BUFFER SIZE

When White Lightning runs programs in Background mode (see section 3) the top end
of memory is used as a scratch pad. The size of this area depends on the
operation of the program and calculating the amount you need to reserve is covered
in section 3. When the sprite generator program is entered the buffer has a
default size of 256 bytes. This is probably much larger than required, but until
you are familiar with the package or need to save a few extra bytes, just leave
the buffer at 256 bytes.

THE CHR$ SQR

CHR$ SQR is the abbreviation used throughout this text for character square, and
refers to the 8 by 8 grid to the left of the sprite screen. This is the area used
to create and edit sprites one character at a time.

TH E SPRITE SCREEN

This is the area' of screen 15 characters by 15 characters on which sprites are
created, developed, transformed and generally worked on.

TH E CHR$ SQR CURSOR

This is the non-destructive flashing cursor which is used to design and edit the
character currently held in the CHR$ SQR.

THE SPRITE SCREEN CURSORS

These are the two flashing cursors, displayed in the Row beneath the sprite screen
and the oolum to the right of the sprite screen. They are used to indicate the
position of the top left hand corner of the screen window currently being operated
upon. The actual cursor positions are measured from the top left hand corner of
the sprite screen and are displayed in real time on the screen as X POS (column)
and Y POS (row). Top left is X POS 1 Y POS 1. Bottom right is X POS F Y POS F.

SCREEN WINDOWS

The area of the screen currently being worked on is referred to as the screen
window. Its position is defined by X POS and Y POS, which correspond to the
positions of the sprite screen cursors, and its dimensions are defined by SPRITE
HEIGHT and SPRITE LENGTH. To see the screen window you are currently working on
just press F. The window will flash.

SPRITE LIBRARY

This refers to the set of sprites you are currently working with and can contain
up to 255 sprites or use 12500 bytes. If your sprite library needs more than
12500 bytes you can use the merging procedure detailed in section 3 to Load and
merge more than one sprite library into White Lightning.

5

Insert the Sprite Generator Program Tape, type LOAD"" and load into the computer
as normal.

Once loaded, the program will auto-run and the screen message, "COLD CR WARM
START" will appear. If this is the first execution of the program or if you wish
to clear the sprite memory, press C for a COLD START.

A further screen message will now appear asking if you wish to change the buffer
size - this has a default value of 256 bytes. For now, press N. This function
will become more apparent later.

NOTES:

1. A WARM START will not destroy any sprites already in memory and if ever the
program is accidently caused to BREAK, type GOTO 3 and in response to the screen
prompt, execute a WARM START.

2. A COLD START will destroy any and all sprites defined in memory.

3. WARM STARTs can only be executed after an initial COLD START.

GETTING FAM ILIAR W ITH THE FUNCTION KEYS

New lets get familiar with some of the Function Keys - a full list will be found
at the end of this section.

THE CHR$ SQR

This is the grid square on which you create and edit characters for your own
sprite library. To move the cursor:

1. Press the 5 key for each movement to the left.

2. Press the 6 key for each movement downward.

3. Press the 7 key for each movement upward.

4. Press the 8 key for each movement to the right.

New that you knew how to move the cursor, let's fill in a few squares:

1. Move the cursor to any square that you like and release the keys.

2. Press the 9 key to set the square.

3. New move the direction keys and fill in a few more squares.

New that we have set some squares, what about deleting a few of them? This is
simple:

OPERATING INSTRUCTIONS

1. Move the cursor to a square that you have set and release the keys.

2. Press the 0 key to clear the square.

New have a go at setting and clearing seme squares, just to get used to it.

6

The Sprite Screen Cursors

New that you're used to moving the CHR$ SQR cursor around, moving the sprite
screen cursors is a piece of cake:

1. Move the X cursor by pressing SYMBOL SHIFr and the 5 or 8 key to move left or
right respectively.

NOTE: If you've never been able to remember which is the X or which is
the Y movement, remember this little saying:
X is a cross - if you say it quickly it sounds like, X is across -
which it is!

2. Move the Y cursor by pressing SYMBOL SHIFT and the 7 or 6 key to move up or
down respectively.

Character Building

No, not yours - building up characters to make up sprites! You've probably got
quite a mess in the CHR$ SQR, so let's clear it:

1. Press the Q key and respond to the prompt in the text line by pressing Y and
the CHR$ SQR will clear.

Just to get you used to a similar function, let's clear the Sprite Screen as well,
even though it's clear:

1. As you can see, to clear the CHR$ SQR press Q, to clear the sprite screen
press SYMBOL SHIFT Q - cunning eh?

Now that we have clear screens we can start to go places. Have a go at this:

1. Move the X and Y cursors to 1 and 1 respectively.

2. Press the Z key (to call up a character from the Arcade Library) and enter the
nuirter 75 followed by ENTER. A space invader type character will appear on the
sprite screen.

3. Press the K key and answer Y to the prompt and hey presto - the character has
been placed in the CHR$ SQR.

This will illustrate quite nicely how a character is built ip.

Have a go at changing this character using the 5, 6, 7 or 8 keys to move the CHR$
SQR cursor and the 9 and 0 keys to set or clear a square. You won't be able to
see the CHR$ SQR cursor at the moment - just press one of the cursor keys and it
will flash for you.

Let's GET your 'new character' into memory:

1. Move the sprite screen cursors to X POS 4 and Y POS 4 (SYMBOL SHIFT 5, 6, 7,
and 8)

2. Press the J key and answer Y to the question.

3. Your new character was placed on the sprite screen from the CHR$ SQR by using
the J key. Your original character is still there at X POS 1 Y POS 1.

7

4. Now press the S key to give your character a sprite number. For now, just
enter the number 1 and press ENTER.

5. Press the G key to GET the character into memory as a sprite and answer Y to
the prompt - your character will flash to confirm.

Now, let's prove that your character is in memory:

1. Press the SYMBOL SHIFT Q to clear the sprite screen.

2. Press S to tell the computer which sprite you are calling up (there is only
one at the moment of course). Enter 1 followed by ENTER.

3. Now press P to PUT the sprite to the sprite screen and answer Y to the
question.

4. Now you will be given four more options. Don't worry about 2, 3 and 4 for now
- we just want to place our sprite on the sprite screen. Press 1, and there it
is!

You will notice that although you correctly got your cwn sprite PUT back to the
sprite screen, the original character from the Arcade Library wasn't. This
example was to show you that any actions that you call for, will only happen to
the character that the sprite screen cursors are pointing to, as we pointed out in
the Introduction.

You will also notice that the CHR$ SQR still contains your new character - have a
look to ocmpare.

We have seen how to call up a character from the Arcade Library and how, in
essence, to build up a character in the CHR$ SQR. There is another way to build
up a character:

1. Press SYMBOL SHIFT Q to clear the sprite screen.

2. Press the D key, answer Y to the question, and enter the following, very
carefully, pressing ENTER after each entry:

a) H24 126 H9D 255 HFF 153 129 102

3. Guess who's back! (You should have a space invader type character).

This is the DIRECT DATA INPUT. Direct Data characters are built up from 8 bytes
of data, one byte at a time.

NOTE: Data can cnly be entered using values in the range 0 to 255 Decimal or
H00 to HFF HEX. The character H must precede a HEX entry.

Let's do a quick review of the functions that have used:

1. CHR$ SQR - cursors, 5, 6, 7 and 8 keys to move and the 9 and 0 keys to set and
clear squares. The Q key clears the CHR$ SQR.

2. SPRITE SCREEN - 5 and 8 to move the X cursor (X is across remember) and 6 and
7 to move the Y cursor. The SYMBOL SHIFT and Q keys clear the sprite screen.

3. The Z key calls up the ARCADE CHARACTER LIBRARY - 1 to 167.

8

4. The K key transfers a character from the SPRITE SCREEN to the CHR$ SQR.

5. The J key transfers a character from the CHR$ SQR to the SPRITE SCREEN.

6. The S key defines and subsequently calls up a particular SPRITE.

7. The G key GETs your sprite into memory.

8. The P key PUTs your sprite from memory onto the SPRITE SCREEN.

9. The D key enables you to enter a character by DIRECT DATA to the SPRITE
SCREEN.

You've used quite a few functions! Have a go at calling up some more Arcade
Characters, change them if you wish, then GET them into memory and PUT them onto
the SPRITE SCREEN.

The Information Rectangle

This is a most useful facility which can be of great service to you. Most of the
information is fairly obvious, but we'll run through it all:

1. MEMORY IEFT, as it says, is the amount of memory available for sprites; these
are the sprites that you define and do not include the Arcade Characters - to use
these, of course, you must define them as sprites by GETting them into memory.

2. X POS Y POS, these are the current positions of your SPRITE SCREEN X and Y
cursors with reference to the figures on top and to the left of the SPRITE
SCREEN.

3. SPRITE, this indicates the position, in memory, where your defined sprite is.

4. SPST, indicates the SPrite space STart point, in memory. (Before any sprites
are defined this has an initial value of 65280).

5. SPND, indicates the SPrite space eND point, in memory.

6. SPRITE HEIGHT, indicates the height of your defined sprite, in character
squares, as indicated by the figures at the top and to the left of the SPRITE
SCREEN. (This has an initial value of 1).

7. SPRITE LENGTH, indicates the length of your defined sprite, in character
squares, as indicated by the figures at the top and to the left of the SPRITE
SCREEN. (This has an initial value of 1).

8. SPRITE NUMBER, indicates the sprite currently defined. (This has an initial
value of 1).

9. The Text Line, to show the Function called up, and the available options.

SPRITE 65266
SPST 65266
SPND 65280

MEMORY LEFT 12486 X POS 4 Y POS 4
SPRITE HEIG HT -1
SPRITE LENGTH -1
SPRITE NUMBER -1

The text line

9

More Function Keys

Let's move on. IREAK the program - CAPS SHIFT/BREAK keys, type GOTO 3 and press
ENTER. Execute a COLD (C) START and answer N to BUFFER SIZE CHANGE. Nothing of
what you have previously done is in memory. (We could have cleared all your
sprites by defining them (S key) and pressing W (WIPE SPRITE), but depending on
how many you defined whilst experimenting, it could have been a lengthy process!)

Now have a go at this:

1. Clear the sprite screen (SYMBOL SHIFT Q)

2. Press X to activate the INK variable and then set it to 2.

3. Press C to activate the PAPER variable and then set it to 7.

4. Press B to activate the BRIGHT switch and then press 1 to switch it ON.

5. Press V to activate the FLASH variable and then press 0 to switch it OFF.

6. Press A to activate the ATTRIBUTE switch and then press 1 to switch it ON.

You will have noticed, that both PAPER and FLASH were already set to 7 and 0
respectively frcm the COLD start; ws only run through them all for completeness
and to get used to using them.

What you have done, is to set the attributes for the character ws are about to
define, so lets do that:

1. Press Z to call up the arcade characters, answer Y to the prompt, and enter
150 followed by ENTER - there you have it - a red Dalek.

Now in order to define this character as a sprite, we need to GET it into memory.

1. Press S to set up a sprite and type 10, followed by ENTER.

Now we'll need to set up the screen window:

1. Press L to activate the sprite length variable and then press 2 followed by
ENTER. You will see the window flash red across the top half of the character.

2. Press H to activate the SPRITE HEIGHT variable and then press 2 followed by
ENTER. Now you will see the new window flash.

Now convert this character into a sprite by GETting it into memory:

1. Press G to activate the GET function and answer Y to the prcnpt. Again the
screen window will flash, confirming that the character has been GOT into memory.

Move the sprite screen X cursor +2 (SYMBOL SHIFT 8 twice). Activate the PUT
function (P), respond with a Y to the prcnpt and press 1 to PUT your new sprite to
the screen.

Now we're going to mirror this second character and GET it into memory as another
sprite but with different attributes:

10

1. Press E (Screen Functions), answer Y and press 2 (Mirror) - the character is
reflected!

2. Now press S (Sprite Number) and enter 11.

3. Press G (GET) and then Y - again it flashes to confirm.

We now have two sprites, one facing left and one facing right. Let's set seme new
attributes.

1. Press X (INK) and enter 4 (green).

2. Press I to activate the Attribute Dunp facility.

3. Move the sprite screen X cursor 1 place to the right and press I again - the
top half is done!

4. Move the sprite screen Y cursor 1 place down and press I.

5. Finally, move the sprite screen cursor one place to the left and press I again
- there you have it, a red character to the left and a green one to the right.

If you wont to swap the colours the other way around - yes you're right this can
be done:

1. Position the sprite screen cursors to X POS 1 Y POS 1.

2. We will have to set up the screen window for the exchange:

Press L (Length Variable) and enter 4 - the window will flash.

3. Press E (Screen Functions), answer Y to the pranpt and press 3 to MIRROR
ATTRIBUTES - watch the screen as you press 3, it happens very quickly! The red
Dalek becomes green and the green Dalek becomes red.

Right then - wa'll move on a little. We'll consider sane sprite operations.
These are operations which take place in memory can the stored sprites. We'll
begin by setting up a new sprite comprising two arcade characters and then go on
to change their positions in the sprite in memory. Have a go at this:

1. Clear the sprite screen (SYMBOL SHIFT Q). Don't worry about your previous
characters - you'll probably remember that they are still in memory as sprites 10
and 11.

2. Make sure that the sprite screen cursors are set to X POS 1 Y POS 1.

3. Set INK (X) to 6 (yellow).

4. Set PAPER (C) to 0.

5. Set FLASH (V) to 0.

6. Set BRIGHT (B) to 1.

7. Set A T m (A) to 1.

8. Press Z (Arcade Character) and enter 149 (a Robot).

11

9. Move the sprite screen X cursor by +2.

10. Change the INK Qfc) to 4 (green).

11. Press Z (Arcade Character) and enter 151 (another Robot).

OK, you should have two robots on the sprite screen - lets define them as a
combined sprite:

1. Move the cursors to X POS 1 Y POS 1.

2. Press L (Length Variable) and set to 4.

3. Press H (Height Variable) and set to 2.

4. Press S (Sprite Number) and enter 12.

5. Press G (GET Function) and respond to the prompt with Y.

We have now set up a 4 by 2 sprite containing both characters. New lets change
them over in memory:

1. Press M (Sprite Memory Functions), respond to the prompt with Y, and press 2
(MIRROR) - nothing happens on the sprite screen - this is a memory function.

Let's prove that the sprite has been altered:

1. Move the sprite screen Y cursor by +3.

2. Press P (POT) respond to the pratpt with Y and press 1 - the sprite has been
reflected -

We can return the attributes to their former Robots quite easily:

1. Press M (Sprite Memory Functions), respond to the pratpt with Y, and press 3
(Mirror Attributes).

2. Move the Y cursor by +3 and press P (PUT), respond to the pronpt with Y and
press 1 - now the attributes have mirrored.

Let's move on a little further now. We now look at a second sprite transformation
- rotation. Try the following:

1. Clear the sprite screen and set the X and Y cursors to X POS 1 Y POS 1.

2. Set INK (X) to 1 (blue).

3. Set PAPER (C) to 7 (white).

4. Set FLASH (V) to 0.

5. Set ERIGHT (B) to 1.

6. Set ATTR (A) to 1.

12

7. Press Z (Arcade Character) and enter 151 (a Robot).

8. Set HEIGHT (H) to 2 and LENGTH (L) to 2.

9. Set the Sprite Number (S) to 13, then press G to GET the character as a
sprite.

10. Move the X cursor by +2.

11. Press R (ROTATE), and enter the new sprite number, 14.

12. Press P (PUT) and press 1 - a Robot rotated by 90 degrees!

Now that we have sprite 14 as a 90 degree rotation of sprite 13, why not go a
little further ? Try this:

1. Move the X cursor by +2.

2. Press R (ROTATE) and enter the new sprite number, 15.

3. Press P (PUT) and press 1 - this new robot has been rotated by 180 degrees
fran it's original orientation.

To produce the final (270 degree) orientation:

1. Move the X cursor by +2.

2. Press R (ROTATE) and enter the new sprite number, 16.

3. Press P (POT) and press 1 - this has produced the final orientation.

New let's look at attribute handling in more detail - clear the sprite screen and
position the X and Y cursors to X POS 1 Y POS 1. The following two exairples will
show how to download and pick-up attributes between the attribute variables and
the sprite screen:

1. Press X (INK) and set to 3 (magenta).

2. Press C (PAPER) and set to 2 (red).

3. Press V (FLASH) and set to 1 (ON).

4. Press B (BRIGHT) and set to 0 (OFF).

5. Press A (ATTR) and set to 0.

6. Press I (ATTRIBUTE DUMP) - the attributes will appear on the sprite screen.

7. Now set all the attributes, X, C, V, B, and A to 0.

8. Press U (PICK UP ATTRIBUTES) and the attributes on the screen will be loaded
into the attribute variables.

13

This next exanple illustrates one of the more complicated functions of the
generator - GETting a sprite into a larger sprite:

1.

2.
3.
4.

5.

6.
7.

10.
11.
12.
13.
14.

Clear the sprite screen and position the cursors to X POS 1 Y POS 1.

Press L (Length) and alter 4, then press H (Height) and enter 4.
Press E (Screen Functions) and press 1 (INVERT).

Press S (Sprite Number) and enter 17, then press G (GET).

Move the X cursor by +4.

Press X (INK) and set to 0.

Press C (PAPER) and set to 6 (yellow).

Press V (FLASH) and set to 0 (OFF).
Press B (ERIGHT) and set to 1 (ON).

Press A (AT1R) and set to 1.

Press Z (Arcade Character) and then enter 149.

Press L (Length) and enter 2, then press H (Height) and enter 2.
Press S (Sprite Number) and alter 18.

Press G (GET).
15. Press SPACE key (Place small sprite into large sprite) - enter small sprite as
18, larger sprite as 17, Row as 1, Column as 1 and ELS (1), as you get each
prcnpt.
16. Move the X cursor by +2.
17. Press P (POT), answer the prcnpt with Y and then press 1 - there you have it,
your Robot inside the square.

Let's move on to look at some of the utility functions - Test and Wipe.

1. Clear the sprite screen and position the cursors to X POS 1 Y POS 1.

2. Press Z (Arcade Character) and enter 135.

3. Press L (Length) and enter 2, then press H (Height) and enter 2.

4. Press S (Sprite Number) and enter 19.
5. Press G (GET).

6. Press L (Length) and enter 10, then press H (Height) and alter 10.

7. Clear the sprite screen.

8. Press T (Test Sprite) and note that the information rectangle contains the
following:

14

A)
B)
C)
D)
E)

SPRITE HEIGHT = 2
SPRITE LENGTH = 2
SPRITE NUMBER = 19
MEMORY I£FT = The remaining memory for sprites.
SPRITE = Start address of sprite being tested.

A function is provided to Wipe a sprite frcm memory and adjust pointers. Leave
everything as it is and try:

1. Press W (Wipe Sprite) - remember sprite 19 has already been defined. Respond
to the prompt with Y.

2. Press T (Test Sprite) and an error message will appear on the text line -
SPRITE NO LONGER EXISTS.

While we are considering error messages, have a go at this:

1. Press Z (Arcade Character) and then press 63.

2. Press S (Sprite Number) and press 12 - an error message will appear, SPRITE
ALREADY DEFINED. Sprite number 12 is not corrupted in any way, nor is the one you
have put to the screen. All that you need to do is choose a different sprite
number which has not already been allocated.

There's one area we've been avoiding all the way through - the Logic Functions.
We don't want to wade into the depths of Boolean algebra here, but instead,
provide a few examples which hopefully show the application of the XOR, OR and AND
operations to this part of the package. They are provided for advanced
applications only and their results are summarised on the sprite generator panel.
Let's see what they do:

1. Clear the sprite screen and position the cursors to X POS 1 Y POS 1.

2. Press X (INK) and set to 3 (magenta).

3. Press C (PAPER) and set to 0 (black).

4. Press V (FLASH) and set to 0.

5. Press B (BRIGHT) and set to 1.

6. Press A (ATIR) and set to 1.

7. Press Z (Arcade Character) and enter 149 (Robot).

8. Press L (Length) and enter 2, then press H (Height) and enter 2.

9. Press S (Sprite Number) and enter 21, then G (GET) to Get the sprite.

10. Move the X cursor by +2.

11. Press P (PUT) and respond to the prompt with 1.

12. Press Z (Arcade Character) and enter 151 (Robot).

13. Press 0 (Logical Sprite Functions) and press 1.

15

14. Move the X cursor by +2.

15. Press P (PUT) and respond with 1 - the characters have been "CRed" (merged).

Let's take this a little further and CR with the screen:

1. Clear the sprite screen and position the cursors to X POS 1 Y POS 1.

2. Press X (INK) and set to 1 (blue).

3. Press C (PAPER) and set to 7 (white).

4. Press V (FLASH) and set to 0.

5. Press B (BRIGHT) and set to 1.

6. Press A (MTTR) and set to 1.

7. Press Z (Arcade Character) and enter 141 (Explosion) - you probably think
we're going to blow up the Robot!

8. Press L (Length) and enter 2, then press H (Height) and enter 2.

9. Press S (Sprite Number) and enter 22, then G (GET) sprite 22.

10. Move the X cursor by +2.

11. Press Z (Arcade Character) and enter 149 (Robot).

12. Press P (POT) and enter 2 - sprite number 22 has been "CRed" with whatever yes
on the screen.

13. Move the X cursor by +2.

14. Press P (POT) and enter 1 - the explosion was unaffected!

Now let's take a look at a second logical operation - the AND function:

1. Clear the sprite screen and position the cursors to X POS 1 Y POS 1.

2. Press P (POT) and enter 4, sprite 22 has been "ANDed" with the screen - as the
screen was empty, nothing happened.

3. Press P (POT) and enter 1 - the sprite is still there!

Now, lastly, let's look at the XDR function:

1. Clear the sprite screen and move the cursors to X POS 1 Y POS 1.

2. Press Z (Arcade Character) and enter 151 (Robot).

3. Press P (POT) and enter 3 - the Robot has blown up! (At last I here you say
!).

16

Now one of the interesting properties of the logical XDR, is that’ if the operation
is repeated, the original character is restored - to mend the Robot:

1. Press P (POT) and enter 3 - a fully restored Robot!

Well, there you have it. In fact, the only functions remaining that have not been
covered by an exanple are:
1. Relocate Sprites (< (SYMBOL SHIFT R)).

2. Save sprites to Tape (NOT (SYMBOL SHIFT S)).
3. Load Sprites from Tape (- (SYMBOL SHIFT J)).

The "Relocate Sprites" does simply that, it relocates sprites in memory. Just
enter a relocation length - positive to move srites to higher memory and negative
to move sprites to lower memory. This function is not often used in fact and
should be used with great care!

The "Save Sprites" function is very straight forward - just follow the screen
instructions. After the sprites have been saved you will be asked to rewind the
tape to verify the saved data.
The "Load Sprites" function is similar to the above - just follow the screen
instructions.

It should be noted that whenever sprites are saved or loaded, there are 3 distinct
sets of data which the generator stores and retrieves.

CONCLUSIONS

Well, there's nothing to stop you now! Going through the examples will help you
to familiarise yourself with all of the Function Keys. It won't be long before
you'll be happy to press on by yourself - happy sprite generating.!

thing to do now, is to press on with Spectra Forth and IDEAL, these really are
not as frightening as they may first appear - after seeing the demo program, what
more incentive do you need 1

17

SECTION 2

SPECTRA FORTH
by Stuart Smith

Forth is an extraordinary computer language developed originally for the control
of Radio Telescopes, by an American named Charles Moore.
Forth is neither an interpreter nor a compiler, but combines the best features of
both to produce a super-fast, high level language, incorporating the facilities
offered by an interactive interpreter and the speed of execution close to that of
machine-code. In order to achieve these fantastic speeds, Forth employs the use
of a data, or computation stack, on which to hold the data or the operations to be
performed, coupled with the use of Reverse Polish Notation (RPN). This may be
quite a mouthful, but RPN is very easy to use and understand with only a little
practice - in fact, Hewlett Packard use RPN on many of their calculators.
All standard Forths use integer arithmetic for their operations and can handle up
to 32 bit precision if required - floating point mathematics routines could be
incorporated, but with a reduction in the execution speeds of a program.
White Lightning consists of a standard Fig-Forth model, but with over 100
extensions to the standard vocabulary of Forth words. There are two important
extensions to White Lightning: the first is the ability to access almost ALL of
the Spectrum's own BASIC commands, just as you would when writing a BASIC program,
and with the addition of many of the high resolution graphics commands (CIRCX£,
CRAW, etc.). Coupled with the incredible execution speeds of White Lightning, the
possibilities are limitless! The second, and possibly most inportant addition, is
the IDEAL sub-language.
In addition to the basic vocabulary of White Lightning words, the user can very
easily ADD his own NEW WORDS using previously defined words, thus extending the
vocabulary and building up as complex a word as is necessary to do the task in
hand.
Fully structured programming methods are also eiplqyed as a fundamental feature of
Forth through the use of the structured control sequences included, such as:
IF....KT.RF..... ENDIF
DO....UNTIL
The standard Spectrum editor can be used to create lines of White Lightning source
code for later compilation. Do not allow lines to exceed 64 characters - any
characters after this are ignored. The standard Forth line editor is included for
compatibility with existing text. The source code is stored in memory from $OCOO
onwards, and can be LOADed or SAVEd to tape as and when required. Once the source
code is oonplete, it may then be compiled into the White Lightning dictionary for
later execution.
Included in this documentation is a glossary of Fig-Forth berms (courtesy of the
FORTH INTEREST GROUP,PO BOX 1105, SAN CARLOS, CA 94070).
Spectra Forth was written by Stuart Smith, the author of the extremely successful
ERAGONPORTH, and is an enhancement of a program written by the Forth Interest
Group - to whom we offer our thanks.
At the time of writing, floppy discs are not readily available for the Spectrum
and instructions referring to discs should be interpreted as accessing RAM.

18

AN INTRODUCTION TO SPECTRA FORTH

This introduction does not set out to teach Forth programming, tut rather to serve
as a supplement to available texts on the subject; references include:

'Starting Forth' by Brodie, published by Prentice Hall.
'Introduction to Forth' by Knecht, published by Prentice Hall
'Discover Forth' by Hogan, published by McGraw Hill.

White Lightning syntax consists of Forth words or literals, separated by spaces
and terminated by a carriage return. A valid name must not contain any anbedded
spaces since this will be interpreted as two distinct words, and must be’ less than
31 characters in length. If a word is entered which does not exist or has been
spelt wrongly, or the number entered is not valid in the current base, then an
error message will be displayed. To canpile and execute programs created using
the Editor type IOAD <CR>. Throughout these examples <CR> means 'PRESS ENTER'.

e.g. -FINE will generate an error message 0 since the word does
not exist.

HEX 17FZ will generate an error message 0 since Z is not valid
in hexadecimal base.

Other error messages include:

STACK EMPTY
STACK FULL
DICTIONARY FULL

In order to program in White Lightning, it is necessary to define new words based
on the words already in the vocabulary. Values to be passed to these words are
pushed onto the stack and if required, the word will pull these values from the
stack, operate on them, and push the result onto the stack for use by another
Lightning word. As mentioned previously, Spectra Forth (as with all Forths) uses
Reverse Polish Notation and integer numbers, therefore no precedence of operators
is available, thus all operations are performed in the sequence in which they are
found on the stack.

e.g. 1 2 + 3 * is equivalent to 3*(1+2)

As can be seen, in RPN, the operators are input after the numbers on which they
have to operate have been input.

We will now discuss seme of the words in greater depth.

1. INPUT/OUTPUT Operators.

EM IT : This will take the number held on the top of the stack and display it
cxi the terminal, as its original ASCII character.

e.g. HEX 41 EMIT OR <CR>

will instruct the Forth to move into hexadecimal node, push 41H onto the stack,
and then take that number and display it on the terminal - in this exanple the
character displayed will be an "A". The actual character displayed may be any of
the recognisable ASCII characers, a graphic character, or a control code depending
on the value of the number on the stack.

19

EM ITC : As EMIT but Control characters are also dealt with.

KEY : This will poll the keyboard, wait for a key to be pressed and push
the ASCII code for that key onto the stack, without displaying it on
the terminal.

e.g. RES' Press "A" on the keyboard

will instruct the computer to wait for a key to be pressed (press the "A") and
then push the ASCII value of this key, in this case 41H (vhere the 'H1 iirplies
Hexadecimal 41 ie 65 decimal) cxito the top of the stack. In order to display this
character, try the following example:

Type:

KEY EMIT <CR>

but be sure to hit the <CR> very quickly.

Now hit any key and its ASCII value will be printed followed by OK. So if you
type "A" it would print "AOK". If you were too slow you've now got two cursors!
Ignore the top one and try again. This problem only occurs because when you press
<CR> to enter the exanple, it immediately executes and you've possibly still got
<QR> held down. In a normal Forth definition you won't have this problem.

CR : This will transmit a carriage return and line feed to the display.

: Convert the number held on the stack using the current BASE and
print it on the screen with a trailing space.

e.g Suppose the stack contains 16H and BASE is decimal (10), then . will print
22 (this is 1 6 + 6) ; if BASE were hexadecimal (16), then . would print 16.

In order to see this working we will alter the BASE and push numbers onto the
stack - remember, that just by typing in a valid number will result in it being
pushed onto the stack. There are two wards to alter the BASE:

HEX : Use hexadecimal base
DEC IM A L: Use decimal base

Try:

(i) HEX 1F7 . <CR> (Where <CR> means press ENTER).
This will print 1F7

(ii) DECIMAL 2048 . <CR>
This will print 2048

(iii) DECIMAL 2048 HEX . <CR>
This will print 800, since this is the HEX equivalent of 2048.
Ranember that . will remove the number from the stack that it is printing.

U. : Prints the number held on the top of the stack as an unsigned number,

e.g. HEX C000 U. <CR>

will push C000 onto the stack and then print it.

20

If we use just . we will get a negative result.

BEX COOO . <CR>

will print -4000

? : Print the value contained at the address on top of the stack using the
current base.

Suppose the top of the stack contains FF40H, location ER40/41H contains 0014H, and
current BASE is 10 (DECIMAL), then ? will print 20 which is the decimal equivalent
of 14 Hex.

TYPE : This uses the top TWO numbers held on the stack and will print a
selected number of characters starting at a specific
address onto the screen. The top number on the stack is the
character count and the second number is the address to
start at.

e.g. HEX 6100 20 TYPE <CR>
(Note that 6100H is pushed onto the stack and 20H is pushed on top of it 20H -
TOP? 6100H = second). This will print 20H (32) ASCII characters corresponding to
the data starting at address 6100H . (Note that much of the output will be
inreoognisable unless the data contains correct ASCII codes, such as for numbers
and letters).

DUMP : This takes the top number on the stack and prints out 80H bytes
starting at this address.

." : This is used in the form ." character string " and will display
the string contained within " " on the screen.

e.g. ." THIS IS A CHARACTER STRING " <CR>
will put THIS IS A CHARACTER STRING on the screen. Note the spaces between the
string and the quotes.

8PACE : This will display a single hlank/space on the screen.

SPACES : This will display n spaces on the screen, where n is the number cn the
top of the stack.

e.g. DECIMAL 10 SPACES <CR>
will print 10 spaces on the screen.

2. MATHEMATICAL OPERATORS

+ : This will add the top two numbers on the stack and leave the result
as a single number.

e.g. 1 2 + . <CR>
will print the value of 1 + 2 = 3 on the screen. Note that the two top numbers
are removed from the stack, being replaced by a single number - this is true of
most Porth commands, in that they remove the values which they require to use from
the stack and push the result onto the stack.

21

Far the purposes of the following examples, let us refer to the numbers on the
stack as follows:

Nl = top number on stack (i.e. first to be removed)
N2 = second number on stack (i.e. second to be removed)
N3 = third number on stack (i.e. third to be removed)

To demonstrate this, let us push three numbers onto the stack by typing:

HEX 01FA 0019 1F47 <CR>

The stack will look like this:

1F47 Top of stack
0019
01EA

Note that this illustrates the property of the stack, that it is, Last In First
Out or LIFO; therefore we have:

Nl = 1F47
N2 = 0019
N3 = 01FA

So if we type:

CR . CR . CR . CR <CR>

We get 1F47
19

1FA

We will now resume our explanation of the mathematical operators.

: This will subtract the top number on the stack from the second number
on the stack and leave the result as the top number,

i.e. Nl = N2 - Nl

e.g. Decimal 7 11 - . <CR>
will print -4, since the stack would contain

Nl 11 TOS (Top of stack)
N2 7

before the subtraction, and

Nl -4 TOS

after the subtraction.

* : This will multiply the top two numbers on the stack and leave the
result on the top of the stack,

i.e. Nl = Nl x N2

e.g. DECIMAL 140 20 * . <CR>
would print 2800

22

/ : This will divide the second number on the stack by the first number,
and leave the result on the top of the stack,

i.e. N1 = N2 / N1

e.g. DECIMAL 1000 500 / . <CR>
will print 2

MAX : This will leave the greater of the top two numbers on the stack.

e.g. 371 309 MAX . <CR>
will print 371

MIN : This will leave the smaller of the ts*o numbers on the stack.

e.g. 371 309 MIN . <CR>
will print 309

ABS : This will leave the absolute value of the top number on the stack as
an unsigned number,

i.e. N1 = ABS(Nl)

e.g. 47 ABS . <CR>
will print 47

-47 ABS . <OR>
will print 47

MINUS : This will negate th e top number on the stack,
i.e. N1 = -Nl

e.g. 418 MINUS . <CR>
will print -418

-418 MINUS . <CR>
will print 418

1+ : add 1 to the top number on the stack
Nl = Nl + 1

2+ : add 2 to the top number on the stack
Nl = Nl + 2

1- : subtract 1 frcm the top number on the stack
Nl = Nl - 1

2- : subtract 2 frcm the top number on the stack
Nl = Nl - 2

e.g. 196 2- . <CR>
will print 194

23

MOD : This will leave the remainder of N2/N1 on the top of the stack with
the same sign as N2

e.g. 17 3 MDD . <CR>
will print 2 (17/3 = 5 remainder 2)

/M O D : This will leave the remainder and the quotient on the stack of N2/N1
such that the quotient becomes the top number on the stack and the
remainder becomes the second.

e.g. 17 3 /HDD . CR . <CR>
will print 5 (quotient)

2 (remainder)

3. STACK OPERATORS

DUP : This will duplicate the top number on the stack.

e.g. 719 DUP . . <CR>
will print 719 719

DROP : This will drop the number from the top of the stack.

e.g. Ill 222 CROP . <CR>
will print 111

SWAP : This will swap the top two numbers an the stack.

e.g. Ill 222 SWAP . . <CR>
will print 111 222

OVER : This will copy the second number on the stack, making it a new number
at the top of the stack without destroying the other numbers.

e.g. Ill 222 OVER . CR . CR . <CR>
will print 111

222
111

since the stack before OVER was:

222 DOS
111

and after OVER is:

111 TOS
copy 222

111

ROT : This will rotate the top three numbers on the stack, bringing the
third number to the top of the stack.

24

e.g. 1 2 3 ROT . OR . CR . <CR>
will print 1

3
2

since the stack before ROT was:
3 TOS
2
1

and after ROT is:
1 TOS
3
2

4. OTHER OPERATIONS

I : This will store the second number on the stack at the address held on
the top of the stack, (pronounced "store").

e.g. Suppose the stack is as follows:
HEX C000 TOS

FFEE

This will store FFEE at address C000/C001
i.e. EE at C000

FF at C001

If we key in HEX FFOO C000 ! <CR>
this will store EFOO at C000/C001
i.e C000 contains low byte 00

C001 contains high byte FF

Ranember that each 16 bit number takes up 2 bytes.

0 : This will replace the address held on the top of the stack, with the
16 bit contents of that address. (Pronounced "at")

Suppose the memory contents are as follows:

Address: 6100 6101 6102 6103 6104 6105
Contents: 00 C3 8F 70 00 C3

then 6100 0 . <CR>
will print C300

If you wish to deal with single bytes, then a variation of the above will be
used.

Cl : Will store a single byte held in the second number on the stack at the
address held on the top of the stack.

e.g. EF C000 C! <CR>
will store a single byte FF at address C000.

25

C © : This will fetch the single byte held at the address at the top of the
stack - this single byte will be pushed on the stack as a 16
bit number, but with the high byte set to zero.

With reference bo the memory contents shewn previously,
if we key in C000 C@ . <CR>

this will print FF (and not FFOO as with @)

+ 1 : This will aid the number held in the second number of the stack, to
the value held at the address on the top of the stack (Pronounced
"Plus-store").

e.g. 4 HEX C000 +! <CR>
will add 4 to the value at C000/C001
As will be shown later, this is of use when using variables in White Lightning.

5. COLON DEFINITIONS

These are the most powerful and most used forms of data structures in White
Lightning, and are so called because they begin with a colon

Colon definitions allow the creation of new Forth words based on previously
defined words. They can be of any length, although carriage return must be
pressed before a particular section exceeds 80 characters.

The general format is:

: new-word wordl word2.... wordn ;

All colon definitions end with a semi-colon

If a word used in a colon definition has not been previously defined, then an
error will result.

The new-word is executed simply by typing its name and pressing ENTER.

e.g. Suppose we wish to define a new word bo calculate the square of a given
number.

We could do this by:

: SQUARE DECIMAL CR ." THE SQUARE OF " DUP . ." IS " DUP * . ; <CR>

Here we have defined a new word called SQUARE which will be called by

number SQUARE <CR>

e.g. 9 SQUARE <CR>

will result in:

THE SQUARE OF 9 IS 81

If we follow the operation of the word, ws will see the changes in the stack:

26

TOS
empty

OPERATION RESULT

9 9 SQUARE
9 CR carriage return
9 ." THE SQUARE OF

9 9 DUP
9 9
9 . " IS

9 9 DUP
81 *

empty 81

and execution of SQUARE ends at the semi-colon.

If now wished, ws could define a new word using our ward SQUARE.

We are now going to discuss control structures. It must be remembered, that the
control structures can only be incorporated in colon definitions, or an error will
result.

6. CONTROL STRUCTURES

LOOPS

There are essentially t*ro forms of loop operation:

(i) DO ... LOOP

(ii) D O ... + LOOP

The first loop structure is used as follows:

limit start DO ... 'Forth words' ... LOOP

The Forth words within the loop are executed until start = limit, incrementing the
start (or index) by one each time. Type:

: TEST1 5 0 DO ." Forth " CR LOOP ; <CR>
Typing in TEST1 <CR>
will print Forth

Forth
Forth
Forth
Forth

The second loop structure is used as follows:

limit start DO ... 'Forth words' increment +LOOP

The Forth words within the loop are executed from start to limit, with the index
being incremented or decremented by the value increnent. Try:

: TEST2 5 0 DO ." HELLO " 2 +LOOP ; <CR>
Executing TEST2 will print HELLO HELLO HELLO

Since the limit and the index are held on the return stack, it would be useful if
vre could examine the index. Well, there are words to do this:

27

• : This will copy the loop index from the return stack onto the data
stack.

J : This will push the value of the nested DDOP index to the stack.

K : This will push the value of the double nested DDOP index to the stack.

s TEST3 4 0 D 0 4 0 D 0 4 0 D O K J I . . . CR DDOP LOOP DDOP ; <CR>

Executing TEST3 1 1 1
will print: 1 1 2

1 1 3

and so on.

7. CONDITIONAL BRANCHING

Conditional branching must again be used only within a colon definition and uses
the form:

IF (true part) ... (Forth WORDS) ... ENDIF

IF (true part) ... (Forth WORDS) ... ELSE (false part) ... (Forth WORDS) ...
ENDIF

These conditional statements rely on testing the top number on the stack to decide
whether to execute the TRUE part, or the E7ULSE part of the condition.

If the top item on the stack is true (non-zero) then the true part will be
executed. If the top item is false (zero) then the true part will be skipped and
execution of the false part will take place. If the ELSE part is missing, then
execution skips to just after the ENDIF statement.

There are several mathematical operators which will leave either a true (non-zero)
flag, or a false (zero) flag on the stack to be tested for by IF.

These are:

0< : This will leave a true flag on the stack if the number on the top
of the stack is less than zero, otherwise it leaves a false flag.

e.g. -4 0< <CR>
will leave a true flag (non-zero).

To see this, type:
. <CR>

to print the top number on the stack, which is the flag. This will print
1

to show a true flag.

914 0< . <CR>
will print a 0 (false flag).

28

Type:

0= : This will leave a true flag on the top of the stack if the number on
the top of the stack is equal to zero, otherwise it will leave a
false flag.

< : This will leave a true flag if the second number on the stack is less
than the top number, otherwise it will leave a false flag.

e.g. 40 25 < . <CR>
will print 0 (false flag).

If we look at the stack during this operation we will see:

Operation IDS
40 40
25 40 25
< 0

empty

> : This will leave a true flag if the second number on the stack is
greater than the top number, else a false flag will be left.

e.g. 40 25 > . <CR>
will print 1 (true flag).

= : This will leave a true flag if the two top numbers are equal,
otherwise it will leave a false flag.

Now for same examples using the conditioned, branching structures, type:

: TEST= = IF ." BOTH ARE EQUAL " ENDIF . " FINISHED " ; <CR>

Now key in two numbers followed by TEST= and a carriage return.

e.g. 11 119 TEST= <CR>
This will print FINISHED

119 119 TEST= <CR>
Will print BOTH ARE EQUAL FINISHED

New key in:
: TEST1= = IF ." EQUAL " ELSE ." UNEQUAL " ENDI? CR ." FINISHED " ; <CR>

New key in:
249 249 TEST1= <CR>

this will print EQUAL
FINISHED

Try: 249 248 TEST1= <CR>
this will print UNEQUAL

FINISHED

Notice how the part after ENDIF was executed in both cases.

Two more loop structures will new be discussed:

29

BEGIN --- (Forth WDRDS) --- UNTIL

BEGIN ___ (Forth WORDS) ___ W HILE ___ (Forth WORDS) ___ REPEAT

Using the B E G I N ___ UNTIL the value at the top of the stack is tested upon
reaching UNTIL. If the flag is false (0) then the loop starting fran SJGIN is
repeated. If the value is true (non-zero) then an exit frcm the loop occurs.

Try typing the following example:

: COUNT-DOWN DECIMAL 100 BEGIN 1- DUP DUP . CR 0= UNTIL ." DONE " ; <CR>

Now key in: COUNTDOWN <CR>
This will print:

99
98

3
2
1
0

DONE

The BEGIN ... WHILE ... REPEAT structure uses the WHILE condition to abort a loop
in the middle of that loop. WHILE will test the flag left on top of the stack and
if that flag is true, will continue with the execution of words up to REPEAT,
which then branches always (unconditionally) back to BEGIN. If the flag is false,
then WHILE will cause execution to skip the words up to REPEAT and thus exit fran
the loop.

We will now construct a program to print out the cubes of numbers fran 1 upwards,
until the cube is greater than 3000.

The colon definition could be as follows:

: CUBE DECIMAL 0 BEGIN 1+ <CR>
DUP DUP DUP DUP * * DUP <CR>
3000 < WHILE ." THE CUBE OF " <CR>
SWAP . ." IS " . CR REPEAT <CR>
CROP DROP DROP ." ALL DONE " CR ; <CR>

You may get an error message "MSG#4" appearing on the screen; this means tliat the
word you have just created already exists. This is not a problem since the new
word will be created, and all actions referencing the word CUBE will be directed
to the latest definition using that name.

Now run this by keying in:

CUBE <CR>

and watch the results.

Try to follow what is happening by writing down the values on the stack at each
operation. If you are having any difficulty in doing this, the stack values are
shown below.

30

STACK OPERATION OUTPUT (if any)
empty DECIMAL
0 0
0 BEGIN
1 1+

(let us new refer to the number on the stack as N)

N N DUP
N N N DUP

N N N N DUP
N N N N N DUP

n n n n J *
n n n ; *

N N N3N DUP
N N 1^*3000 3000

N N N 3flag (1 or 0) <

If TRUE:

N N N 3 WHILE
." THE CUBE OF " THE CUBE OF

N N3N SWAP
N N 3 N

." IS " IS
N N 3
N CR carriage return
N REPEAT (branch back to BEGIN)

If EALSE:

N N DROP
N CROP

empty CROP
." ALL DONE "
CR

ALL DONE

In fact, it is a good idea to check the stack contents during the execution of any
new Forth word to make sure that it is working correctly. (Note that CROP merely
clears the top number fran the stack).

Finally, one extra construct has been added to circumvent the problem of deeply
nested IF...THEN...ELSE structures. This is the CASE OF structure. It takes the
general form :

CASE nl OF (Forth Word) ENDOF n2 OF (Forth Word) ENDOF ... ENDCASE

For exairple type:

: TEST4 CASE 1 OF ." FIRST CASE " ENDOF 2 OF . " SECOND CASE " ENDOF 3 OF ." THIRD
CASE " ENDOF ENDCASE ; < 0 0

Now type :

1 TEST4 CR 2 TEST4 CR 3 TEST4 CR <CR>

31

8. CONSTANTS AND VARIABLES

White Lightning also allows you to define your own constants and variables using
the Forth words:

CONSTANT
VARIABLE

When a constant is called up, this causes its VALUE to be pushed onto the stack,
however, when a variable is called up, this causes its address to be pushed onto
the stack. The Forth words ! and 0 are used to modify the contents of the
variable.

A constant is defined by using the form:

value CONSTANT name

and any references to the name will cause the value n to be put on the stack.

A variable is defined using the form:

value VARIABLE name

and any reference to the name will result in the address of that variable to be
put on the stack for further manipulation using ! and 0. It is essential that you
realise the difference between the contents and the address of a variable.

Now for some examples:

64 CONSTANT R 1000 CONSTANT Q
256 VARIABLE X

0 VARIABLE Y

R Q + . will print the value of R + Q i.e. 1064
X . will print the address of X, not its value

X 0 . will print the value of X, i.e. 256
R Y ! will store the value of R in the variable Y
Y X ! will store the address of Y in the variable X
4 X ! will store the value 4 in variable X

BASIC Statement

LET X = Y
LET X = R
LET X = 4
LET X = X + 5

Forth Equivalent

Y 0 X !
R X !
4 X !
5 X +!

OTHER COMMONLY USED FORTH WORDS

LIST : This will list the contents of the screen number held on the top of
the stack.

e.g. 6 LIST will list screen 6 to the screen. Note that if source has not been
typed into any of the screens, they will probably contain garbage.

FORGET : This is used to delete part of the Lightning dictionary. Please note
that not only will the word following FORGET be erased, but so will
every word defined after it!

32

e.g. FORGET EXAMPLE will delete the word EXAMPLE (if it exists) along with any
other words defined after it.

VLIST : This is just typed in as a single word with no parameters. It will
cause a list of all the words defined so far; pressing BREAK
(CAPS SHIFT & SPACE as in BASIC) will stop the listing.

LOAD : This will compile the source code that you have created using the
editor into the White Lightning dictionary, to become new Lightning
words. Loading will terminate at the end of a screen or at the
Forth ward ;S unless the "continue loading" word — > is used at the
end of a screen. The idea of the screen will became obvious in the
next section on editing.

USING THE EDITOR

Generally speaking, most users will want to use the Spectrum editor to type and
edit the source, bat a full Forth line editor is included for compatibility with
existing texts. The maximum length of any line is 64 characters. Any characters
after this will be ignored.

Line Editor

Included in this version of White Lightning is a line editor to enable you to
create source or text files. To facilitate text editing, the text is organised
into blocks of 512 bytes, divided into 8 lines of 64 characters. Once the text
has been edited, it may then be compiled into the White Lightning dictionary and
the text, if required, can be saved to tape. The text is stored in memory in the
pages at C000 to F000, therefore, you can edit into screens 1 to 23. If the
background facility is utilised, text is stored from GCOO onwards in screens 6 to
23, and screens 0 to 5 cannot be used.

Here is a list of the editor commands and their descriptions:

H : This will Hold the text pointed to by the top number on the stack of
the current screen in a temporary area known as PAD.

e.g. 4 H will hold line 4 of the current screen in PAD.

S : Fill (Spread) the line number at the top of the stack with blanks, and
shift dcwn all subsequent lines by 1, with the last line being lost.

e.g. 6 S will fill line 6 with blanks and move all other lines down by one,
pushing the last line off the screen.

Delete the line number held on the stack. All other lines are moved
up by 1. The line is held in PAD in case it is still needed.
Line 7 cannot be deleted.

: Erase the line number at the top of the stack by filling it with
spaces.

: REplace the line number at the top of the stack with the line
currently held in PAD.

D

E

RE

33

Put the following text on the line number held on the stack, by
overwriting its present contents.

INSert the text fran the PAD to the line number held on the stack.
The original and subsequent lines are moved down by 1 with the last
line being lost.

Works just like the normal Sinclair line editor. Also, it does an
automatic list and an automatic flush. This is far and away the best
way to edit and the above are included only for compatibility
with existing Forths.

Clear the screen number held on the stack and make it the current
screen.

W HERE : If an error occurs during the loading of White Lightning's text
screens, then keying in WHERE will result in the screen number and
the offending line being displayed. You can now use the other editing
commands to edit the screen, or you may move to another screen by
either LISTing or CLEARing it.

e.g. 15 LIST will now make screen 15 the current screen and will list the
contents.

In order to compile this screen into the dictionary, it is necessary to use the
word LOAD.

This will start loading at the screen number held on top of the stack and will
stop at the end of the screen.

If you wish to continue and LOAD the next screen, the current screen must end with
— >

This means "continue loading and interpreting".

If you wish to stop the LOADing anywhere in a screen then use: ;S

This means "stop loading and interpreting".

At the end of every editing session, and before saving your text, it is necessary
to FLUSH the memory buffers into the text area. To do this, just key in

FLUSH <CR>

Note that the EDIT command does an automatic FLUSH.

You can save your text bo tape using the Spectrum 'SAVE' command. You must first
enter BASIC by typing PROG <CR> .

Now for an example of how to edit a text file:

The first step is to either LIST or CLEAR the screen about to be worked on:

34

P :

INSi :

EDIT :

CLEAR :

LOAD

9 CLEAR <CR>

This sets the current screen to 9. To insert text use the EDIT command. Type 0
EDIT <CR> followed by the text below.

THIS IS HOW TO PUT <CR>

Then type 1 EDIT <CR>

TEXT ON LINE 1 <CR>

and so on, until you have entered:

0 THIS IS HOW TO PUT <CR>
1 TEXT ON LINE 1 <CR>
2 LINE 2 <CR>
3 AND LINE 3 OF THIS SCREEN <CR>

9 LIST will produce:

SCR # 9
0 THIS IS HOW TO PUT
1 TEXT ON LINE 1
2 LINE 2
3 AND LINE 3 OF THIS SCREEN
4
5
6
7

To change LINE 2, type 2 EDIT <CR> and then change it in the normal way to insert
'TEXT ON' before 'LINE 2'. Now type 9 LIST <CR> to see the result. The editor
ignores characters after the 64th character of the line being edited.

If you have a Sinclair printer connected, then it is probably worth defining a
word to list screens to the printer.

: SLIST PRT-ON 1+ SWAP DO I LIST CR LOOP PRT-OFF ;

To use the above word, type the first screen number, last screen number, SLIST.

e.g. 6 9 SLIST <CR> will list screens 6-9 to the printer.

FORTH ERROR MESSAGES

The following error messages may occur, and will be printed out in the form FRED ?
MSG #0 standing for FRED ? ERROR MESSAGE NUMBER 0 .

0 - this means that a word could not be found, or that a numeric conversion
could not take place.

e.g. 109Z <CR>

1 - this indicates an anpty stack and will be encountered when trying to
take more values from the stack than exist. Try:

: TEST1 1000 0 DO ?STACK DROP LOOP ; <CR>
TEST1 <CR>

35

?STACK is a word which tests the stack for out ot rounds.

2 - this indicates that either the dictionary has grown up to meet the
stack (dictionary full) or that the stack has grown down to meet
the dictionary.

Try: : TEST2 1000 0 DO ?STACK 0 0 0 0 0 IOOP ; <CR>
TEST2 <CR>

4 - this means that you have redefined an existing word using a new colon
definition

Try: : ROT NEW DEFINITION " ; <CR>

This is not really an error since the new word is still valid, but the old
definition cannot be accessed unless you FORGET the new one.

6 - this error may occur when editing, loading or listing screens of data.

Try: 25 LIST <CR>
This will produce MSG#6 and means you have tried to access a non-existent
screenful of memory.

9 - this indicates that an attempt was made to clear sprite space of
less than 2 bytes.

10 - this indicates that one of the IDEAL words made reference to a sprite
which did not exist, or that an attempt was made to insert a sprite
using ISPRITE with a number previously allocated to an existing sprite.

17 - this will occur if you try to use a word in the 'immediate' mode which
should only be used during compilation, i.e. during colon definitions.
For a list of such words, refer to the glossary (words with "C" in the
top right hand corner of the description).

Try: DO <CR>
IF <CR>

18 - this occurs if a word meant for execution only, is put within a colon
definition (words with "E" in the top right hand corner of the

•description).

19 - this means that a colon definition contains conditionals that have
not been paired.

e.g. a LOOP without a DO
an ENDIF without an IF

Try: : TEST3 ELSE WRONG " ; <CR>

20 - this occurs if a colon definition has not been properly finished.

Try: : TEST4 IF ." OK " ; <CR>

36

21 - this ireans that you have tried to delete something in the protected
part of the Forth dictionary, e.g.

FORGET DO

22 - this implies the illegal use of — > when not loading text screens.

23 - this happens when you try to edit a non-existent line of screen data.

Try: 12 D

37

SECTION 3

IDEAL
by John Gross

IDEAL has been designed to facilitate the manipulation of sprites and screen data,
and with its 100 or so instructions, provides a powerful and comprehensive
animation sub-language. Time should be taken to gain familiarity with the
available commands before undertaking the first big project. Rsnember, that by
using the colon definitions of Forth, new words can very easily be added to the
language, built frcm the existing Forth and graphics wards. Mastering this
technique effectively will save a great deal of space, and in many cases,
execution time.

SPRITE

A sprite is a software controllable graphics character. White Lightning supports
up to 255 sprites with user selectable dimensions.

SCREEN W INDOW S

A screen window is a section of the screen defined by the four variables OOL, ROW,
HGT and LEN. Columns are in the range 0 to 31, Rows are in the range 0 to 23,
Heights are in the range 1 to 24 and Lengths are in the range 1 to 32. The unit
for each is the character. OOL and ROW specify the position of the top left hand
corner of the window, with ROW 0 at the top of the screen and OOL 0 on the left
hand side of the screen. HOT and IEN define the size of the window. To see an
example type:

5 ROW ! 6 COL ! 4 HGT ! 3 LEN ! I N W <CR>

The window has been inverted to nark it out.

SPRITE W INDOW S

A sprite window is a section of the sprite defined by the Forth variables 9COL,
SROW, HGT and LEN. This time SCOL and SROW specify the position of the top left
hand corner of the sprite window. HGT and LEN are again used to specify the
dimensions of the window.

SPRITE SPACE

Sprite space is the area of memory containing the previously defined sprites. The
variable SPST holds the address of the start of sprite space, so SPST should never
be loaded with a new value unless a COLD# command is being executed, or you're
quite sure you know what you're doing!! SPND points to the first free byte after
sprite space. SPND should never be higher than FFFO Hex if routines are being
executed in Background.

PIXEL DATA

For those not aquainbed with the workings of the Spectrum screen display, each
character on the screen is produced as follows: each character cell is an array
of 64 (8 by 8) pixels. A pixel is a 'dot' which can be INK colour or PAPER
colour. The bytes which define a particular character or block of characters are
referred to as pixel data.

38

ATTRIBUTE DATA

The colour of the INK and PAPER in each particular cell, together with the
BRIGHTNESS and FLASHING attributes of the character are controlled by a seperate
byte. The bytes which define the attributes of the block of characters are
referred to as Attribute data. Pixel data and Attribute data are frequently
treated as seperate entities.

SCREEN OPERATIONS

Often, it is required to carry out an operation such as a scroll or a reflection,
on one particular section of the screen. Four variables are used to define a
screen window, these are COL, ROW, H3T and LEN. The co-ordinates of the top left
hand corner are held in COL and ROW, where COL is measured fran the left and ROW
fran the top. Both values are in characters. HGT and LEN are the dimensions of
the window. COL + LEN must be in the range 1 to 32, and ROW + H3T must be in the
range 1 to 24. Caimands in this group are post fixed with a "V", e.g. WRLlV, INW,
MIRV.

SCREEN/SPRITE OPERATIONS

These are operations between the screen and a sprite. The dimensions of the
sprite are used as the dimensions of the screen window, and COL and ROW are used
to give the co-ordinates of the top left of the window. I F the window overlaps
the edge of the screen, the command will not execute. Typical commands in this
group are the PUTs and GETs, which move sprites between the screen and memory.
Commands in this group are postfixed with an "S", e.g. PUTBLS, GETXRS.

SPRITE OPERATIONS

These cover more or less the same commands as the screen operations, but this time
a complete sprite is used instead of a screen window. The only parameter required
is the sprite number stored in SPN. Commands in this group are postfixed with an
"M", e.g. WRR4M, ATTUPM.

SCREEN/SPRITE W INDO W OPERATIONS

These are operations between a screen window and a sprite window. As before, ROW,
COL, H3T and LEN define the screen window, but this time, 9C0L and SROW are used
to define the position of the window within the sprite. SCOL and SROW are
measured in characters, SROW fran the top and SCOL from the left. If SROW + HGT
is greater than 24 or the sprite height, or if SCOL + LEN is greater than 32 or
the sprite width, the commands will not execute. These commands are postfixed
with an "S", e.g. GWATTS, PWORS.

SPRITE/SPRITE W INDOW OPERATIONS

These are operations between a whole sprite and a sprite window. The two sprite
numbers are held in SPl (the whole sprite) and SP2 (the sprite which contains the
window). The dimensions of the window are the dimensions of the sprite whose
number is held in SPl. The position of the window in the sprite whose number is
held in SP2 is specified by SCOL and SROW. Commands in this group are postfixed
with an "M", e.g. GWATIM, PWNDM.

39

SPRITE/SPRITE OPERATIONS

These are operations between sprites which usually have the same dimensions, or,
as in the case of the SPIN oanmand, transposed dimensions. SP1 and SP2 hold the
sprite numbers. Canmands in this group are post fixed with an "M", e.g. COPORM,
SPIKM.

D U M M Y SPRITE

A dumny sprite is a sprite which does not contain data for display. It may be
used, for instance, to store a machine code subroutine, an array, or maybe a
collision detection sprite.

IDEAL VARIABLES

The H E A L sublanguage uses 27 variables in all, these are:

VARIABLE USE

ROW Used to hold the row (Y oo-ord) in characters, measured
from the top of the screen (0-23).

LEN Used to hold the width of the current screen window
(1-32) or the width of the sprite being defined (1-255).
Units are characters.

COL Used to hold the column (X co-ord) in characters, measured
fran the left of the screen (0-31).

HGT Used to hold the height of the current screen window
(1-24), or the height of the sprite being defined (1-255).
Units are characters.

SROW Used to hold the row (Y co-ord) within the sprite whose
number is held in SP2, measured from the top (O-(HGT-l)).
Units are characters.

SCOL Used to hold the column (X oo-ord) within the sprite
whose number is held in SP2, measured fran the left
(O-(LEN-l)). Units are characters.

NPX Used to hold the size and direction of vertical scrolls.
Positive scrolls are upward and negative downward.
Units are pixels and not characters.

SPN Used to hold the sprite number for those words which
operate on only one sprite (1-255).

SP1 Where operations involve a sprite and a sprite window,
SPl holds the number of the sprite which does not contain
the window (1-255). Where a sprite is to be spun into a
second sprite, SPl holds the number of the first sprite
(1-255).

SP2 Where operations involve a sprite and a sprite window,
SP2 holds the number of the sprite which does contain
the window (1-255). Where a sprite is to be spun into a
second sprite, SP2 holds the number of the second sprite
(1-255).

40

SPST Used to hold the start address of sprite space.

SPND Used to hold the end of sprite space, i.e. the first free
byte after the last sprite. This is the address of the
foreground scrolling buffer.

SLEN Used to hold the length of sprite space to be cleared
by the COLD# command.

MLEN Used to hold the size and direction of the relocation.
A positive value relocates sprites to higher memory and
a negative value to lower memory.

SPTR On return fran the TEST command, SPTR points to the start
of the sprite.

DPTR On return frcm the TEST catmand, DPTR points to the start
of the pixel data.

Alternate Variables

Eleven of the previously listed variables are replecated for use by the background
program (see Foreground/Background). These are RCW', COL', LEN', HGT', NPX',
SPN', SP1', SP2', SRCW', SCOL' and SPND'.

When a word is executed in background, the eleven alternate variables are
automatically switched with the eleven foreground variables; when execution is
complete, the variables are switched again to restore than to their former state.

Suppose, for example, that the background program is to scroll left 1 pixel with
wrap (WRLlV), with an area of screen 6 characters wide and 4 characters high, with
top left co-ordinates row = 5, column = 7.

Now type the following:

CLS 6 LEN' ! 4 HGT' ! 5 ROW' ! 7 COL' ! ' WRLlV INT-ON <CR>

The window is now scrolling but you can't see it, because there is no data in the
window.

Type VLIST <CR> and watch the data as it scrolls through the window. The data in
the window will be slanting to the LEFT, because the foreground program was
scrolling up at the same time as the background program scrolled left.

Leaving the background program running, type:

10 I£N’ ! <CR>

and the window will widen.

Type:

INT-OFF ’ WRR8V INT-ON <CR>

and the screen will scroll to the right, this time much more rapidly. New type:

INT-OFF <CR>

to halt the background program.

41

In the above example we set background variables fran foreground. If v*e ware to
set the background variables actually in the background program, then foreground
and background variables would already have been switched before execution. To
set up the same windows, we would now have to use RCW, COL, HGT and LEW and not
ROW', OOL', HGT' and LEN'.

To define a word to do this, type:

: FRED 6 LEN ! 4 HGT ! 1 ROW ! 2 OOL ! WRLlV ; <CR>

To run "FRED" in background, type:

' FRED INT-ON <CR>

Since the variables were this time being assigned values in the background program
itself, the alternate variables set was being accessed with the normal names. New
type:

INT-OFF FORGET FRED <CR>

to halt the background program and clear the definition.

Operating in this way, a word will work in foreground or background without any
need to change variable names. The alternate variables are only used directly by
a foreground program that is required to change background variables, or a
background program that is required to change foreground variables. If the
previous example is a little confusing at first, carry out your cwn
experimentation until it becones clear.

ERRORS

The graphics ccmnands do not in many cases provide the user with error messages,
but instead, if an attanpt is made to execute a command which is not possible, for
instance scrolling a screen window which lies partly off the screen, the command
will simply not execute. This does have the advantage that the user is freed fran
testing edge conditions, but does mean that a little extra care needs to be
exercised. See the words ADJM and ADJV. Errors are generated if an attempt is
made to access a non-existent sprite, or to insert an already existing sprite
using ISPRITE.

SPRITE AND BUFFER ORGANISATION

Before discussing the sprite manipulation cotmands in detail, it is worth
describing the organisation of sprites in some detail. The user does not need
this information, but it is made available for interest and an overall
appreciation of the language structure.

Sprites are stored as one contiguous block of data whose start address is held in
the variable SPST. The first free byte after the final sprite contains a zero and
this address is held in the variable SPND. The format of each sprite is as
follows:

First byte

Second and
third bytes

Holds the sprite number which must be in the range
1 to 255.

Hold the address of the start of the next
sprite.

42

Holds the width of the sprite in characters (1 to 255).

Holds the height of the sprite in characters (1 to 255).

Pixel data.

Fourth byte

Fifth byte

8*height*length bytes

Height*length bytes Attribute data.

This means that the total space allocated to each sprite is 9*height*length+5
bytes.

Sprite numbers do not need to run sequentially, but the earlier a sprite is
defined, the more rapid its access.

LOADING SPRITES FROM TAPE

Sprites saved to tape using the development software, can be loaded into the main
program at the start of the session when the "DDAD SPRITES Y/N" prompt appears.
If sprites are loaded in this manner, the sprite data, together with the necessary
pointers, will be loaded. SPST and SPND are automatically set and the sprites
will be ready for use.

If sprites are saved and later loaded from White Lightning, SPST and SPND will
need to be set by hand.

THE BUFFER

When vertical scrolling takes place, be it for pixel data or attributes, with or
without wrap, data has to be temporarily stored for later retrieval. If a
vertical scroll is executed by the foreground program then the buffer is pointed
to by SPND, so the space immediately above sprites is used. When the sprite
development software is used, a prompt is issued at the start of the session,
which asks the user whether or not buffer size should be changed. If the buffer
size is not changed then it remains 256 bytes long. The user can enter a larger
or smellier value if preferred, though the default value of 256 will cover most
eventualities.

Scrolling attributes uses one byte for each oolimn of the width, scrolling pixel
data uses one byte for each column of the width, multiplied by the number of
pixels being scrolled (the value held in NPX, see vertical scrolls). The buffer
space need only be large enough to accomodate the largest scroll, as foreground
scrolls will not take place simultaneously. Suppose a sprite or screen window 8
characters high by 4 characters wide is to be scrolled by 10 pixels. (The
direction, i.e. the sign of NPX does not matter). The space required is 4 * 10 =
40 bytes. If you find at seme later stage that you have not allowed enough buffer
space, you can always relocate sprite space downward and likewise, if you have
more than you need, you can relocate upwards.

BACKGROUND SCROLLING

When programs are executed in background (see Foreground/Background) it is risky
to share a oemmon scrolling buffer, since the background program could execute
while the foreground program is using the buffer. For this reason, a second
buffer pointer is used for background scrolling. The variable holding the address
of the background buffer is SPND'. When White Lightning is first entered, SPND'
points to the 256 free bytes in the printer buffer at decimal 23296. The user can
move this buffer by changing the value held in SPND'. It is not a bad idea to
allocate enough buffer space, for both foreground and background scrolling above

43

sprite space and assign SPND' to point to the space after the foreground buffer.
Suppose, for example, the foreground program requires 200 bytes and the background
300 bytes, with the buffer currently set to 256 bytes. 500 bytes are needed in
all, so sprites need to be relocated down by 500 - 256 = 244 bytes. Type:

-244 MLEN ! RELOCATE <CR>

Note that MLEN is now negative since relocation is downward. SPND' should be set
200 bytes into the buffer to leave space for the foreground data. To do this
type:

SPND 0 200 + SPND' I <CR>

If memory is really tight and the buffer has to be shared, then the background
program can be temporarily disabled using DI but as soon as the vertical scroll is
executed, an El must be executed to re-enable the background program. If, for
example, a screen window 12 characters wide and 4 characters high is to be
scrolled vertically by 8 pixels with wrap, and the background program is to be
inhibited, type:

0 0 AT 8 NPX ! 12 IEN ! 4 H3T < 4 COL ! 4 ROW ! DI WCRV El <CR>

It is best to re-enable the background program as soon as possible, preferably, as
above, the next word.

Until you get used to the package leave the buffers as they are on entry to White
Lightning. Use ISPRITE and DSPRITE, and not SPRITE and WIPE to define new
sprites. The only time you really need worry about changing buffer sizes or
positions is when you have a dire need to save a few extra bytes.

IDEAL M NEMONICS

To get the best out of the White Lightning package, please read these next
sections carefully and note the parameters. The words have been selected so as to
be as mnemonic as possible. To help yourself becane aquainted with the language,
it is worth noting the following:

1. Words which involve only the screen are postfixed with "V" for "Video
Operations".

2. Words which involve only operations on or between sprites, are postfixed
with "M" for "Memory Operations".

3. Words which involve operations between the screen and sprites are postfixed
with "S" for "Screen/Sprite" operations.

4. BLS implies that data is being "Block Shifted" to a destination and will
replace whatever was there.

5. QRS implies that data is being "Shifted and OR'ed" so the destination data
will be CR'ed with the source data.

6. NDS implies that data is to be "Shifted and AND'ed".

7. XRS implies that data is to be "Shifted and XDR'ed".

ATT implies that the operation is on attribute data.8.

44

9. WR inplies that the data will be scrolled with wrap.

10. SC inplies that data will be scrolled without wrap.

11. GW "Get Window" inplies that data is being moved from a window into a
sprite.

12. EW "Put Window" inplies that data is being put into a window from a sprite.

13. OOP inplies an operation between two sprites with the same dimensions.

The best way to became familiar with the language is to use it!

There are also some general points worth noting.

GENERAL POINTS

1. Vertical scrolls will require some buffer space at the end of sprite space,
so make sure that either you have set up sprite space with the development
package (the default of 256 is usually adequate), or that at least one COLD#
has been executed to make space. The space required for a scroll is
obtained by multiplying the width of the sprite, try the number of pixels
to be scrolled. Horizontal scrolls do not require buffer space. When
White Lightning is first Loaded without sprites, a COLD# is automatically
executed and sets the buffer to 256 bytes.

2. All attribute scrolls are "with wrap".

3. Canmands prefixed with GET or PUT are operations between a whole sprite
and a screen window. These are very fast and can be made even faster
by suppressing the movement of attribute data, if its transference is
not required. To suppress attribute data use the word ATTOFF. If you
wish to switch data flow back on at a later stage, use ATTON. The switch
remains in its state until changed by the execution of one Of these
two words or the execution of a word beginning with GW or FW and ending
with S (group 2 GETS and PUTS). NEVER assume the state of the switch
at the start of the program: one of your first words at the beginning
of your program should be ATTON or ATTOFF.

4. If a sprite is dynamically allocated space at runtime it will probably
contain garbage in its pixel and attribute data, so both will need to be
set up. It is all too easy to forget the attributes.

5. Sometimes the dynamically created sprites will contain zeroes; if you set
up the pixel data and forget the attribute data then execute a PUT to
the screen with the attributes on - a black rectangle will appear. See
SETAM.

6. If you vent to wipe a sprite off the screen but not affect any other
pixel data within its screen window, use POTXRS. Ranember, though, that
if you have carried out any operations on the original sprite since
doing the original PUTBLS or PUTXRS it may not work.

7. If you want to leave a sprite on the screen but clear all other pixel data
in its screen window use PUTNDS. Again, be sure that no intermediary
operations have taken place.

45

8. If you wish to PUT a sprite onto the screen over the top of the existing
data in the window, then you should use FUTORS.

9. Points 6-8 apply to operations in memory, although the words used are
of course different.

10. The best way to get to knew the PUTs and GETS is to experiment with them;
you will soon realise how to move sprites. For those of you not yet
familiar with what "AND", "CR" and "XDR" mean, note the following:

a) If two sprites are AND'ed, then only those pixels set in both will
remain set when the sprites are AND'ed together.

b) If two sprites are CR'ed, then all those pixels set in either sprite
will be set in the result.

c) If two sprites are XDR'ed, then all those pixels set in either
sprite will be set in the result, but this time, all pixels where
both were set will now be reset.

d) All "Block Shift" commands will destroy whatever was previously
in the window.

11. It is possible to set up "masks" in dummy sprites and use the boolean
operations CR, XDR and AND to move windows around etc.

12. If you wish to make something appear at lightning speed, leave the data
on the screen and fill the window with zero attributes or attributes with
the same INK and PAPER colour. To make the sprite appear you need only
download the attributes using FWATTS; to make it disappear use
EWATTS again, but this time, download stored attributes with the same ink
and paper colour, or use SETAV.

13. It is possible to use the TEST command to gain direct access
to the attributes in the sprite memory. They are located at DPTR+ 8*LEN*BGT
and can be easily block filled.

14. Most animation routines use only the variables:

HGT Height of window
LEN Width of window
COL Screen column of top left character
ROW Screen row of top left character
SCOL Sprite column of top left character
SROW Sprite row of top left character
SPN Sprite number
SPl Number of first sprite in a double sprite operation
SP2 Number of second sprite in a double sprite operation

Columns are measured in characters (8 pixels by 8 pixels) and are counted
from the left, 0 to 31.

Rcws are measured in characters and are counted frem the top 0 to 23.

Remember, never change a variable unless you need to, they are not
reset between instructions (with the exception of ADJM and ADJV), and
you can always write your code to order the operations in such a way as
to minimise the resetting of variables.

46

15. If a word aiding in V (screen operation) does not execute, it is almost
always because the window you have defined does not lie wholly on the
screen. That is to say, that OOL + LEN is not in the range 1 to 32, or
ROW + HOT is not in the range 1 to 24. See ADJV.

16. If a word aiding in S (screen/sprite operation) does not execute, then
again, it is almost always because the sprite width + COL is not in the
range 1 to 32 or the sprite height + ROW is not in the range 1 to 24.
See ADJM.

17. If a word ending in S that is also a window carrnand (second letter W)
does not execute, it may be for the reasons outlined in 16, or it may be
that SCOL + LEN or SROW + H3T do not lie within the width and height of
the sprite containing the window.

18. If a word ending in M that is not a window command does not execute,
the sprite probably does not exist; if it is a window command, then it
is likely that the width of the first sprite + ROW or the height of the
first sprite + SCOL do not lie within the width and height of the
sprite containing the window.

19. Remember that the SPIN carmand needs a second sprite to rotate into,
and that its dimensions should be the reverse of the sprite to be
spun. For real speed, it is best to store the sprite in each of its
4 orientations.

20. If you wish to do a vertical mirror, just SPIN, do a horizontal
mirror, and SPIN back.

21. It is good policy always to make the sprite one character higher and
wider than the graphic character itself; this will enable you to scroll
the character within the sprite and give pixel resolution when using
the PUT commands.

22. If memory permits, it is a good idea to keep a "back-vp" of each sprite
held under a different number, so that if an error is made and a sprite
corrupted, it can be copied back from the copy. They can always be deleted
from the final program.

23. Never execute the NEW or CLEAR oatmands when in BASIC.

24. If a sprite driven under interrupt disappears from the screen or
flickers, it is probably a timing related problem and re-ordering
the code will almost certainly solve the problem.

25. Screens can be moved up and down memory using the CMOVE word. Each screen
occupies 512 bytes and the addresses are listed in Table 1, the Table
of Screen Addresses.

26. If you are using the Background facility, the top 16 bytes of RAM will be
used, so any data stored there will be corrupted. TO avoid this, make
sure you have enough scrolling buffer and keep the top of sprite space
below 65520.

27. If you execute SETAM or SETAV in background, set the FLASH attribute
in the background program.

28. If you wish sprite space to "grow" upward use SPRITE and WIPE, otherwise
always use ISPRITE and DSPRITE for sprite allocation.

29. BAD RAMIOP error, usually means you have not RESERVED sufficient
space for your BASIC program.

47

SPRITE UTILITIES

All the sprite utilities described in this section are available at run-time, but
we strongly reccrrmend that all sprite allocation is undertaken at the sprite
development stage to save laboriously reloading sprite data if an error is made at
run-time. They are provided for advanced programming applications only and should
never be executed in background.

COLD #■

This command sets the end of sprite space pointer SPND, to the value in SPST, the
start of sprite space pointer. It then clears memory above SPST. The size of the
memory cleared is specified in SLEN. Each time a sprite is allocated space using
the SPRITE command, SPND is updated. Vertical scroll data (pixel and attribute)
uses the space immediately above SPND so a COLD# is necessary at seme stage before
executing the commands. The amount of data required is given by the product of
the scroll width and the number of pixels scrolled, sprites are stored in the
following format:

First byte is the sprite number (1 to 255)
Second and third bytes hold the address of the next sprite in memory.
Fourth byte is the sprite width (1 to 255)
Fifth byte is the sprite height (1 to 255)
The next 8*height*length bytes hold pixel data.
The final height*length bytes hold the attributes.
Therefore, each sprite requires 9*height*length+5 bytes.

It should be noted that sprite numbers need not be allocated in any particular
order. The best position for sprite space is at the top of memory and it is not
difficult to calculate space required, although the development package does this
automatically.

To calculate the total sprite space that will be used, use 9*length*height+5 for
each sprite and then add buffer space for vertical scrolls, 256 should be
sufficient for most applications. This total should be assigned to SLEN. SPST
should then be assigned with 65520-SLEN.

Example:

Suppose you wished to allocate space for 10 4 by 4 sprites, 3 8 by 6 sprites and a
5 by 4 sprite. Suppose also that a 4 pixel scroll will be required for a 4
character wide sprite, and a screen window 9 characters wide will need to be
scrolled 3 pixels. The 8 by 6 sprite is also to be rotated. The following
procedure to calculate sprite space is required.

10 4 by 4 sprites require 10*(4*4*9+5) = 1490 bytes
3 8 by 6 sprites require 3*(8*6*9+5) = 1311 bytes
1 5 by 4 sprite requires l*(5*4*9+5) = 185 bytes

TOTAL = 2986 bytes

The 4 character wide sprite scrolling 4 pixels would require 16 bytes.
The 9 character wide screen window scrolling 3 pixels would require 27 bytes.
If W5 allow 27, then this will cover both eventualities and we can forget the 16
bytes for the first case.

TOTAL = 27 bytes

48

A dummy sprite 6 by 8 is also required for the rotation so:

1 6 by 8 sprite requires l*(6*8*9+5) = 437 bytes

So the overall total is 2986+27+437 = 3450 bytes

If this is to be located at the top of memory, then SPST will need to be set to
65520 - 3450 = 62070. Note that memory 65520 to 65536 is used for background
applications.

In this case you would use the following:

62070 SPST I 3450 SLEN ! COLD#

SPND will be automatically set to 62070.

If all this seems a bit complicated, don't worry. A far simpler way of setting u|
sprites is to use the ISPRITE and DSPRITE commands described later in this
section. You won't even need to execute a COLD# command.

SPRITE

Once the sprite space has been cleared, the sprites themselves can be set up.

Parameters Use

SPN Nunber of the sprite to be set up
HGT Height of the sprite in characters
LEN Width of the sprite in characters

Command Action

SPRITE The five byte leader is set up and SPND adjusted

If space is dynamically allocated to a sprite, the sprite will not necessarily be
initialised and may contain garbage. If a sprite is being set up at run-time, be
sure that sufficient memory is available. If a sprite number is given that has
been previously used, the old sprite is destroyed and recreated with the new
dimensions. If sufficient memory is not available, then either an old sprite can
be destroyed or the whole of sprite space can be relocated downwards if space is
available. Most users will probably not use the SPRITE command, but instead, will
use the far simpler ISPRITE command.

WIPE

This command will destroy the sprite whose number is held in SPN, relocate the
sprites above it downward, update the variable SPND (marking the end of sprite
space) and leave the particular sprite number free for reallocation.

Parameter Use

The number of the sprite to be wiped

49

SPND

Note:

Carmand Action

W IPE Destroy a sprite and adjust memory

RELOCATE

An alternative method for creating more space to define new sprites, is to
relocate sprite space downward. Only one parameter is required, MLEN. A positive
value in MLEN will relocate sprites to high memory and a negative value will
relocate them downward. All pointers are reset.

Parameter Use

MLEN Size and direction of relocation

Catmand Action

RELOCATE Relocate all sprite data and reset pointers

Exairple:

If space for a 4 by 4 sprite is to be made and the existing buffer space
maintained, the sprites would need to be relocated downward by 4*4*9+5 = 149. To
do this use the following:

-149 MLEN ! RELOCATE

TEST

For advanced applications there is a command to interrogate sprite details. SPN
is loaded with the number of the sprite to be interrogated, and after execution,
the following parameters will be set:

HGT will hold the height of the sprite
LEN will hold the width of the sprite
SPTR will hold the address of the first byte of the sprite header
DPTR will hold the address of the first byte of the pixel data
SIZE will hold the amount of memory occupied by the sprite

In order to calculate the start of attribute data, use DPTR+8*HGT*LEN. Note that
HGT, I£N, SPTR and DPTR will all be zero if the sprite wasn't found.

A true or false flag is also placed on the stack. True means the sprite exists
and false means it doesn't.

Exairple:

To see if sprite 34 exists, and print its dimensions if it does - use:

34 SPN ! TEST IF HGT ? LEN ? CR ENDIF

50

ISPRITEAND DSPRITE

If sprites are located at the top of memory, then ISPRITE and DSPRITE can be used
to create and destroy sprites without the need for any complex calculations.
ISPRITE will insert a sprite at the top of memory, maintain the buffer space and
automatically relocate the rest of sprite space downward. DSPRITE will destroy an
old sprite and relocate sprite space upward. The easiest way to use this package
is to leave the buffer space as it is, then just use ISPRITE and DSPRITE to CREATE
and DESTROY sprites. SPRITE, WIPE, COLD# and RELOCATE are for advanced
applications where sprites are created during program execution. If a "ZAPPED"
program were to execute ISPRITE the sprites would extend downwards and could
overwrite the object code of the main program which lies just beneath SPST. If a
program runs before being "ZAPPED", but the final run-time version crashes, this
is where to look !

Parameter Use

SPN
H3T
IEN

Number of the sprite to be
Height of the sprite to be
Length of the sprite to be

inserted
inserted
inserted

Command Action

ISPRITE Create new sprite and adjust memory

Parameter Use

SPN Number of sprite to be inserted

Caimand Action

DSPRITE Wipe old sprite and adjust memory

Be sure sufficient memory is available before executing ISPRITE. SPST holds the
start; after execution, SPST will became SPST - 9*HST*LEN-5.

51

Note:

SCROLLING

SCREEN SCROLLS

The horizontal screen scrolls are by 1, 4 or 8 pixels, left or right and with or
without wrap. The vertical scrolls are slightly more flexible. The variable NPX
is loaded with the number of pixels to be scrolled, positive for ipward movement
and negative for downward movement. In each case, a screen window has to be
defined.

Horizontal Scrolls

Parameter Use

CSOL Column of the left hand edge of the window (0-31)
ROW Row of the top edge of the window (0-23)
LEN Width of the window (1-32)
H3T Height of the window (1-24)

Ccnmand Action

WRL1V Scroll left 1 pixel with wrap
WRR1V Scroll right 1 pixel with wrap
SCL1V Scroll left 1 pixel, no wrap
SCR1V Scroll right 1 pixel, no wrap
WRL4V Scroll left 4 pixels with wrap
WRR4V Scroll right 4 pixels with wrap
SCL4V Scroll left 4 pixels, no wrap
SCR4V Scroll right 4 pixels, no wrap
WRL8V Scroll left 8 pixels with wrap
WRR8V Scroll right 8 pixels with wrap
SCL8V Scroll left 8 pixels, no wrap
SCR8V

Note:

Scroll right 8 pixels, no wrap

Before executing any of these commands, the window needs to be set ip using the
four parameters above. If the command does not execute, it is likely that part of
the window does not lie on the screen. OOL + LEN should be in the range 1 to 32
and LEN + HGT should be in the range 1 to 24.

Example:

To see these commands work, it is a good idea to do a VLIST first so that there is
seme data on the screen. The four parameters will need to be set, unless of
course they have previously been defined, but for this example let us assume that
they haven't. To scroll a window at OOL 4, ROW 5 with height 4 characters and
width 3 characters, with wrap, 4 pixels left, type the following:

4 COL ! 5 ROW ! 4 H3T ! 3 IEN ! WRL4V <CR>

If there is no data on the screen, type:

VLIST 4 OOL ! 5 ROW ! 4 H3T ! 3 IEN ! WRL4V <CR>

A window column 4 Rcw 5 has been scrolled left 4 pixels - if you did'nt see it
happen type:

52

WRL4V WRL4V WRL4V <CR>

and you should see it!

Parameters do not reset after the execution of the commands, so to repeat the
above, this time at ooliitm 10 and without wrap, you could use the following:

10 CJOL ! 9CL4V <CR>

Vertical Scrolls

These work in a similar way to the horizontal scrolls, but in addition to setting
up the window with the four window parameters OOL, ROW, HOT and LEN, a further
variable NPX is used to give the size and direction of the scroll in pixels. A
positive value for NPX causes upward scrolling and a negative value causes
downward scrolling.

Parameter Use

OOL CoIuoti at left hand edge of window (0-31)
ROW Row of top left edge of the window (0-23)
IEN Width of the window (1-32)
H3T Height of the window (1-24)
NPX Number of pixels to scroll (+127 to -128)

Canmand Action

WCRV Vertical scroll with wrap
SCRV Vertical scroll, no wrap

All vertical scrolling of pixel data and/or attributes for screen or sprites,
requires buffer space. The space required is calculated by multiplying NPX by
LEN. The start of the buffer is taken as the next free byte after sprite space,
so be sure that either a GOLD# has been executed, or that SPND has been set. It
is safe practice to develop sprites using the software provided, and to allow 256
bytes buffer at the top before linking with the main program. Be sure also that
the scroll length is not greater than the window's size. On entry to White
Lightning a GOLD# is autanatiacally executed and a scrolling buffer of 256 bytes
is set op. This is maintained so long as ISPRITE and DSPRITE are used in
preference to SPRITE and WIPE.

Attribute Scrolls

Attribute scrolls are similar to the pixel data scrolls but all scrolls are always
by one character, with wrap.

Parameter Use

COL C o l u m of the left hand edge of the window (0-31)
ROW Row of the top edge of the window (0-23)
IEN Width of the window (1-32)
H3T Height of the window (1-24)

53

Canmand Action

ATTLV Scroll attributes left 1 character with wrap
ATTRV Scroll attributes right 1 character with wrap
ATTUPV Scroll attributes \jp 1 character with wrap
ATTDNV Scroll attributes down 1 character with wrap

SPRITE SCROLLS

The format for these commands is similar to that for the screen scrolls, except
that these acrmands are postfixed with an M as apposed to a V.

Horizontal Scrolls

Parameters Use

SPN The number of the sprite to be scrolled (1 to 255)

Command Actions

WRL1M
W RR1M
S C U M
SCR1M
WRL4M
WRR4M
SCL4M
SCR4M
WRL8M
W RR8M
SCL8M
SCR8M

Scroll left 1 pixel with wrap
Scroll right 1 pixel with wrap
Scroll left 1 pixel, no wrap
Scroll right 1 pixel, no wrap
Scroll left 4 pixels with wrap
Scroll right 4 pixels with wrap
Scroll left 4 pixels, no wrap
Scroll right 4 pixels, no wrap
Scroll left 8 pixels with wrap
Scroll right 8 pixels with wrap
Scroll left 8 pixels, no wrap
Scroll right 8 pixels, no wrap

The chief purpose of these commands is to give pixel resolution to the PITT
commands, and for this reason, a 1 character border along 2 edges of a sprite
character should always be allowed.

Example:

To scroll sprite number 7, 1 pixel right with wrap, use:

7 SPN ! WRRlM

Vertical Scrolls

These work in the same way as the vertical screen scrolls where the signed
variable NPX is used to determine the size and direction of the scroll.

Parameters Use

SPN Number of the sprite to be scrolled
NPX Number of pixels to be scrolled

54

Note:

Command Action

W CRM Vertical scroll with wrap
SCRM Vertical scroll, no wrap

Example:

To scroll sprite 5 downward by 11 pixels with wrap, use:

5 SPN ! -11 NPX ! WCRM

Attribute Scrolls

There are four commands to scroll attributes in any of the four directions:

Parameter Use

SPN Number of the sprite to be scrolled

Command Action

ATTLM Scroll attributes left with wrap
ATTRM Scroll attributes right with wrap
ATTUPM Scroll attributes up with wrap
ATTDNM Scroll attributes down with wrap

GETS AND PUTS

There are three groups of GETs and PUTs. The first, and the fastest, carry out
operations between a full sprite and a previously defined window of the screen.
The second group carry out operations betvreen sprite windows and screen windows.
The third, and probably most powerful group of commands in the sub-language, cover
operations between sprite windows and other sprites.

Suppose you have desiged a sprite 160 characters wide (5 screens) and you wish to
smoothly pixel scroll through this sprite via a screen window covering the bottom
five character rows of the screen. A second dummy sprite, 1 character wider than
the screen can be used to GET from the larger sprite, scroll, PUT, scroll, Put and
so on for 1 character, then a second block, 1 character further into the larger
sprite can be GOT and so on. Experimentation will soon show you how to do this.
These routines can be run in background to provide fast smooth scrolling
backdrops.

Group 1

This group provides block moves and logical operations between sprites and screen
windows - these are the fastest ocmmands in the set. This particular group does
not include seperate attribute commands but instead uses an attribute switch. If
the switch is on, pixel data and attribute data are moved; if you do not require
to move attributes you can increase the speed of operations by switching off the
attribute switch.

55

Command Action

ATTON Enable the flow of attribute data between the sprite and the screen
window

ATTOFF Disable the flow of attributes between the sprite and the screen
window

We now acme to the group 1 commands themselves:

GETS

Parameter

SPN
COL
ROW

Command

GETBLS
GETORS
GETXRS
GETNDS

Note:

The dimensions of the screen window are taken as the dimensions of the sprite. If
the command doesn't execute, it is almost certainly because the width of the
sprite + COL or the height of the sprite + ROW, exceed 32 or 24 respectively, so
that part of the window lies off the screen, sprites must be previously set up
either by the developement software, or the COLD# and SPRITE or ISPRITE commands
before these commands will execute.

Example:

To GET a screen sprite into sprite number 4 from column 5, row 4, with attributes
and "OR" it with the data currently held in sprite number 4, use the following:

4 SPN ! 5 COL ! 4 ROW ! ATTON GETORS

Note that if ATTON was the last switch command, it would not be needed in the
above.

PUTS

These ccitmands are identical to the group 1 "GETS" except that data transfer is
from the sprite to the screen. The results of the various operations are
therefore displayed to the screen. The parameters are identical in operation to
those of the "GETS", and the ATTON and ATTOFF switch commands also apply.

Use

Number of the sprite to be used (1 to 255)
Left hand column of target screen window (0 to 31)
Top row of target screen window (0 to 23)

Action

Block move screen window into sprite
OR screen window into sprite
XDR screen window into sprite
AND screen window into sprite

Parameter Use

SPN Number of the sprite to be used (1 to 255)
COL Left hand column of target screen window (0 to 31)
ROW Top row of target screen window (0 to 23)

56

Command Action

PUTBLS Block move sprite window into screen
PUTORS OR sprite window into screen
PUTXRS XDR sprite window into screen
PUTNDS AND sprite window into screen

Group 2

These ocnmands allow operations between sprite windows and screen windows. Unlike
Group 1 commands, there are separate commands to move pixel data and attributes,
and the ATTON, ATTOFF commands have no effect on their operation. Two new
parameters are introduced to specify the COLUMN and ROW of the top left hand
character of the sprite window. In addition, H3T and LEN are required to specify
the dimensions of the window for the screen and sprite.

Parameters Use

COL Left hand column of target screen window (0 to 31)
ROW Top row of target screen window (0 to 23)
SCOL Left hand column of target sprite window (0 to sprite width -1)
SROW Top row of target sprite window (0 to sprite height -1)
HGT Height of window
I£N Length of window
SPN Sprite number

Command Action

GWBLS Get block of pixel data from screen window into sprite window
GWORS OR pixel data from screen window into sprite window
GWXRS XDR pixel data from screen window into sprite window
GWNDS AND pixel data from screen window into sprite window
GWATTS GET block of attribute data from screen window into sprite window
PWBLS PUT block of pixel data from screen window into sprite window
PWORS OR pixel data from sprite window into screen window
PWXRS XDR pixel data from sprite window into screen window
PWNDS AND pixel data fran sprite window into screen window
PWATTS PUT block of attribute data from sprite window into screen window

If the command does not execute, check that the window is not partially off the
screen or sprite.

Exanple:

To block move a window 3 characters high and 4 characters wide from row 2, column
3 of the screen to row 4, column 6 of sprite number 7, use the following:

7 SPN 1 3 HGT 1 4 LEN ! 2 ROW ! 3 OOL ! 4 SROW i 6 SCOL ! GWBLS

Note that sprite 7 must be at least 8 characters wide and 7 characters high for
the command to execute.

57

Group 3

This group, possibly the most useful in the whole set, comprises commands which
support operations between sprites and sprite windows. The same set of oaimands
as those in Group 2 are available and the format for each ward is the same as in
Group 2, except that the commands are post fixed with an "M" instead of an "S".
The chief difference to the user lies in the set of parameters. The size of the
data window is set to have the dimensions of the first sprite, and its position in
the second sprite is set using the SCOL and SRCW parameters.

Parameter Use

SPl Number of the first sprite
SP2 Number of the second sprite (containing the window)
SCOL Left hand column of target sprite window
SRCW Top row of target sprite window

Catmand Action

GWBLM Block move pixel data from first sprite into window in second sprite
GWORM OR pixel data fran first sprite into window in second sprite
GW XRM XDR pixel data from first sprite into window in second sprite
GW NDM AND pixel data fran first sprite into window in second sprite
GW ATTM Block move attribute data from first sprite into window in second

sprite
PWBLM Block move pixel data from window in second sprite into first sprite
PWORM OR pixel data from window in second sprite into first sprite
PW XRM XOR pixel data from window in second sprite into first sprite
PW NDM AND pixel data fran window in second sprite into first sprite
PW ATTM Block move attribute data from window in second sprite into first

sprite

Note:

If the width of the first sprite added to SCOL, or the height of the first sprite
added to SRCW exceeds either the width or height of the second sprite
respectively, then the command will not execute.

COPY COMMANDS

These five commands, are in fact a sub-group of the Group 3 ccmmands and ad lew
operations between pairs of sprites with the same dimensions. It is necessary,
therefore, bo provide only two parameters instead of four.

Parameter Use

SPl Number of first sprite
SP2 Number of second sprite

58

Command Action

COPYM
COPORM
COPXRM
COPNDM
COPATTM

Note:

Copy first sprite pixel data into second sprite
OR first sprite pixel data into second sprite
XQR first sprite pixel data into second sprite
AND first sprite pixel data into second sprite
Copy first sprite attribute data into second sprite

If the dimensions of the two sprites are not identical, then the command will not
execute.

Example:

To make a complete copy of sprite 10 into sprite 8, use the following:

8 SP1 ! 10 SP2 ! COPYM C0PAT1M

SPRITE TRANSFORMATIONS

To increase the utility of the package, four extra words have been added to
invert, spin, reflect and enlarge sprites. The inversion and reflection routines
work for screen and sprite data but the rotation and enlargement ocmmands work
only on sprites and a dummy sprite is required to rotate or enlarge into.

Inversions

The sprite is "l's complemented"; in other words, all the pixels which are set
"on", became set "off" and vice-versa. The attributes, however, remain
unchanged.

Parameter Use

SPN The number of the sprite to be inverted

Command Action

INVM The sprite is inverted (l's oaiplemented)

Parameter Use

COL
ROW
I£N
BET

Column of the left hand edge of the screen window (0 to 31)
Row of the top edge of the window (0 to 23)
Width of the screen window (1 to 32)
Height of the screen window (1 to 24)

Command Action

INVV Invert screen window

59

Reflections

There are four ccnmands in this group for reflecting screen and memory, pixel and
attribute data. A sprite is often required to point in two directions and the
command can either be used at the development stage or, if space is short, at
run-time. The command causes horizontal reflection but vertical reflection is
possible, by combining rotations and reflections.

Parameter Use

SPN Number of sprite to be reflected (1 to 255)

Command Action

M IR M
M ARM

Reflect sprite pixel data about its centre
Reflect sprite attribute data about its centre

Parameter Use

COL
ROW
LEN
H3T

Column of left hand edge of screen window (0 to 31)
Row of top edge of the window (0 to 23)
Width of screen window (1 to 32)
Height of screen window (1 to 24)

Command Action

M IRV
MARV

Reflect screen pixel data about window centre
Reflect screen attribute data about window centre

Spin

This command involves an operation between two sprites with transposed dimensions.
If, for example, a sprite with dimensions 8 by 3 is to be spun into a second
sprite, this second sprite must have dimensions 3 by 8. Square sprites are, of
course, no problem. Pixel and attribute data are both rotated. If the command is
to be used, it is important to remember that a second sprite will be needed to be
rotated into and that it is nectessary to set this up in advance. Rotation is 90
degrees clockwise.

Parameter Use

SP2
SPl

Number of sprite to be rotated
Number of sprite to be rotated into

Command Action

SPINM Rotate 90 degrees clockwise sprite SP2 into sprite SPl.

Note:

A sprite cannot be rotated into itself, i.e. if SP1 and SP2 are the same number,
the rotation will not work. The result is, however, well worth seeing! Data is
"0R"ed from SP2 into SPl so it is usually necessary to execute a CLSM to clear
sprite SPl before execution.

60

Enlargement

One command is provided for enlarging a sprite and its attributes into a second
sprite which has dimensions exactly double those of the sprite being enlarged.

Parameter Use

SPl Number of the sprite into which the enlargement is carried
out.

SP2 Number of the sprite being enlarged.

Command Action

DSPM Enlarge sprite SP2 into sprite SPl.

Note:

If the dimensions of sprite SPl cure not twice those of sprite SP2 the command will
not execute.

INTERRUPT RELATED WORDS

Six interrupt related words are provided which control the Foreground/Background
execution of White Lightning words. The first four have no parameters.

Command Action

HALT Suspend CPU operation until the next interrupt. Executing
HALT in background mode will freeze the system permanently.

El Enable the interrupt.

Dl Disable the interrupt.

EXX Exchange IDEAL variables with the alternate IDEAL variables.
This command is executed automatically each time an
interrupt occurs and at the end of the interrupt routine
to restore foreground variables. If a background program
is not being used EXX can be used to provide extra variables.

INT-ON The specified word (see next exaitple) is executed on the
receipt of each interrupt.

INT-OFF Following execution of INT-OFF the Z80 returns to interrupt
mode 1 and polls the keyboard 50 times a second. The
background program ceases execution.

Example:

To set a word running in background type:

• WORD INT-ON

Where "WORD" is the word to be run in background.

61

BASIC INTERFACE WORDS

These words are provided to enable you to mix BASIC and Forth in your program.
The section covering the access of BASIC should be read carefully before an
attempt is made to use these commands.

Command Action

PROG Enter BASIC at command level.

RESERVE

Exaitple:

Reserve space in the dictionary for the insertion of BASIC
source. The size of the space to be reserved is taken from
the stack.

1024 RESERVE

will reserve lk from the current value of HERE.

GOTO

Example:

100 GOTO

The BASIC program is executed from the line number held
on the stack. Forth can be called from BASIC using
RANDOMISE USR 30000 and Forth can be re-entered using
PRINT USR 30006.

will caimence execution of the BASIC source fran line 100.

RETUSR Control is returned to the BASIC program from Forth.
Execution of the BASIC program proceeds with the first
instruction after the RANDOMISE USR 30000 with which Forth
was called. Do not execute a RETUSR in Forth if Forth has
not been called using a RANDOMISE USR 30000 call.

MISCELLANEOUS WORDS

There are 18 wards provided which cover general aspects of games development.

Camiand Action

SETAV Set the attributes to the current INK and PAPER colours in
the screen window defined by HGT, LEN, COL, ROW.

SETAM Set the attributes to the current INK and PAPER colours in
the sprite whose number is held in SPN.

CLSV Clear the screen window (defined by HGT, LEN, COL, ROW)
of pixel data and set the attributes throughout to the
current INK and PAPER colours.

CLSM Clear the pixel data of the sprite whose number is held
in SPN. Attribute data is unaffected.

82

ADJM This command is used to ensure the execution of group2 GET
and PUT instructions. The parameters are SPN, COL and ROW.
First HOT and I£N are set to the dimensions of the sprite
whose number is held in SPN. If COL or ROW are "off
screen" or if COL + LEN, HGT + ROW are off screen, then
the parameters COL, ROW, HOT, LEN, SCOL, SROW are set such
that the sprite will be partially PUT to the screen or
GOT fran the screen. This is an extremely useful command
and can be used in conjunction with any of the group 2 GETs
and PUTs.

Example:

-1 COL ! -1 ROW ! 1 SPN ! ADJM EWELS

This will PUT part of sprite 1 in the top left hand corner. After execution, COL
and ROW will have been made 0 and SCOL and SRCW will have the value 1.

ADJV Essentially the same idea as ADJM but this time the screen
window defined by HGT, IEN, COL, ROW is adjusted to lie
"on screen".

SCANM The sprite whose number is held in SPN is scanned for
pixel data. If data is found a true (non-zero) flag is
placed on the stack, otherwise a false (zero) flag is
placed on the stack. This command is used extensively for
collision detection.

SCANV The charater cell at screen positions defined by COL and
ROW is scanned for screen data and a true or false flag
stacked accordingly. This command executes more rapidly
than SCANM.

RND Replace the value at the top of the stack by a random
number between zero and the value at the top of the stack.

Example:

10 RND

will leave a number between 0 and 10 on the stack.

O U T# Output the second value on the stack to the port address
at the top of the stack.

IN * Replace the port address on the top of the stack by the
16 bit representation of the 8 bit number read from the
port.

Example:

The following will poll the Kempston Joystick and execute one of 8 words depending
on the joystick position. Finally, the fire button will be tested. Type:

63

s JOYSTICK 31 IN# DUP CASE <CR>
0 OF CENTRE/" ENDOF <CR>
1 OF RIGHT " ENDOF <CR>
2 OF LEFT " ENDOF <CR>
4 OF DOWN " ENDOF <CR>
8 OF UP " ENDOF <CR>
9 OF UPRIGHT " ENDOF <CR>

10 OF UPLEFT " ENDOF <CR>
5 OF ." DOWNRIGHT " ENDOF <CR>
6 OF DOWNLEFT " ENDOF <CR>

ENDCASE <CR>
15 > IF FIRE " ENDIF ; <CR>
: JTEST BEGIN JOYSTICK CR 1 1 KB UNTIL ;<CR>

To run type:

JTEST <CR>

To halt press CAPS SHIFT

KB This command is provided for the detection of multiple key
presses. All it does, in fact, is test the specified key
and stack a true flag if the key is pressed and a false flag if
it is not. The key to be tested is specified by the top two
numbers on the stack. The second value specifies the half RCW
and the top value the COLUMN. For a full description
of the COLUMNS and ROWS of the Spectrum keyboard see page 160
of the Spectrum manual. Below is a summary.

ROW KEYS

1 CAPS SHIFT to V
2 A to G
3 Q to T
4 1 to 5
5 0 to 6
6 P to 7
7 ENTER to H
8 SPACE to B

Columns are organised from 1 to 5 and counted from the outside in. This is the
order above.

BLEEP This operates in the same way as the Spectrum's BEEP
command with the second number on the stack providing
duration and top number pitch.

Example:

100 200 BLEEP

ATTON After the execution of ATTON, group 1 GETs and PUTS will GET
and PUT attribute data at the same time as they GET and PUT
pixel data. The GW and EW commands, however, are unaffected
by ATPON or ATTOFF and always use separate commands to
move pixel data. After the execution of a GW or EW command
the attribute switch is always set to 'OFF'.

64

ATTOFF After the execution of ATTOFF, group GETS and FUTs will move
pixel data only.

CALL Control junps to a machine code subroutine whose address
is held at the top of the stack.

Example:

HEX DOOO CALL

would execute a machine code subroutine at location DOOO HEX. Don't type this
unless you have a machine code routine at HEX DOOO!

ZAP Once program development is ocnpleted and you have compiled
your final program into the dictionary, typing ZAP will
produce a run-time version. The length of the final
version is displayed to the screen and a copy can be saved
by typing:

SAVE "filename" CODE 24832, LENGTH

the length being the length displayed. Typing:

PRINT 06R 24832

will execute the last word defined before the ZAP command.
This is the only form in which White Lightning programs
can be commercially sold.

ZAPINT As above except that programs which utilise the
Foreground/Background facility must be produced using the
ZAPINT command as opposed to the ZAP command. The only
real difference is that the first five screens also need
to be saved and that the top 16 bytes of RAM will be
used by the final program.

PRT-ON All subsequent screen output is to ZX-Printer only.

PRT-OFF All subsequent output is to screen only.

Exanple:

ERT-CN VLIST PRT-OFF

will list the current FORTH dictionary to the ZX-Printer.

66

FORTH/BASIC WORDS

For those users who have mastered and grown used to the Spectrum's own graphics
commands, a set of 18 Forth implementations of Spectrum words is provided.
Parameters are placed on the stack in the same order as they occur in their BASIC
implementations. If an error occurs during the execution of a BASIC word, Forth
should be re-entered via a WARM start, i.e. PRINT HSR 24836. For a full
description of the action of each of these words refer to your Spectrum manual.

PARAMETERS WORD ACTION

COPY The screen in 'dunped' to the ZX-Printer.

ROW, COL AT The print position is moved the specified
Column and Row.

COLOUR BORDER The border colour is set to one of the 8
Spectrum colours.

CLS The screen is cleared of pixel data and the
attributes set to the current INK, PAPER,
ERIGHT and FLASH values.

X,Y,ANGLE DRAW-ARC See Spectrum manual page 122.

X,Y,RADIUS CIRCLE See Spectrum manual page 123.

X, Y DRAW See Spectrum manual page 121.

X, Y PLOT See Spectrum manual page 121.

ROW, COL SCREEN$ The character at the screen position defined
by the two values at the top of the stack is
tested to see if it is one of the Spectrum's
pre-defined characters. The ASCII value
is left on the stack.

ROW, COL ATTR The code for the attribute at the screen
position defined by the top two values on the
stack is left on the stack.

X, Y POINT The pixel at the (x,y) co-ord defined by the
top two values on the stack is tested and
a true or false flag stacked depending on
whether the pixel is set or not.

COL TAB Set the horizontal print position to the
value at the top of the stack.

COLOUR INK Set the INK colour to the value at the top
of the stack.

COLOUR PAPER Set the PAPER colour to the value at the top
of the stack.

FLAG OVER. Note the full stop at the end of OVER.
This sets the printing mode according to
the value of FLAG which is zero or one.

FLAG INVERSE As for OVER.

FLAG BRIGHT As for OVER.

66

FOREGROUND BACKGROUND

Mastering machine code does give nost programmers access to the speed of
commercial games, but often the smoothness and continuity are lacking. One of the
greatest difficulties facing any games designer is timing. The basic problem is
that some parts of the program need to execute at regular intervals, and trying to
achieve this can involve a lot of calculation and wasted processor time. The
solution to this is to use interrupts to execute particular sections of code.
White Lightning does this for you, using the wards INT-ON and INT-OFF.

The Spectrum interrupt occurs 50 times a second, so background wards can be
executed at this frequency, or by counting interrupts, at lower frequencies.

If you list any of the screens 1 to 5, you will see that they are apparently
filled with garbage. This is because the area in memory occupied by these screens
contains the machine code that enables the background facility. If you are not
intending to use this facility, then you can clear screens 1 to 5 and use than
normally for source code. If you do this, however, don't forget that you won't be
able to use any of the graphics words in background mode, or the system will crash
in no uncertain manner!

When an interrupt occurs, the foreground program steps exactly where it is, saves
off its parameters and then executes the background word. The background word
will then execute fully before continuing execution of the foreground program,
from the exact point at which it was halted. Three important points should be
bourne in mind. Firstly, if the execution time of the background word exceeds a
fiftieth of a second, it is not possible to execute it more than twenty five times
a second, if it exceeds a twenty-fifth of a second, it can only be executed at
half that frequency, and so on. There is, however, no limit to the length of the
background execution time itself. Secondly, as the execution time approaches a
fiftieth of a second, or seme multiple of a fiftieth of a second, then less and
less processor time will be available for the foreground program and sometimes it
is necessary to extend the length of the background program to make the foreground
program run more quickly, by reducing the frequency of the background program.
Experimentation will familiarise the user with the techniques required for the
best effects. More foreground time can also be taken by disabling and then
re-enabling the interrupt using DI and El respectively. This brings us to the
third, and most important point. Remember that when an interrupt occurs, the
foreground program will stop whatever it is doing, execute the background program
and then continue with the foreground execution. Suppose the background program
is a sideways scroll of a user defined screen window and the foreground program
PUTs a character into the window. A problem arises if an interrupt occurs halfway
through the PUT, because the top half of the character will be scrolled before the
second half of the character is PUT to the screen. To circumvent this problem,
where an operation is carried out on the same screen or sprite data by both the
foreground and background programs, the background program should be temporarily
disabled using DI, the foreground word executed, and then the background program
re-enabled using El ready for the next interrupt to occur. The safest way to
proceed until you have really mastered the language, is to avoid the situation
altogether and make sure the foreground and background programs don't operate on
the same sprite or screen area.

To set the background program running, siirply type an apostrophe (shifted 7), a
space, the word to be executed, a space and then INT-ON. Don't forget that if the
background word does not set its own parameters, then these will need to be set
before execution and if these are the IDEAL variables, then the alternate set will
be used.

67

For example, suppose you wanted to scroll a window, four characters square, in the
middle of the screen and invert it after each sideways scroll. First we need to
define a word to dev the scrolling and the inverting. For seme reason, most test
programs are called FRED and there is no reason for breaking with convention. To
define the word type:

: FRED WRRlV I N W ; <CR>

To set up the parameters type:

4 HGT' ! 4 LEN' ! 14 00L' ! 9 ROW' ! <CR>

To make sure there is seme data in the window, type:

VLIST <CR>

You are now ready to execute the background program by typing:

' FRED INT-ON <CR>

To halt this program type:

INT-OFF <GR>

This program is running a bit too fast to see, so let's write another program
which slows this down to every fifth interrupt, i.e. ten times a second. We will
need to define a variable and a new word. To set up the variable type:

0 VARIABLE ICNT <CR>

This sets up a variable called ICNT and assigns to it the value 0. We'll call
this new background word FREDA. Type:

: FREDA ICNT @ 1+ 5 > IF FRED 0 ICNT ! ELSE 1 ICNT +! ENDIF ; <CR>

Now type:

' FREDA INT-ON <CR>

All "FREDA" does, is to increment ICNT and ccnpare it with 5 and if it is greater
than 5 then "FREDA" is executed and ICNT set back to zero.

It would be useful to be able to control the speed that "FREDA" ran at, so, let's
modify "FREDA" to do this. First, type INT-OFF FORGET FREDA <CR> to get rid of
the old definition and then set up a new variable and construct a slightly
different program. A variable which sets the limit on the number of interrupts
needs to be set up, so type: 4 VARIABLE ICNT <CR>. The new definition is set up
by typing:

: FREDA ICNT § 1+ ICNT @ > IF FRED 0 ICNT ! ELSE 1 ICNT +! ENDIF ; <CR>

To execute the new word type:

0 ICNT ! ' FREDA INT-ON <CR>

This program increments ICNT, carpares it with ICNT and executes when ICNT is
equal to ICNT. Increasing ICNT then, will slow the background execution and
decrementing ICNT will speed it up. If ICNT is put equal to 1, execution will
occur every cycle.

68

TO speed up "BREDA" type: 0 ICNT ! 2 ICNT ! <CR> and to slow "BREDA" type 10 ICNT
! <CR> and so on. Type: INT-OFF <CR> to halt BREDA. Now type: FORGET BREDA <CR>

Frequency and Phaee

One of the problems with executing a word on each interrupt, is that the dot
scanning the screen nay overtake the screen operation in the same position on each
execution. This can produce some strange effects, and often, sections of the
screen window will appear to be "sliced". It is more usual to execute on selected
interrupts. We can do this very simply using modular arithmetic.

Suppose we have four different words that we wish to execute with four different
frequencies. Suppose they are as follows:

I N W every 50 cycles
MIRV every 20 cycles
WRR1V every 4 cycles
WCRV every 5 cycles

We now define a variable to count interrupts and four constants to store the
frequencies.

0 VARIABLE ICNT 50 CONSTANT FI 20 CONSTANT F2 4 CONSTANT F3 5 CONSTANT F4 <CR>
: MAO MOD ABS 0= ; <CR>
: IRUN ICNT @ DUP DUP DUP <CR>
FI MAO IF I N W ENDIF <CR>
F2 MAO IF MIRV ENDIF <CR>
F3 MAO IF WRRlV ENDIF <CR>
F4 MAO IF WCRV ENDIF <CR>
1 ICNT @ +! ; <CR>

All we need to do now is set up the parameters by typing:

10 COL' ! 10 ROW' ! 6 B3T' ! 8 LEN' ! 2 NPX' ! <CR>

then put some data on to the screen and execute:

VLIST 0 0 AT ' IRUN EMT-ON <CR>

To terminate, type INT-OFF <CR>

If we had made the FI to F4 variables, we could have controlled the background
program from the foreground by resetting them.

Sometimes, controlling the frequencies of events is not sufficient and phase
information needs to be introduced. In the previous exanple, values of 0, 100,
200, 300 and so on cause all four events. Supposing we vented to maintain these
frequencies, but change the order in which the words execute - we need to
introduce the concept of phase.

In this exanple we need four more constants, so type:

EORGET IRUN <CR>

31 CONSTANT PHI 5 CONSTANT PH2 0 CONSTANT PH3 3 CONSTANT PH4 <CR>

69

Now type:

: IRUN ICNT @ DUP DUP DUP <CR>
FI MOD ABS PHI = IF I N W ENDIF <CR>
F2 MOD ABS PH2 = IF MIRV ENDIF <CR>
F3 MOD ABS PH3 = IF WRR1V ENDIF <CR>
F4 MOD ABS PH4 = IF WCRV ENDIF <CR>
1 ICNT +! ; <CR>

This can be executed using VLIST ' IRUN INT-ON <CR>
Halted using: INT-OFF <CR>
and cleared using: EORGETT IRUN <CR>

Forth/BASIC Words

Sinclair's graphics and sound aaimands have been replicated as Forth words for
continuity - they also execute slightly more rapidly than their BASIC
counterparts. For a full list, see the section on Forth/BASIC WORDS.

They all execute code in Sinclair's own ROM which, unlike Ftorth and IDEAL, is not
re-entrant. This means that these words cannot be executed in foreground and
background simultaneously. The FORTH words ." , . and U. should also not be
executed simultanteously with themselves or any of the BASIC words. None of the
Forth/BASIC words, ." , . or U. should be executed in background while Forth is in
command mode.

70

LOGICAL OPERATIONS

There are three types of logical operation included in the IDEAL sub-language;
these are OR, XOR aiy3 AND. To get the best out of this package it is important to
make full use of these ocmmands.

If a GET or PUT postfixed with "ELS" or "BIM" is executed, then data is block
moved fran the source which may be part of the screen, a sprite, or a sprite
window, in such a way that whatever was previously held at the destination which
may ail so be part of the screen, a sprite, or a sprite window, is obliterated and
replaced by whatever was at the source. This may not always be the desired effect
and quite often the user will want to irerge characters or remove parts of the
characters and so on.

If two sprites are "OR"ed together, the resulting sprite will have pixels set
where pixels were set in either or both of the sprites being "CR"ed.

If two sprites are "AND"ed together, the resulting sprite will have pixels set
where pixels were set in both of the sprites being "AND"ed.

If two sprites are "XQR"ed together, the resulting sprite will have pixels set
where pixels were set in either but reset where pixels wsre set or reset in both.

These results are summarised as follows and should make things a little clearer:

SOURCE DESTINATION OPERATION RESULT

on cm OR on
on off OR on
off cm OR on
off off OR off

cm on AND on
on off AND off
off on AND off
off off AND off

on on XDR off
on off XOR on
off on XDR on
off off XDR off

We can new use the sample sprites to illustrate the effects of these operations.
First FORGET any previously defined words and type: DECIMAL <CR> to ensure that
you are in decimal mode. Now type:

7 INK 0 PAPER CLS . " LOGICAL OR " CR . " LOGICAL OR " <CR>

This will clear the screen and put seme data in the top left hand corner.

New type:

3 SPN ! 0 COL ! 0 ROW ! ATTOFF PUTORS <CR>

You will see that the data has been merged together, both the dragster and the
letters remain.

71

CLS ." LOGICAL AND " CR ." LOGICAL AND ” PUTNDS <CR>

This time, the only data remaining is at those points where the data coincided.
Logical "AND"s are normally used to mark off sections of the screen or sprites.
They are also used extensively for collision detection. If a window of the screen
is "AND"ed into a sprite, and then a SCANM performed, it is possible to determine
whether a collision would occur if the sprite were PUT; before actually PUTting
the sprite.

fie now ocme to the logical XDR. This is probably the most useful operation of the
lot. "XDR"s have the peculiar property of restoring the destination data to its
former state if the operation is performed twice. This is how Sinclair's own
"OVER" operation works. To see this happen type:

CLS ." XDR " CR ." XDR " PUTXRS <CR>

To restore the text type:

PUTXRS <CR>

We can even use this property to swap two sprites without using a third. This
exanple will swap the data but not the attributes. We will "PUT" two sprites at
each stage so you can see what is happening. Type:

CLS ATTON 0 SCOL ! 0 SROW I 1 SPl ! 2 SP2 ! 23 COL ! 6 0 AT <CR>

New type:

1 SPN ! PUTBLS 2 SPN ! 27 OOL ! PUTBLS <CR>

These are the two sprites before the operations begin. Now type:

GWXRM 2 ROW ! 23 COL ! 1 SPN ! PUTBLS 27 COL ! 2 SPN ! PUTBLS <CR>

sprite 1 has now been "XDR"ed into sprite 2. Now type:

PWTXRM 4 ROW ! 23 COL ! 1 SPN ! PUTBLS 27 COL ! 2 SPN ! PUTBLS <CR>

sprite 2 is now in sprite 1. Finally, type:

GWXRM 6 ROW ! 23 OOL ! 1 SPN ! PUTBLS 27 COL ! 2 SPN ! PUTBLS <CR>

The operation is now complete.

If we wanted to add a new word to the language which swaps two equally sized
sprites whose numbers were in SPl and SP2, we would now do so.

: SWOP 0 SCOL ! 0 SROW ! GWXRM PWXRM GWXRM ; <CR>

In fact we oould also use:

: SWOP 0 SCOL ! 0 SROW ! FWXRM GWXRM FWXRM ; <CR>

for exactly the same effect. You will get MSG # 4 if you type the second word
before typing FORGET SWOP <CR>

Ironically, even though we can swap pixel data, there is no simple method for
swapping attribute data unless a third sprite is involved.

Now type:

72

COLLISION DETECTION AND SPRITE RECOGNITION

Two words are provided for collision detection, these are 9CANV and SCANM.

SCANV is used to scan a particular character position on the screen. If any data
is present in the specified square (oo-ords are held in 00L and ROW), then a true
flag is placed on the stack and if the square is anpty (contains no pixel data), a
false flag is placed on the stack. Type:

CLS VLIST 0 VARIABLE CNT <CR>

This will put some data on the screen and initiate the variable CNT. New type:

: G O O C N T ! 2 4 0 D O I R O W ! 32 0 <CR>
DO I COL ! SCANV IF 1 COT +! <CR>
ENDIF DDOP IOOP COT ? ; <CR>

This defines a word which simply counts the number of characters on the screen.
Type:

GO <CR>

This should print a number somewhere around 250.

Often it is insufficient to determine whether a particular character square
contains data or not, and for this reason the slower, but more powerful command
SCANM, has been included. This will scan the sprite whose number is held in SPN
and put a true flag on the stack if the sprite contains pixel data, or a false
flag if it does not. SCANM is normally used to perform one of three functions:

1. To see if data will collide.

2. To detect an exact pattern.

3. To detect the presence of a pattern.

Collision detection is most commonly used to detect a collision between a sprite
moving across the screen and any data which lies in its path. Often the sprite
earn pass through an occupied character position without a collision occurring, so
the SCANM command is insufficient. The procedure is basically to load a dummy
sprite with the section of screen into vrtiich the sprite is about to be POT, "AND"
it with the sprite about to be PUT and then use SCANM. If a true flag is on the
stack the dummy sprite contains data and therefore a collision has occurred. This
is all very wall, but a problem occurs if the new sprite position overlaps the old
sprite position, because this means that the old sprite has to be removed from the
screen before beginning the above detection procedure and subsequently PUTting the
new sprite. This delay causes flicker. The easiest solution is to work with
"XDR"s so that the window can be GOT, "XDR"ed with the old sprite in memory to
remove the old sprite data, and then to do the detection followed finally by the
blotting and then immediate PUTting.

Once an intending collision is detected it is frequently useful to determine what
the sprite has collided with. To begin with, let's assume that the screen window
ws're examining contains one of a known set of objects and that no other data is
present in the window. The method is to load the dummy sprite with the object to
be tested and then catpare it against the set of sprites with which a natch is
being sought. To compare the dummy sprite with a known sprite, all you need to do
is XDR the sprite being tested into the dummy and do a SCANM. If the result is
zero, an exact match was found, if not, do a second XDR into the dummy to restore
it and test the next candidate.

73

Finally, consider the case where the object being tested contains extraneous data
in addition to one of the possible sprites. This time, the dummy sprite is
loaded with the contents of the screen window, but the candidates are first
"AND"ed into the dummy to remove extraneous data before the XDR and SCANM.
Finally the dummy needs to be reloaded from the screen before the next test. This
latter test is limited by the fact that its conclusion is only that the screen
contained all the parts of the sprite with which a comparison was made. In the
extreme case of the screen window containing all pixels set, then an agreement
would be found with all the sprites tested.

SCROLLING LANDSCAPES

Scrolling landscapes are an integral part of so many video games that it is worth
a brief description of how they can best be produced using White Lightning.

The first and most obvious point is never to scroll more than you have to. If,
for instance, you are moving a mountain range where the variation takes place over
the top three characters, then only the top three characters need to be stored and
moved.

The simplest and most effective method of producing smooth scrolls is to sacrifice
a column of the screen for transactions with the sprite being scrolled. Suppose
we are scrolling a sprite of 4 or 5 screens width which uses rows 8 to 10 (3
rows). Suppose v*e require pixel scrolling and there is no horizontal variation in
attributes. It doesn't really matter which column we sacrifice, far right (column
31) or far left (oolurtn 0), but let's, for this example, use column 0. All that
we need to do is set up a window 1 character wide and 3 characters high on the far
left of the landscape to have the same INK and PAPER colours. This means that
pixel data cannot be seen in this region. Use the SETAV command to do this. To
begin with, 31 columns of the sprite are PUT to the active part of the screen
using the FWELS command. If scrolling is to the left, then the dummy column
should be loaded with the next column to the right of the sprite now 'on screen'.
If scrolling is to the right then the column to the left of the sprite window
should be inserted. The full 32 column screen window is new wrapped in the
appropriate direction until a total of + or - 8 pixels has been accrued. The
dummy column is then loaded from the appropriate sprite column and so on. The
method can be simply adapted to make the landscape wrap and is usually implemented
under interrupt.

PROGRAMMABLE SPRITES

One of the most common applications of the background mode is the setting of
sprites into automatic motion. Perhaps the chief advantage that a language has
over a games designer, is that the sprites thus created can have as much
'intelligence' as the programmer requires. A sprite can bounce off the edge of
the screen and/or other sprites until a particular event, and then totally change
its behaviour - possibly bo follow a previously stored track.

We have included a very simple listing which sets a sprite in motion, that just
bounces off the edges of the screen, to give you same idea of what is involved.
This sample program assumes you have the demonstration sprites in memory.

74

SCR # 6
0
1
2
3 0 VARIABLE DELAY : WAIT DELAY 0 0 DO NOOP LOOP ;
4 : BASE 0 OOL ! 18 ROW ! 32 LEN ! 6 HGT ! 0 PAPER 0 INK
5 SETAV 7 INK ;
6 : 0016 6 PAPER 0 INK 0 BORDER CLS BASE 7 0 AT
7 10 0 DO WHITE LIGHTNING " LOOP 0 0 AT ; — >

SCR # 7
0 8 VARIABLE PX 8 VARIABLE PY 1 VARIABALE DX 1 VARIABLE DY
1 0 VARIABLE SP 0 VARIABLE CL 0 VARIABLE RW : PCAL PX @ ABS
2 2 /MOD CL ! PY 0 ABS 2 /MOD RW ! DUP + + 251 + SP ! ;
3 : MOVE PX 0 56 > IF DX 0 MINUS DX ! ENDIF PX 0 0 > IF NOOP
4 ELSE DX 0 MINUS DX ! ENDIF
5 PY 0 28 > IF DY 0 MINUS DY ! ENDIF PY 0 0 > IF NOOP ELSE DY 0
6 MINUS DY ! ENDIF DY 0 PY 0 + PY ! DX 0 PX 0 + PX ! ;
7 : LD RW 0 ROW ! CL 0 COL ! SP 0 SPN ! ; — >

SCR # 8
0 : SOT PCAL LD EXX LD EXX PUTXRS ;
1 : GO PCAL MOVE PUTXRS LD PUTXRS ;
2 0 VARIABLE ICNT 2 VARIABLE ICNT
3 : IRUN 1 ICNT +! ICNT 0 DUP 2000 = IF -2 DX ! ENDIF DUP 4002 =
4 IF 2 DY ! ENDIF DUP 6000 = IF 3 DY ! ENDIF DUP 8000 = IF 1 DY
5 ! 1 DX ! ENDIF 9000 = IF INT-QFF ENDIF ;
6 : TRY SOT ' GO INT-ON 9000 0 DO IRUN LOOP INT-OFF ;
7 : SCN16 Q016 9999 DELAY ! WAIT 1 DX ! 1 DY ! 8 PX ! 8 PY ! — >

SCR # 9
0 0 ICNT ! TRY WAIT 0 PAPER 7 INK CLS ;
1
2
3
4
5
6
7

To compile this type:

6 LOAD <CR>

and to execute type:

SCN16 <CR>

75

THE BASIC INTERFACE

The BASIC interface was provided to increase the flexibility of the language and
allow the newcomer to Forth, a gradual transition. Sane applications are actually
more suited to BASIC but for games writing in general, Forth is much more
appropriate and we hope that this facility will not discourage people fran
experimenting with Forth.

There are four words to master at the Forth end and 3 USR calls to master at the
BASIC end. Do not use CLEAR or NEW whilst in BASIC.

The Command Level

When White Lightning is first entered fran a GOLD start, BASIC is located beneath
Forth and there is approximately lk of program space if microdrives are not in
use. This is ample space if BASIC is cxily to be used at command level, to IOAD
and SAVE for instance, but if programs are to be written you will need to execute
the RESERVE Command. For the time being, however, let's just consider operation
at the ccmnand level. To enter BASIC from Forth type:

PROG <CR>

To re-enter Forth from BASIC just use:

PRINT USR 24836 <CR>

This is the normal WARM start entry. Note that PRINT USR must be used and not
RANDOMISE USR, or an OUT OF SCREEN error may occur.

BASIC AS A SUBROUTINE

At the next level, lines of BASIC can be executed as if they were subroutines and
then return made to your Forth program. The word at the Forth end is GOTO. To
return to Forth and continue execution use PRINT USR 30006.

To begin with, space needs to be made in the dictionary for the BASIC program.
The word used to do this is RESERVE. What RESERVE actually does, is to make space
in the dictionary and reset BASIC's system variables to point to this new area.
This does mean, however, that if a second RESERVE is done, without FORGETting the
old space, then the old space is lost and can never be re-accessed. Do not
execute a Forth GOLD start while BASIC is reserved or a RAMTOP error may occur if
insufficient memory is reserved. Always execute PROG as the next command after
RESERVE.

As an example, try the following:

DECIMAL 2000 RESERVE PROG <CR>

This will set up the BASIC space and then enter it at command mode. The following
lines of BASIC can now be entered:

1000 PRINT "LINE 1000 OF BASIC" : PRINT USR 30006
2000 PRINT "LINE 2000 OF BASIC"
2010 FOR I = 1 TO 8 : PRINT I : NEXT I
2020 PRINT USR 30006

76

After entering these lines type:

PRINT USR 24836

to re-enter Forth at command level.

Let's now define a word which executes seme Forth, sane BASIC, sane more Forth,
some more BASIC, and finally seme more Forth. To begin executing BASIC at a
particular line, cill that we need to do is put the line number on the stack and
then execute GOTO. Try the following:

: FBDEM ." IN FORTH " CR 1000 GOTO ." BACK IN FORTH " <CR>
CR 2000 GOTO ." FORTH AGAIN " ; <CR>

Now type FBDEM <CR>

A more useful application would be to define words to handle cassette loading and
saving. BASIC source is saved and loaded in the normal way fran the reserved
BASIC area.

Forth As A Subroutine

If you're an "out and out BASIC person" you're probably more likely to want to
execute Forth as a subroutine. To return to BASIC fran Forth use the word RETUSR.
To call Forth fran BASIC use RANDOMISE USR 30000. Note that on this occasion it
is a RANDOMISE USR and not a PRINT USR. Using the previously reserved space we
can try another exanple. First type:

PROG <CR>

to enter BASIC, then add the following lines:

3000 PRINT " CALLING FORTH " : RANDOMISE USR 30000
3010 PRINT " BACK IN BASIC " : PRINT USR 30006

Now type PRINT USR 24836 to re-enter Forth.

Now type:

: BFDEM ." GOTO BASIC " CR 3000 GOTO ." FORTH CAT .TED " <CR>
RETUSR ." ENDING IN FORTH " CR ; <CR>

Now type:

BFDEM <CR>

to see the result.

Now type:

FORGET FBDEM <CR>

Passing Parameters

Forth variables can easily be PEEK1 ed and POKE 'd fran BASIC and used not only to
pass data, but also to control the execution of Forth. As an exanple, suppose we
wished to select one of 4 Forth words at any one time with a call fran BASIC, tei
the Forth words sirply be W0RD1 " , . "WCRD2 " , ." WQRD3 " , . "WORD4 ". First
we'll need a variable to pass the parameter so type:

77

0 VARIABLE CONTROL OONIROL U. <CR>

This will set up a variable called control, set it to zero and then print the
address of the least significant byte which wa'll use to pass the information.
For the sake of this exanple suppose the address was 50000. We'll now use the
CASE construct to select the word to execute. Use the following definitions:

: SELECT CASE 1 OF ." W0RD1 " ENDOF 2 OF ." WORD2 " <CR>
ENDOF 3 OF ." W0RD3 " ENDOF 4 OF ." WORD4 " ENDOF <CR>
ENDCASE CR ; <CR>

If the value in OONIROL is 1 to 4, the appropriate word will be executed.

: RUN 4000 GOTO BEGIN OONIROL 0 <CR>
DUP SELECT DUP IF RETUSR ENDIF 0= UNTIL ; <CR>

The BASIC program is initially altered at 4000 and could take the following form:

4000 REM REPLACE ADDRESS 5000 WITH THE ADDRESS OF OONIROL
4010 PRINT " EXECUTE WDRDl " : GOSUB 5000
4020 PRINT " EXECUIE WORD2 " : GOSUB 5010
4030 PRINT " EXECUTE WORD3 " : GOSUB 5020
4040 PRINT " EXECUTE WORD4 " : GOSUB 5030
4050 PRINT " FINISH " : POKE 50000,0 : PRINT USR 30006
5000 POKE 5000,1 : RANDOMISE USR 30000 : RETURN
5010 POKE 5000,2 : RANDOMISE USR 30000 : RETURN
5020 POKE 5000,3 : RANDOMISE USR 30000 : RETURN
5030 POKE 5000,4 : RANDOMISE USR 30000 : RETURN

Note that when final return is made to Forth a PRINT USR 30006 is used. If a
RANDOMISE USR 30006 CALL is made to Forth a RETUSR must be executed or the BASIC
stack will be left corrupted. To reset the stack if it has been corrupted, use
PROG to enter BASIC and then re-enter Forth with the WARM start, PRINT USR 24836.

This concludes the section on the BASIC Interface.

78

PROGRAM DEVELOPMENT

At any one time, there are up to five areas of development: Forth source code,
BASIC source code, sprites, the Forth language itself and finally, the ccnpiled
and oonpleted program.

Forth Source

As previously discussed under the section on editing, Forth Source is divided into
screens, each of 512 bytes in length. Each screen can be individually loaded,
saved and ccnpiled in any order required. Screens can even be saved and then
loaded back into different screens. The real advantage of this canes when you're
writing really large programs. As sprite space becomes large, it will work down
over the higher screens and this can be clearly seen when an attempt is made to
List them. Don't CLEAR these screens or the sprite data will be lost I

If really large programs are required and sprites have over-run the top screens,
then programs can be ccnpiled a few screens at a time, loading each time into the
available screens, ccnpiling and then loading the next section. Of course, you
don't need to Load the sprites until compilation is carplete, but it's useful to
have the facility just in case.

To save Forth source you'll need to consult Table 1, the table of Screen
Addresses. If, for instance, you vented to save screens 6 to 11, then the start
address would be 52224 decimal and the length, just 6 times 512. Type 6 512 * .
<CR> to find this figure, which is 3072. To save the source, type PROG to enter
BASIC and then type:

SAVE "filename" CODE 52224,3072

To re-enter White Lightning, type PRINT USR 24836 to do a WARM start.

To Load the source, either type Y in response to the IOAD SOURCE Y/N prcnpt at the
beginning of the session, or exit to BASIC using PROG, then type:

IOAD "filename" CODE where filename is optional.

If you vent to Load the code into a different screen area from that in which it
ves Saved, type:

IOAD "filename" CODE start, length

where start is the address of the screen to be loaded, and length is the number of
screens to be loaded multiplied by 512. Again, White Lightning should be
re-entered with a PRINT USR 24836. Do not use RANDOMISE USR 24836 or an OUT OF
SCREEN error may occur.

BASIC Source

Before BASIC source can be used in White Lightning programs, the user must execute
a RESERVE to make space for the BASIC program. To reserve, for example, IK, type:
DECIMAL 1024 RESERVE. This will allocate 1024 bytes for BASIC source code within
the dictionary. If at sane later stage you execute a second reserve the previous
1024 bytes are not reclaimed, so if you find you have not allocated enough space,
Save the BASIC source, FORGET all previous definitions, execute a COLD START, and
start the carpilation from scratch. You can now do a second RESERVE.

79

Cb save BASIC source, type PROG <CR> to enter BASIC if you're not already there,
then just type SAVE "filename" as normal and re-enter White Liqhtninq with PRINT
JSR 24836. Likewise, source can be reloaded by entering BASIC with a PROG, using
LOAD "filename" and then re-entering Forth with a PRINT USR 24836.

Sprites

Sprites can be Saved frcm White Lightning and then re-Loaded into White Lightning,
but sprites saved by White Lightning, cannot be loaded into the sprite development
software which requires the additional array information preceeding sprites which
is not SAVEd by White Lightning. Sprite development should always be done using
the development software, but if you do wish to save the sprites for later merqinq
then do the following:

1. Find the start of sprites by typing SPST @ U.

2. Find the length to save by typing SPND @ SPST @ - 1+ U.

3. Note the start and length, then return to BASIC using PROG.

4. SAVE using SAVE "filename" CODE start, length.

5. Re-enter White Lightning using PRINT USR 24836.

Merging Sprites

Tw d blocks of sprites can be merged together in the main program using the
following procedure:

1. Make a note of the SPST and SPND values of the second block to be
merged. These are displayed by the sprite development software.

2. Load the main White Lightning package and then load the first block
of sprites in response to the "IOAD SPRITES Y/N" prompt.

3. Load source as required and once in the main program relocate
the first block of sprites downwards by the size of the second
block. Suppose the decimal values for SPST and SPND of the second
block ware 60000 and 65280 respectively, then type:-

DECIMAL 60000 65280 - SPST @ + U. <CR>

(The DECIMAL is not required if you are already in DECIMAL mode).
This will calculate the new start after relocation. It is well worth
checking that this will not run over your source code, so here is a
quick calculation that will tell you if you have enough space.
You need to know the highest screen number that you intend to use, for
example screen 18. Type:

18 512 * 49664 + U. <CR>

This will print the first free byte after screen 18. So long as
this result is lower than the new sprite start after relocation you
can proceed. Aqain, using the previous example where the block to be
merqed has SPST and SPND of 60000 and 65280 respectively, the line
to type is:

DECIMAL 60000 65280 - MLEN ! RELOCATE <CR>

80

The relocate ocrmand uses the value held in MLEN as the relocation
length, a negative value, as above, relocates downward and a positive
value upward.

4. Before loading the second block of sprites, the values of the new
SPST and SPND should be calculated and noted. Type:

SPST @ U. SPND @ 65280 60000 - + DUP SPND ! U. <CR>

Take a note of these two values. If the previous steps have been
carried out correctly the second number (the new SPND) should be the
same value as the old SPND before relocation.

5. Type: PROG <CR> to exit back to BASIC then type LOAD "" CODE. The
array of pointers will be ignored but the sprites will be loaded.
This assumes that this second block of sprites was also saved using
the sprite development software.

6. Type PRINT USR 24836 to re-enter Forth and your sprites should be
merged. Note that if a sprite number used in the second block has
also been used in the first block, that only the first occurrence
will be found. If the first occurrence is destroyed using WIPE or
DSPRITE, then the second occurrence will be found.

Extending The Forth Itself

One of the beauties of the Forth language is that it is extendible, so if you've
added a few of your own commands which you would like to become a permanent
feature of your customised version, you will need to make a copy. For this
reason, no attempt has been made to protect the software; but we do appeal to
users not bo take advantage of this facility bo pirate the program. Piracy pushes
up the price of software to genuine users, so if you've bought a genuine copy, do
yourself a favour and keep the price of your future software affordable. Copying
the manual, however, will result in immediate court action and a reward will be
paid to anyone offering information leading to the successful prosecution of
offenders.

To save the Forth use the following procedure:

1. Type: WARM-XDLD <CR> to embed the commands.

2. Type: HERE 24832 - 1+ U. <CR> to print the length to be Saved.

3. Type: FROG <CR> to enter BASIC.

4. Save using SAVE "PORTO" CODE 24832, length.

5. Re-enter using PRINT USR 24836.

TO use the amended version, LOAD White Lightning as normal, exit using PROG, LOAD
the new Forth over the old Forth and execute a Cold start using 24832.

Oasis make no undertakings to support customised versions, and make no guarantee
as to the success of the operation.

81

Compiled and Completed Programs

Once the program is fully debugged and running, a final run-time version can be
produced. This is the only form in which programs generated from White Lightning
can be marketed.

If the program makes use of the foreground/background facility, ZAPINT should be
typed, if not, then ZAP should be typed. The length of the compiled program is
then displayed until a key is pressed and control returned to BASIC to make a
copy.

The final program should be saved using:

SAVE "filename" 24832, length

and executed using PRINT USR 24832. Do not use RANDOMISE USR 24832.

Rsnember that a lot of run-time software is saved with your final code, so even if
your program is only two lines long, the resulting program will be pretty large.

TABLE 1.
Table of Screen Numbers and Addresses

Screen Start
Number Address

1 49664
2 50176
3 50688
4 51200
5 51712
6 52224
7 52736
8 53248
9 53760

10 54272
11 54784
12 55296
13 55808
14 56320
15 56832
16 57344
17 57856
18 58368
19 58880
20 59392
21 59904
22 60416

Each screen used for editing
into consists of
8 lines x 64 characters

= 512 bytes.

Therefore, if you have only
edited into screens 6-9,
then there is no need to save
ALL of the screens 1-22
since you only need to save
fron 52224 to 54271 (end of
screen 9), i.e. 2K bytes.

82

FUNCTION KEY SUM M ARY

KEY

A Activates the ATTRIBUTE switch.
Press 1 to set switch ON.
Press 0 to set switch OFF.

B Activates the BRIGHT variable.
Press 1 to set ERIGHT to ON.
Press 0 to set ERIGHT to OFF.

C Activates the PAPER variable.
Press any key between 0 and 7 to activate the colour indicated
above the key.

D Activates DIRECT DATA INPUT.
Accepts 8 bytes of data, one byte at a time, followed by ENTER, via
the keyboard, to the position on the sprite Screen indicated by
the cursors. Inputted data must be in the range 0 to 255 Decimal
or, H00 to HFF HEX (the character H must precede Hex entry).

NOTE: If Attribute switch = 1, then the four current attributes will
be used at the same position as well.

E Activates the SCREEN FUNCTIONS.
You will be given three options: press 1, 2 or 3.

1 INVERT
Option 1, INVERT, sets all 0 bits to 1 and all 1 bits to 0,
in a window whose length is held in the "Sprite length"
variable and whose height is held in the "Sprite height"
variable. The inversion will take place from the positioning
of the sprite screen cursors, i.e. at the intersection of an
imaginary line drawn from each cursor.

2 MIRROR
Option 2 MIRROR, 'Flips' a window whose height is held in the
"Sprite height" variable and whose length is held in the "Sprite
length" variable. The Mirroring will take place about the
vertical centre of the screen window.

3 MIRROR ATTRIBUTES
Option 3 MIRROR ATTRIBUTES, 'Flips' the attributes in a window
whose height is held in the "Sprite height" variable and whose
length is held in the "Sprite length" variable. The Mirroring of
Attributes will take place about the vertical centre of the screen
window

F Activates FLASH WINDOW.
Flashes the current screen window whose height is held in the
SPRITE HEIGHT variable and whose length is held in the SPRITE LENGTH
variable. The Flash will take place at the position of the sprite
screen cursors.

Flash is used to check the position of the sprite screen cursors,
to check that the height and length parameters are as required or
to check that the window is correctly positioned.

83

Activates GET SPRITE function.
® Gets a sprite of the dimensions held in the "Sprite height" and

"Sprite length" variables, using the number held in the "Sprite
Number" variable and at the window indicated by the sprite screen
cursors - and stores it in memory.

NOTE: If the Attribute switch = 1, the sprite and attributes
are stored; if the Attribute switch = 0, then any Attributes will
be ignored. When a sprite is first defined with Attribute
switch = 0 the attribute data will probably be garbage.

H Activates the SPRITE HEIGHT Variable.
Permits the input of the height of a sprite window from 1-15.

! Activates the ATTRIBUTE DUMP function.
Places the four Attributes set in the four Attribute Variables,
to the sprite screen, at the position indicated by the sprite
screen cursors - with a resolution of one character.

NOTE: This function is independant of the Attribute Switch, e.g.
to place Attributes at position x=4, y=4: position sprite screen
cursors at x=4 and y=4, then set the four attributes as required
(you can then set the Attribute switch to 0 (OFF) if you like)
and press I.

j Activates the move CHR$ SQR ID SPRITE SCREEN function.
Durrps the bit pattern set in the CHR$ SCB to a character square
in the sprite screen, indicated by the sprite screen cursors.

NOTE: If the Attribute Switch = 0, no Attributes will move with
the pattern. If the Attribute switch = 1, then the Attributes
held in the Attribute Variables will move with the pattern.

K Activates the MOVE SPRITE SCREEN CHARACTER TO CHR$ SQR
function.
Picks up the Character Square indicated by the Sprite Screen
Cursors, into the CHR$ SCR.

NOTE: A H R = 0 ignores Character Attributes. A D R = 1 takes the
Attributes of the character and loads them into the Attribute
Variables.

L Activates the SPRITE LENGTH variable.
Permits the input of the length of a Sprite Window frcm 1-15.

M Activates the Sprite Functions.
You will be given three options which act in the same way as the
'SCREEN FUNCTIONS E', except that these functions operate on
the sprite in memory only and have no effect directly on the
screen.

N Activates the No, negative response to (Y/N) questions.

0 Activates the Sprite Logic functions.
You will be given three options. Each option GETS an area of the
sprite screen, the dimensions of which are specified as those of
the defined sprite, having a top left-hand corner at the sprite screen
cursor positions and logically GETs the data into the defined sprite -
- whose number is in the Sprite Number Variable.

84

NOTE: ATTO = 0 leaves the attributes of the sprite as they are.
ATTR = 1 takes the attributes fran the screen and places them
into the sprite.

1 GETORS, ORs the screen data with the pre-defined sprite, and
leaVes the result in the sprite (screen display unaffected).

2 GETXRS, XDRs the screen data with the data of a pre-defined
sprite, and leaves the result in the sprite, (screen
display unaffected).

3 GETNDS, ANDs the screen data with the data of a pre-defined
sprite, and leaves the result in the sprite (screen display
unaffected).

P Activates the PUT functions.
You will be given four options. Each option PUTs a sprite
whose number is specified in the variable "Sprite Number" onto
the sprite screen, having a top left-hand corner at the sprite
screen cursor positions.

NOTE: A3TR = 0 leaves the Screen Attributes unaffected.
ATIR = 1 PUTs sprite Attributes to the sprite Screen.

1 PUTBLS is a straightforward PUT, placing data directly to
the sprite screen, destroying anything that is on that part of
the screen (Sprite unaffected).

2 PUTORS, QRs the sprite data with the data on the sprite screen,
leaving the result on the screen (Sprite unaffected).

3 PUDCRS, XDRs the sprite data with the data on the sprite screen
leaving the result on the screen (Sprite unaffected).

4 PUTNDS, ANDs the sprite data with the data on the sprite screen
leaving the result on the screen (Sprite unaffected).

q Activates the CLEAR CHR$ SQR function. Sets all CHR$ SCR bits
to zero.

SYMBOL Activates the CLEAR SPRITE SCREEN function. Clears the sprite
SHIFT screen of all data and attributes.
Q
(<=)

r Activates the ROTATE SPRITE function.
Rotates a sprite, in memory, by 90 degrees, leaving the original
sprite unaffected. The new Rotated sprite must be given a new
sprite number, as asked for. Attributes are automatically
Rotated with the pixel data.

S Activates the SPRITE NUMBER variable.
Permits the defining of sprites and asks for a sprite number in
the range 1 to 255

NOTE: If a sprite to be defined is given an existing sprite
number, a warning is displayed, advising you of this fact. The
existing sprite, or the new sprite, are in no way corrupted.

85

u

V

w

X

Y

z

NOT
(SYMBOL
SHIFT
S)

Activates the TEST SPRITE function.
Performs a test on the sprite whose number is held in the "Sprite
Number" variable, and does the following:

1. Places the sprite height into the "Sprite height" variable.
2. Places the sprite length into the "Sprite length" variable.
3. Places the address in memory of where the sprite data starts,

into the "Sprite" variable.
4. Places the address of the start of sprite space into the variable

"SPST".
5. Places the address of the end of sprite space into the

variable "SPND".
6. Calculates the remaining memory available for sprite

storage and places it into the "Memory Left" variable.

NOTE: The screen display of these variables will be updated
if necessary.

Activates the PICK UP ATTRIBUTES function.
Picks up the attributes of the character from the sprite screen,
indicated by the position of the sprite screen cursors and
Loads them into the four Attribute variables.

Activates the FLASH variable. This is one of the four attributes.
Press 1 to put switch ON.
Press 0 to put switch OFF.

Activates the WIPE SPRITE function.
Wipes the sprite indicated by the "Sprite number" variable
totally frcm memory. All other sprites stored in memory below
that sprite are moved up bo fill the space previously
occupied by the Wiped sprite.

Activate the INK variable which is one of the four attributes.
Press any key between 0 and 7 to set the colour indicated
above the key.

Activates the YES, positive response to (Y/N) questions.

Activates the pre-defined ARCADE CHARACTER function.
Place a pre-defined Arcade Character to the sprite screen.
The top left hand corner of the character is indicated by
the sprite screen cursors. Input a number between 1 and 167
followed by ENTER.

NOTE: Each character, with its number, can be seen on the Dano B
tape. A list is given at the back of this section.

Activates the SAVE SPRITES TO TAPE facility.
Place a suitable cassette in your cassette recorder and
position as desired. Press NOT, enter your filename (1 to 8
characters). The program will save three groups of data;
an array and two sections of code.
After SAVEing, you will be asked to rewind the tape and VERIFY -
be sure to only press PLAY on your cassette recorder.
If the programs VERIFY, the Sprite Development Program will
return to command level with the Text Line cleared.

NOTE: If the program breaks because of failure to VERIFY,
type GOTO 3 and execute a WARM START; your data will not be lost.

86

(SYMBOL
SHIFT
J)

Activates the LOAD SPRITES FROM TAPE facility.
Place tape in your cassette recorder. Press SYMBOL SHIFT J
and press PLAY on the cassette recorder. Three groups of data
will load. When loaded, the Text Line will clear and the
program will resume.

NOTE: Any sprites in memory will be destroyed when this command
is executed.

5 Activates the MOVE CHR$ CURSOR 1 place to the left - non
destructive.

6 Activates the MOVE CHR$ SQR CURSOR 1 place down - non-destructive.

7 Activates the MOVE CHR$ SQR CUR9QR 1 place up - non-destructive.

8 Activates the MOVE CHR$ SQR CURSOR 1 place to the right -
non-destructive.

9 Activates the SET CHR$ at current position.

0 Activates the CLEAR CHR$ SQR at current position.

%
(SYMBOL
SHIFT
5)

Activates the MOVE SPRITE SCREEN CURSOR 1 place to the left.

&
(SYMBOL
SHIFT
6)

Activates the MOVE SPRITE SCREEN CURSOR 1 place down.

(SYMBOL
SHIFT
7)

Activates the MOVE SPRITE SCREEN CURSOR 1 place ip.

(
(SYMBOL
SHIFT
8)

Activates the MOVE SPRITE SCREEN CURSOR 1 place to the right.

<
(SYMBOL
SHIFT
R)

Activates the RELOCATE SPRITES function.
Allows the user to move the sprite data about in memory,
between the top of the Sprite Generator Program and address
65520.

e.g. a positive number i.e. 50, moves the data 50 bytes ip
in memory. A negative number i.e. -50, moves the data 50
bytes down in memory.
CAUTION - use this function with care.

BREAK
and
SPACE

Activates the PLACE SPRITE INTO SPRITE WINDOW function.
This allows you to place a sprite of smaller dimensions into
a second sprite of greater dimensions, at a position of ROW,
OQL in the greater sprite in memory - the smaller sprite is
left unaltered.

87

NOTE: ATTR = 0, Attributes of smaller sprite ignored.
ATTR = 1, Attributes of smaller sprite taken and placed with
sprite.
Three options are given:

1 GETBLS
GETs the smaller sprite directly into the window of the larger
sprite.

2 GETORS
GETs the smaller sprite and CRs it into the window of the
larger sprite.

3 GETXRS
GETs the smaller sprite and XDRs it into the window of the
larger sprite.

4 GETOD6
GETs the smaller sprite and ANDs it into the window of the
larger sprite.

88

THE W H ITE LIGHTNING ARCADE
GRAPHICS LIBRARY

ARCADE CHAR
ACTER NUMBER

1- 8 Asteroids Space Ships
9- 11 Asteroids

12 Asteroids Flying Saucer
13- 20 Pac-Men
21- 22 Pac-Men Ghosts
23- 25 Fruit
26- 33 Pac-Men Maze Parts
34- 44 Assault Course type games
45- 54 Defender type games
55- 62 Defender type landscapes
63- 67 Space Invaders
68- 70 Space Invader Bases
71- 74 Space Invader Guns etc.
75- 84 City Banber type games
85- 88 Lunar Lander type games
89- 98 Frogger type games
99-107 Centipede type games

108-117 War type games
118-130 Donkey Kong type games
131-136 Space War type games
137-141 Explosions
142-148 Bug-Eyed Monsters
149-152 Robots
153-158 Adventure type games Treasure
159-167 Zaps

W H ITE LIGHTNING DEMONSTRATION
SPRITE LIBRARY

SPRITE
NUMBER

DESCRIPTION INK
COL

PAPER
COL

LENGTH HEIG HT

1 VINTAGE CAR 4 0 4 2
2 VAN 5 0 4 2
3 DRAGSTER 6 0 4 2
4 DUCK 6 0 3 3
5 DANCER 7 0 2 4
6 ROCKET 5 0 4 2
7 SPIDER #1 5 0 4 5
8 SPIDER #2 5 0 4 5
9 TOP OF TRAIN 4 0 11 2

10 RAILWAY TRACK 6 0 8 1
11 SMALL WALL 1,5 7 4 1
12 OASIS LOGO 5,7 0 12 4
13 T.V. 2 0 15 12
14 TOP OF RAILWAY COACH 5 0 10 2
15 SPACE SHIP 0 5 4 2
16 SHADOW OF SPACE SHIP 5 7 4 1

89

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
59
60
61
251
252
253
254

LARGE WALL 2,7 7 8 2
TRAIN WHEELS #1 4,7 0 11 1
TRAIN WHEELS #2 4,7 0 11 1
TRAIN WHEELS #3 4,7 0 11 1
TRAIN WHEELS #4 4,7 0 11 1
RAILWAY COACH #1 7 0 10 1
RAILWAY COACH #2 7 0 10 1
INVADER 0 DEGREES 6 0 2 2
INVADER 90 DEGREES 6 0 2 2
INVADER 180 DEGREES 6 0 2 2
INVADER 270 DEGREES 6 0 2 2
FACE WITH HAT #1 4 0 4 3
FACE WITH HAT #2 4 0 4 3
'WHITE' 5,7 0 7 2
'LIGHTNING' 5,7 0 10 2
LIGHTNING BOLT 5 0 13 4
CRAB 4,7 0 5 3
LUNAR IANDER 7 0 6 4
RADAR #1 7 0 2 1
RADAR #2 7 0 2 1
RADAR #3 7 0 2 1
RADAR #4 7 0 2 1
RADAR #5 7 0 2 1
RADAR #6 7 0 2 1
RADAR #7 7 0 2 1
RADAR #8 7 0 2 1
EXPLOSION 7 0 2 2
LUNAR SURFACE 6 0 15 1
ROTATING BALL #1 6 0 4 4
ROTATING BALL #2 6 0 4 4
ROTATING BALL #3 6 0 4 4
ROTATING BALL #4 6 0 4 4
CLOCKWORK TOYS #1 4 0 3 12
CLOCKWORK TOYS #2 4 0 3 12
'TRY THIS' 4 0 8 1
•WITHOUT’ 4 0 8 1
'FROM' 5 0 5 1
BOUNCING BALL #1 0 6 3 3
BOUNCING BALL #2 0 6 3 3
BOUNCING BALL #3 0 6 3 3
BOUNCING BALL #4 0 6 3 3

90

Fifl-FORTH GLOSSARY

This glossary contains all of the word definitions in Release 1 of Fig-FORTH. The
definitions are presented in the order of their ASCII sort and are reproduced
courtesy of the FORTH INTEREST GROUP, P.0. BOX 1105, SAN CARLOS, CA 94070.

The first line of each entry shows a symbolic description of each action of the
procedure on the parameter stack. The symbols indicate the order in which input
parameters have been placed on the stack. Three dashes "— " indicate the
execution point; any parameters left on the stack are listed. In this notation,
the top of the stack is to the right.

The symbols include:

addr memory address
b 8 bit byte (i.e. hi 8 bits zero)
c 7 bit ASCII character (hi 9 bits zero)
d 32 bit signed double integer, most significant portion with sign

on top of stack
f boolean flag. 0 = false, non-zero = true,
ff boolean false flag = 0
n 16 bit signed integer number
u 16 bit unsigned integer
tf boolean true flag = non-zero

The capital letters on the right show definition characteristics:

C May only be used within a colon definition. A digit indicates
number of memory addresses used, if other than one.

E Intended for execution only.
ID Level zero definition of FORTH-78.
LI Level 1 definition of EORTH-78.
P Has precedence bit set. Will execute even when compiling.
U A user variable.

Unless otherwise noted, all references to numbers are for 16 bit signed integers.
The high byte of a number is on top of the stack, with the sign on the leftmost
bit. For 32 bit signed double numbers, the most significant bit (with the sign)
is on top.

All arithmetic is implicitly 16 bit signed integer math, with error and underflow
indication specified.

NOTE: All references to disc in this documentation can be read as references to
the disc simulation area in memory from C200H to F000H, which are treated as a
very limited disc capacity by White Lightning, and do not in any way change the
operation or description of any of the FORTH words defined in this documentation.
DO NOT use ERG, ER1 or GO.

I n addr — ID

Store 16 bits of n at address. Pronounced "store".

ICSP

Save the stack position in CSP. Used as part of the carpiler security.

91

d l ---d2 ID

Generate fran a double number dl, the next ASCII charater vrtiich is placed in an
output string. Result d2 is the quotient after division by BASE, and is
maintained for further processing. Used between <# and #>. See #S.

#> d ---- addr count ID

Terminates numeric output conversion by dropping d, leaving the text address and
character count suitable for TYPE.

#B U F _ _ n

A constant returning the number of disc buffers allocated.

tfS d l --- d2 ID

Generates ascii text in the text output buffer, by the use of #, until a zero
double number results. Used between <# and #>.

' — addr P,LO

Used in the form: ' nnnn

Leaves the parameter field address of dictionary word nnnn. As a compiler
directive, executes in colon definition to ocnpile the address as a literal. If
the word is not found after a search of CONTEXT and CURRENT, an appropriate error
message is given. Pronounced "tick".

(P,LO

Used in the form: (occc)

Ignore a carment that will be delimited by a right parenthesis on the same line.
May occur during execution or in a colon-definition. A blank after the leading
parenthesis is required.

(.") C+

The run-time procedure, ccnpiled by ." which transnits the following in-line text
to the selected output device. See ."

(;CODE) C

The run-time procedure, ccnpiled by ;OODE, that re-writes the code field of the
most recently defined word to point to the following machine code sequence. See
;CODE.

(+ LOOP) n --- C2

The run-time procedure ccnpiled by +IDOP, which increments the loop index by n and
tests for loop completion. See +IDOP.

92

(ABORT)

Executes after an error when WARNING is -1. This word normally executes ABORT,
but may be altered (with care) to a user's alternative procedure. See WARNING.

(DO) C

The run-time procedure carpi led by DO which moves the loop control parameters to
the return stack. See DO.

(FIND) addrl addr2 — pfa b tf (ok)
addrl addr2 — ff (bad)

Searches the dictionary starting at the name field address addr2, matching to the
text at addrl. Returns parameter field address, length byte of name field and
boolean true for a good match. If no match is found, only a boolean false is
left.

(LINE) nl n 2 ---addr count

Convert the line number nl and the screen n2 to the disc buffer address containing
the data. A count of 64 indicates the full line text length.

(LOOP) C2

The run-time procedure compiled by IOOP which incronents the loop index and tests
for loop completion. See IOOP.

(NUMBER) dl a d d r l ---d2 addr 2

Convert the ASCII text beginning at addrl + 1 with regard to BASE. The new value
is accumulated into double number dl, being left as d2. Addr2 is the address of
the first unconvertible digit. Used by NUMBER.

* nl n 2 ---prod LO

Leave the signed product of two signed numbers.

V nl n2 n 3 ---n4 ID

Leave the ratio of n4 = nl*n2/n3 where all are signed numbers. Retention of an
intermediate 31 bit product permits greater accuracy than would be available with
the sequence nl n2 * n3 /.

• /M O D nl n2 n3 --- n4 n5 ID

Leave the quotient n5 and remainder n4 of the operation nl*n2/n3. A 31 bit
intermediate product is used as for */.

+ nl n 2 ---sum ID

Leave the sum of nl+n2.

93

n addr ID+!

Add n to the value at the address. Pronounced "plus-store".

+ - nl n 2 ---n3

Apply the sign of n2 to nl, which is left as n3.

+B0F addrl --- addr2 f

Advance the disc buffer address addrl to the address of the next buffer addr2.
Boolean f is false when addr2 is the buffer presently pointed to by variable
PREV.

+ LOOP n l --- (run)
addr n 2 --- (canpile) P,C2,L0

Used in a colon-definition in the form:
DO ... nl +IOOP

At run-time, +IDOP selectively controls branching back to the corresponding DO
based on nl, the loop index and the loop limit. The signed increment nl is added
to the index and the total compared to the limit. The branch back to DO occurs
until the new index is equal to or greater than the limit (nl>0), or until the new
index is equal to or less than the limit (nl<0). Upon exiting the loop, the
parameters are discarded and the execution continues ahead.

At compile time, +LOOP compiles the run-time word (+IDOP) and the branch offset
computed from HERE to the address left on the stack by DO. n2 is used for compile
time error checking.

+ ORIGIN n --- addr

Leave the memory address relative by n to the origin parameter area, n is the
minimum address unit, either byte or word. This definition is used to access or
modify the boot-up parameters at the origin area.

, n --- LO

Store n into the next available dictionary memory cell, advancing the dictionary
pointer, (comma).

nl n 2 ---diff ID

Leave the difference of nl-n2.

— > P,LO

Continue interpretation with the next screen. (Pronounced next-screen).

-DUP n l ---nl (if zero)
n l nl nl (non-zero) ID

Reproduce nl only if it is non-zero. This is usually used to copy a value just
before IF, to eliminate the need for an ELSE part to drop it.

94

-FIND --- pfa b tf (found)
--- ff (not found)

Accepts the next text word (delimited by blanks) in the input stream to HERE, then
searches the CONTEXT and then CURRENT vocabularies for a matching entry. If
found, the dictionary entry's parameter field address its length byte, and a
boolean true is left. Otherwise, only a boolean false is left.

-TRAILING addr n l ---addr n2

Adjusts the character count nl of a text string beginning address bo suppress the
output of trailing blanks, i.e. the characters at addr+nl to addr+n2 are blanks.

n --- ID

Print a number fran a signed 16 bit two's complement value, converted according to
the numeric BASE. A trailing block follows. Pronounced "dot".

Used in the form: ." cccc "

Compiles an in-line string cccc (delimited by the trailing "), with an execution
procedure to transmit the text to the selected output device. If executed outside
a definition, will immediately print the text until the final ". See (.").

.LINE line scr ---

Print on the terminal device, a line of text by its line and screen number.
Trailing blanks are suppressed.

■R nl n 2 ---

Print the number nl right aligned in a field whose width is n2. No following
blanks printed.

/ nl n 2 ---quot ID

Leave the signed quotient of nl/n2.

/M O D nl n 2 ---ran quot ID

Leave the remainder and signed quotient of nl/n2. The remainder has the sign of
the dividend.

0 1 2 3 --- n

These snail numbers are used so often, that it is attractive to define them by
name in the dictionary as constants.

95

0< n --- f LO

Leave the true flag if the number is less than zero (negative), otherwise leave a
false flag.

0 = n — f LO

Leave a true flag if the number is equal to zero, otherwise leave a false flag.

OBRANCH f --- C2

The run-time procedure to conditionally branch. If f is false (zero), the
following in-line parameter is added to the interpretive pointer to branch ahead
or back. Compiled by IF, UNTIL and WHILE.

1 + n l -----n2 Ll

Increment nl by 1.

2+ n l -----n2 Ll

Leave nl incremented by 2.

2! nlow nhigh addr ---

32 bit store, nhigh is stored at addr; nlow is stored at addr+2.

2@ a d d r ---nlow nhigh

32 bit fetch, nhigh is fetched fran addr; nlow is fetched frcm addr-2.

2DUP n2 n l ---n2 nl n2 nl

Duplicates the top two values on the stack. Equivalent to OVER OVER.

P,E,L0

Used in the form called a colon-definition:
: cccc ... ;

Creates a dictionary entry defining cccc as equivalent to the following sequence
of Forth word definitions '...' until the next ';' or ';OODE'. The oarpiling
process is done by the text interpreter as long as STATE is non-zero. Other
details are that the CONTEXT vocabulary is set to the CURRENT vocabulary and that
words with the precedence bit set (P) are executed rather than being carpi led.

P,C,L0

Terminate a colon-definition and stop further caipilation. Carpiles the run-time
;S

96

;CODE P,C,LO
Used in the form:

: cecc --- ;OODE
assembly mnemonics

Stop compilation and terminate a new defining word cccc by compiling (;OODE). Set
the CONTEXT vocabulary bo ASSEMBLER, assembling to machine code the following
mnemonics. This facility is included for those users who may wish to write a Z80
Assembler in FORTH.

When cccc later executes in the form:
cccc nnnn

the word nnnn will be created with its execution procedure given by the machine
code following cccc. That is, when nnnn is executed, it does so by junping to the
code after nnnn. An existing defining word must exist in cccc prior to ;GODE.

;S P,ID

Stop interpretation of a screen. ;S is also the run-time word conpiled at the end
of a colon-definition, which returns execution to the calling procedure.

< nl n 2 ---f LO

Leave a true flag if nl is less than n2; otherwise leave a false flag.

<# ID

Setup for pictured numeric output formatting using the words:
<# # #S SIGN #>

The conversion is done on a double number producing text at PAD.

<BUILDS C<ID

Used within a colon-definition:
: cccc <BUILDS ___

DOES> ___ ;
Each time cccc is executed, <BUILDS defines a new word with a high level execution
procedure. Executing cccc in the form:

cccc nnnn
uses <BUILDS to create a dictionary entry for nnnn with a call to the DOES part
for nnnn. When nnnn is later executed, it has the address of its parameter area
on the stack and executes the wards after DOES> in cccc. <BUILDS and DOES> allow
run-time procedures to be written in high level, rather than in assembler code (as
required by ;GODE).

= nl n 2 ---f ID

Leave a true flag if nl=n2 otherwise leave a false flag.

> nl n 2 ---f ID

Leave a true flag if nl is greater than n2 otherwise leave a false flag.

97

>R C, ID

Remove a number fran the computation stack and place as the most accessible on the
return stack. Use should be balanced with R> in the same definition.

? a d d r --- ID

Print the value contained at the address in free format, according to the current
base.

7C0MP

Issue error message if not compiling.

?CSP

Issue error message if stack position differs fran value saved in CSP.

7ERR0R f n ---

Issue an error message number n, if the boolean flag is true.

7EXEC

Issue an error message if not executing.

7L0ADING

Issue an error message if not loading.

7PAIRS nl n 2 ---

Issue an error message if nl does not equal n2. The message indicates that
oanpiled conditionals do not match.

7STACK

Issue an error message if the stack is out of bounds.

7TERMINAL --- f

Perform a test of the terminal keyboard for actuation of the break key. A true
flag indicates actuation.

@ addr --- n ID

Leave the 16 bit contents of address.

n --

98

ABORT ID
Clear the stacks and enter the execution state. Return control to the operator's
terminal, printing a message appropriate to the installation.

ABS n ---u LO

Leave the absolute value of n as u.

AGAIN addr n ---(compiling) P,C2,D0

Used in colon-definition in the form:
BEGIN ... AGAIN

At run-time, AGAIN forces execution to return to corresponding BEGIN. There is no
effect on the stack. Execution cannot leave this loop (unless R> is executed one
level below).

At compile tine, AGAIN ocnpiles BRANCH with an offset from HERE to addr. n is
used for compile-time error checking.

ALLOT n --- ID

Add the signed number to the dictionary pointer EP. May be used to reserve
dictionary space or re-origin memory, n is with regard to computer address type
(byte or word).

AND nl n 2 ---n2 L0

Leave the bitwise logical "AND" of nl and n2 as n3.

B/BUF --- n

This constant leaves the number of bytes per disc buffer, the byte count read from
disc by BLOCK.

B/SCR --- n

This component leaves the number of blocks per editing screen. By convention, an
editing screen is 512 bytes, organised as 8 lines of 64 characters each.

BACK a d d r ---

Calculate the backward branch offset from HERE to addr and compile into the next
available dictionary memory address.

BASE — addr

A user variable containing the current number base used for input and output
conversion.

99

BEGIN addr n (carpi lation) P,ID

Occurs in a oolon-definition in the form:
BEGIN ... UNTIL
BEGIN ... AGAIN
BEGIN ... WHILE ... REPEAT

At run-time, BEGIN marks the start of a sequence that may be repetetively
executed. It serves as a return point frcm the corresponding UNTIL, AGAIN or
REPEAT. When executing UNTIL, a return to BEGIN will odcur if the top of the
stack is false; for AGAIN and REPEAT, a return to BEGIN always occurs.

A ocmpile time BEGIN leaves its return address and n for compiler error checking.

BL ---C

A constant that leaves the ASCII value for blank.

BLANKS addr c o u n t ---

Fill in an area of memory beginning at addr with blanks.

BLK --- prfdr ID

A user variable containing the block number being interpreted. If zero, input is
being taken from the terminal input buffer.

BLOCK n ---addr ID

Leave the memory address of the block buffer containing block n. If the block is
not already in memory, it is transferred from disc to whichever buffer was least
recently written. If the block occupying that buffer has been marked as updated,
it is re-written to disc before block n is read into the buffer. See also BUFFER,
R/W UPDATE FLUSH.

BRANCH C2,L0

The run-time procedure for unconditionally branch. An in-line offset is added to
the interpretive pointer IP to branch ahead or back. ERANCH is compiled by ELSE,
AGAIN, REPEAT.

BUFFER n ---addr

Obtain the next memory buffer, assigning it to block n. If the contents of the
buffer are marked up as updated, it is written to the disc. The block is not read
from the disc. The address left is the first cell within the buffer for data
storage.

Cl b addr ---

Store 8 bits at address.

100

c. b

Store 8 bits of b into the next available dictionary byte, advancing the
dictionary pointer.

C @ addr --- b

Leave the 8 bit contents of memory address.

CASE ---n (compiling)

Occurs in a colon definition in the form:
CASE
n O F ENDOF

ENDCASE
At run-time, CASE marks the start of a sequence of OF ... ENDOF statements.

At carpile time CASE leaves n for compiler error checking.

CFA p f a ---cfa

Convert the parameter field address of a definition to its code field address.

CMOVE from to c o u n t ---

Move the specified quantity of bytes beginning at address 'fran' to address 'to'.
The contents of address 'fran' are moved first proceeding towards high memory.

COLD

The oold start procedure to adjust the dictionary pointer to the minimum standard
and restart via ABORT. May be called fran the terminal to remove application
programs and restart.

COMPILE C2

When the word containing COMPILE executes, the execution address of the word
following COMPILE is copied (compiled) into the dictionary. This allows specific
compilation situations to be handled in addition to simply oarpiling an execution
address (which the interpreter already does).

CONSTANT n --- ID

A defining word used in the form:
n CONSTANT cccc

to create word cccc, with its parameter field containing n. When cccc is later
executed, it will push the value of n onto the stack.

CONTEXT --- addr U,LO

A user variable containing a pointer to the vocabulary within which dictionary
searches will first begin.

101

COUNT addr 1 addr 2 ID
Leave the byte address addr2 and byte count n of a message text beginning at
address addrl. It is presumed that the first byte at addrl contains the text byte
count and that the actual text starts with the second byte. Typically, COUNT is
followed by TYPE.

CR IO

Transmit a carriage return and line feed to the selected output device.

CREATE

A defining word used in the form:
CREATE cccc

by such words as CODE and CONSTANT to create a dictionary header for a Forth
definition. The code field contains the address of the word's parameter field. A
new word is created in the CURRENT vocabulary.

CSP ----addr U

A user variable temporarily storing the stack pointer position, for oarpilation
error checking.

D + dl d 2 ---dsum

Leave the double number sum of two double numbers.

D + - dl n --- d2

Apply the sign of n to the double number dl, leaving it as d2.

D. d -- LI

Print a signed double number from a 32 bit two's complement value. The high-order
16 bits are most accessible on the stack. Conversion is performed according to
the current base. A blank follows. Pronounced D-dot.

D.R d n --- DO

Print a signed double number d right, aligned in a field n characters wide.

DABS d --- ud

Leave the absolute value of a double number.

DECIMAL ID

Set the numeric conversion BASE for decimal input-output.

102

DEFINITIONS LI

Used in the form:
CCCC DEFINITIONS

Set the CURRENT vocabulary to the CONTEXT vocabulary. In the exanple, executing
vocabulary name cccc made it in the context vocabulary, and executing EEFINITIONS
made both specify vocabulary cccc.

DIGIT c n l ---n2 tf (ok)
c nl — ff (bad)

Converts the ASCII characters c (using base nl) to its binary equivalent n2,
accompanied by a true flag. If the conversion is invalid, leaves only a false
flag.

DLITERAL d ---d (executing)
d --- (compiling) P

If ocnpiling, compile a stack double number into a literal. Later execution of
the definition containing the literal will push it to the stack. If executing,
the number will remain on the stack.

DMINUS d l ---d2

Convert dl to its double number taro's complement.

DO nl n2 --- (execute)
addr n — (ccnpile) P,C2,L0

Occurs in a colon-definition in the form:
DO ... LOOP
DO ... +LOOP

At run time, DO begins a sequence with repetetive execution controlled by a loop
limit nl and an index with initial value n2. DO removes these from the stack.
Upon reaching LOOP the index is incremented by one. Until the new index equals or
exceeds the limit, execution loops back to just after DO otherwise the loop
parameters are discarded and execution continues ahead. Both nl and n2 are
determined at run-time and may be the result of other operations. Within a loop,
'I' will copy the current value of the index to the stack. See I, IOOP, +IOOP,
IZAVE.

When ocnpiling within the colon-definition, DO ocnpiles (DO), leaving the
following address addr and n for later error checking.

DOES > LO

A word which defines the run-time action within a high level defining vrord. DOES>
alters the code field and first parameter of the new vrord, to execute the sequence
of ocnpiled word addresses following DOES>. Used in combination with BUILDS>.
When the word DOES> part executes, it begins with the address of the first
parameter of the new word on the stack. This allows interpretation using this
area or its contents. Typical uses include the Forth assembler, multi-dimensional
arrays and compiler generation.

103

DP a d d r U,L

A user variable, the dictionary pointer, which contains the address of the next
free memory above the dictionary. The value may be read by HERE and altered by
ALLOT.

DPL ----addr U,LO

A user variable containing the number of digits to the right of the decimal on
double integer input. It may also be used to hold output column location of a
decimal point, in user generated formatting. The default value on single number
input is -1.

DROP n --- DO

Drop the number fran the stack.

DUMP addr n --- DO

Print the contents of n memory locations beginning at addr. Both addresses and
contents are shown in the current numeric base.

DUP n ---n n DO

Duplicate the value on the stack.

ELSE addrl n l addr 2 n2
(oarpiling) P,C2,D0

Occurs within a colon-definition within the form:
IF ... ELSE ... ENDIF

At run-time, ELSE executes after the true part following IF. ELSE forces the
execution to skip over the following false part, and resumes execution after the
ENDIF. It has no stack effect.

A oanpile time ELSE emplaces branch reserving a branch offset, leaves the address
addr2 and n2 for error treating. ELSE also resolves the pending forward branch
from IF by calculating the offset from addrl to HERE and storing at addrl.

EM IT c --- DO

Transmit ASCII character c to the selected output device. OUT is incremented for
each character output.

EMPTY-BUFFERS DO

Make all block-buffers as anpty, not necessarily affecting the contents. Updated
blocks are not written to the disc. This is also an initialization procedure
before first use of the disc.

104

ENCLOSE addrl c ---
addrl nl n2 n3

The text scanning primitive used by WORD. Fran the text address addrl and an
ASCII delimiting character c, is determined the byte offset to the first
non-delimiter character nl, the offset to the first delimiter after the text n2,
and the offset to the first character not included. This procedure will not
process past an ASCII 'null', treating it as an unconditional delimiter.

END P,C2,L0

This is an 'alias' or duplicate definition for UNTIL.

ENDCASE addr n ---(compile)

Occurs in a colon definition in the form:
CASE
n O F ENDOF

ENDCASE
At run-time ENDCASE marks the conclusion of a CASE statement.

At compile time ENDCASE computes forward branch offsets.

ENDIF addr n --- (compile) P,CO,LO

At run-time, ENDIF serves only as the destination of a forward branch from IF or
ELSE. It marks the conclusion of the conditional structure. THEN is another name
for ENDIF. Both names are supported in Fig-FORTH. See also IF and ELSE.

At ocmpiletime, ENDIF computes the forward branch offset from addr to HERE and
stores it at addr. n is used for error tests.

ENDOF addr n --- (compile)

Used as ENDIF but in CASE statements.

ERASE addr n ----

Clear a region of memory from zero to addr over n addresses.

ERROR l i n e ----in blk

Execute error notification and restart of system. WARNING is first examined. If
1, the test of line n, relative to screen 4 and drive 0 is printed. This line
number may be positive or negative, and beyond just screen 4. If WARNING-0, n is
just printed as a message number (non disc installation). If warning is -1, the
definition ABORT is executed, which executes the system ABORT. The user may
cautiously modify this by altering (ABORT). Fig-FORTH saves the contents of in
and BLK to assist in determining the location of the error. Final action is
execution of QUIT.

105

EXECUTE addr

Execute the definition whose code field address is on the stack. The code field
address is also called the canpilation address.

EXPEoi addr count --- 10

Transfer characters from the terminal to address, until a return or the count of
characters has been received. One or more nulls are added at the end of the
text.

FENCE --- addr U

A user variable containing an address, below which FORGETting is trapped. To
forget below this point, the user must alter the contents of the HENCE.

FILL addr quan b ---

Fill memory at the address with the specified quantity of bytes b.

FIRST --- n

A constant that leaves the address of the first (lowest) block buffer.

FLD ------ addr U

A user variable for control of number output field width. Presently unused in
Fig-EORTH.

FORGET E,DO

Deletes definition named cccc frcm the dictionary with all entries physically
following it. In Fig-EORTH, an error message will occur if the CURRENT and
CONTEXT vocabularies are not currently the same.

FORTH P,LI

The name of the primary vocabulary. Execution makes FORTH the CONTEXT vocabulary.
Until additional user vocabularies are defined, new user definitions became a part
of EORIH. EORTH is immediate, so it will execute during the creation of a
colon-definition, to select this vocabulary at compile time.

HERE ---addr DO

Leave the address of the next available dictionary location.

HEX DO
Set the numeric conversion base to sixteen (hexadecimal).

106

HLD addr ID

A user variable that holds the address of the latest character of text during
numeric output conversion.

HOLD c --- ID

Used between <# and #> to insert an ASCII character into a pictured numeric output
string.

e.g. 2E HOLD will place a decimal point.

I ---n C,LO

Used within a DO-IDOP to copy the loop index to the stack. Other use is
implementation dependent. See R.

ID. addr ---

Print a definition's name from its name field address.

IF f ----- (run-tine)
---addr n (compile) P,C2,L0

Occurs in a colon-definition in the form:
IF (tp) ... ENDIF
IF (tp) ... ELSE (fp) ... ENDIF

At run-time, IF selects execution based on a boolean flag. If f is a true
(non-zero), execution continues ahead through the true part. If f is false
(zero), execution skips till just after ELSE to execute the false part. After
either part, execution resumes after ENDIF. ELSE and its false part are optional;
if missing, false execution skips to just after ENDIF.

At compile time, IF carpiles OBRANCH and reserves space for an offset at addr.
addr and n are used later for resolution of the offset and error testing.

IM M EDIATE

Mark the most recently made definition so that when encountered at compile time it
will be executed rather than compiled, i.e. the precedence bit in its header is
set*. This method allows definitions to handle unusual compiling situations,
rather than build them into the fundamental compiler. The user may force
compilation of an immediate definition by preceding it with (COMPILE).

IN --- addr ID

A user variable containing the byte offset within the current input text buffer
(terminal or disc) fan which the next text will be accepted. WORD uses and moves
the value of IN.

107

INDEX from to

Print the first line of each screen over the range from, to. This is used to view
the ocnment lines of an area of text on disc screens.

INTERPRET

The outer text interpreter, which sequentially executes or compiles text from the
input stream (terminal or disc) depending on STATE. If the word name cannot be
found after a search of CONTEXT and then CURRENT, it is converted to a number
according to the current base. That also failing, an error message echoing the
name with a "7" will be given. Text input will be taken according to the
convention for WORD. If a decimal point is found as part of a number, a double
number value will be left. The decimal point has no other purpose than to force
this action. See NUMBER.

KEY --- cc I£>

Leave the ASCII value of the next terminal key struck.

LATEST ------addr

Leave the name field address of the topmost word in the current vocabulary.

LEAVE C,LO

Force termination of a DO-IDOP at the next opportunity by setting the loop limit
equal to the current value of the index. The index itself remains unchanged, and
execution proceeds normally until LDOP or +LOOP is encountered.

LFA p f a --- lfa

Convert the parameter field address of a dictionary definition to its link field
address.

LIM IT ---n

A constant leaving the address just above the highest memory available for a disc
buffer. Usually, this is the highest system memory.

LINE n — addr

Leave address of line n of current screen. This address will be in the disc
buffer area.

LIST n --- ID

Display the ASCII text of screen n on the selected output device. 9CR contains
the screen number during and after this process.

108

LIT C/LO

Within a colon-definition, LIT is automatically compiled before each 16 bit
literal number encountered in input text. Later execution of LIT causes the
contents of the next dictionary address to be pushed to the stack.

LITERAL n ---(compiling) P,C2,L0

If compiling, then compile the stack value n as a 16 bit literal. This definition
is immediate so that it will execute during a colon-definition. The intended use
is:

: xxx (calculate) LITERAL :
Compilation is suspended for the compile time calculation of a value. Compilation
is resumed and LITERAL compiles this value.

LOAD n --- ID

Begin interpretation of screen n. Loading will terminate at the end of the screen
or at ;S. See ;S and — >.

LOOP addr n ---(compiling) P,C2,L0

Occurs in a colon-definition in the form:
DO ... IOOP

At run-time, IOOP selectively controls branching back to the corresponding DO
based on the loop index and limit. The loop index is incremented by one and
compared to the limit. The branch back to DO occurs until the index equals or
exceeds the limit; at that time, the parameters are discarded and execution
continues ahead.

At ccnpile time, IOOP compiles (IOOP) and uses addr to calculate an offset to DO.
n is used for error testing.

M* nl n2 --- d

A mixed magnitude math operation which leaves the double number signed product of
two signed numbers.

M / d nl --- n2 n3

A mixed magnitude math operator which leaves the signed remainder n2 and signed
quotient n3, from a double number dividend and divisor nl. The remainder takes
its sign from the dividend.

M /M O D udl u2 --- u3 ud4

An unsigned mixed magnitude math operation which leaves a double quotient ud4 and
remainder u3, from a double dividend udl and single divisor u2.

M AX nl n 2 ---- max ID

Leaves the greater of two numbers.

109

--- n

n —

Print on the selected output device the text of line n relative to screen 4 of
drive 0. n may be positive or negative. MESSAGE may be used to print incidental
text such as report headers. If WARNING is zero, the message will sinply be
printed as a number (disc unavailable).

MIN nl n2 --- min ID

Leave the smaller of two numbers.

MINUS nl --- n2 ID

Leave the taro's complement of a number.

MOD nl n2 — mod ID

Leave the remainder of nl/n2, with the same sign as nl.

NEXT

This is the inner interpreter that uses the interpretive IP to execute compiled
Forth definitions. It is not directly executed but is the return point for all
code procedures. It acts by fetching the address pointed by IP, and storing this
value in register W. It then juips to the address pointed to by the address
pointed to by W. W points to the code field of a definition which contains the
address of the code ahich executes for that definition. This usage of indirect
threaded code is a major contributor to the power, portability and extensibility
of Forth.

NFA pfa --- nfa

Convert the parameter field address of a definition to its name field. See PFA.

NUMBER addr --- d

Convert a character string left at addr with a preceeding count, to a signed
double number, using the current numeric base. If a decimal point is encountered
in the text, its position will be given in EPL, but no other effect occurs. If
numeric conversion is not possible, an error message will be given.

OFFSET. — addr U

A user variable which may contain a block offset to disc drives. The contents of
OFFSET is added to the stack number by BEDCK. Messages by MESSAGE are independent
Of OFFSET. See BLOCK, ERD, ERl, MESSAGE.

OR nl n 2 ---or ID

Leave the bit-wise logical "CR" of two 16 bit values.

110

MESSAGE

OUT --- addr

A user variable that contains a value incranented by EMIT. The user may alter and
examine OUT to control display formatting.

OVER nl n 2 ---nl n2 nl IO

Copy the second stack value, placing it as the new top.

PAD -- addr IO

Leave the address of the text output buffer, which is a fixed offset above HERE.

PFA nfa — pfa

Convert the name field address of a compiled definition to its parameter field
address.

POP

The code sequence to remove a stack value and return to NEXT. POP is not directly
executable, but is a Forth re-entry point after machine code.

PREV ---- addr

A variable containing the address of the disc buffer most recently referenced.
The UPDATE command marks this buffer to be later written to disc.

PUSH

This code sequence pushes machine registers to the computation stack and returns
to NEXT. It is not directly executable, but is a Forth re-entry point after
machine code.

PUT

This code sequence stores machine register contents over the topmost computation
value and returns to NEXT. It is not directly executable, but is a Forth re-entry
point after machine code.

QUERY

Input 80 characters of text (or until a "return") from the operator's terminal.
Text is positioned at the address contained in TIB with IN set to zero.

QUIT LI

Clear the return stack, stop compilation and return control to the operator's
terminal. No message is given.

111

U

A user variable vdiich may contain the location of an editing cursor, or other file
related function.

R# ---addr U

A user variable which nay contain the location of an editing cursor, or other file
related function.

R /W addr b l k ---

The Fig-Forth standard read-write linkage, addr specifies the source or
destination block buffer, blk is the sequential number of the referenced block;
and f is a flag for f-0 write and f-1 read. R/W determines the location on mass
storage, performs the read-write and any error checking.

R> ---n ID

Remove the top value fran the return stack and leave it on the computation stack.
See >R and R.

RO ---addr U

A user variable containing the initial location of the return stack. Pronounced
R-zero. See RP!

REPEAT addr n --- (catpiling) P,C2

Used within a colon-definition in the form:
BEGIN ... WHILE ... REPEAT

At run-time, REPEAT forces an unconditional branch back to just after the
corresponding EEGIN.

At carpile time, REPEAT carpiles ERANCH and the offset fran HERE to addr. n is
used for error testing.

ROT nl n2 n 3 ---n2 n3 nl ID

Rotate the top three values on the stack, bringing the third bo the top.

RP@ addr

Leaves the current value in the return stack pointer register.

RP!

A oaputer dependent procedure to initialise the return stack pointer fran user
variable RO.

S->D n ---d

Sign extend a single number to form a double number.

112

---- n Un

80 -- addr u

A user variable that contains the initial value for the stack pointer pronounced
S-zero. See SP!

SCR ------ a r iA r U

A user variable containing the screen number most recently referenced by LIST.

SION n d --- d LO

Stores an ASCII sign just before a converted numeric output string in the
text output buffer when n is negative, n is discarded, but double number d is
maintained. Must be used between <# and #>.

SMUDGE

Used during word definition to toggle the "smudge bit" in a definition's name
field. This prevents an uncompleted definition from being found during dictionary
searches, until compiling is completed without error.

SRI

A computer dependent procedure to initialise the stack pointer from SO.

S P O — addr

A computer depandent procedure to return the address of the stack position to the
top of the stack, as it was before SP@ was executed, (e.g. 1 2 SP@ @ . . . would
print 2 2 1) .

SPACE

Transmit an ASCII blank to the output device.

SPACES n — ID

Transmit n ASCII blanks to the output device.

STATE --- i d ,u

A user variable containing the compilation state. A non-zero indicates
compilation. The value itself may be implementation dependent.

SWAP nl n2 --- n2 nl ID

Exchange the top two values on the stack.

113

TASK

A no-operation wcfd which can mark the boundary between applications. By
forgetting TASK and re-carpi ling, an applies ton can be discarded in its entirety.

TEXT c ----------

Accept the following test to PAD. c is the text delimiter.

THEN P,CO,LO

An alias for ENDIF.

TIB ------ ad d r U

A user variable containing the addresses of the terminal input buffer.

TOGGLE addr b —

Complement the contents of addr by the bit pattern b.

TRAVERSE addrl n — addr2

Move across the name field of a Fig-ECRTH variable length name field, addrl is
the address of either the length byte or the last letter. If n=^l, the motion is
toward low memory. The addr2 resulting is the address of the other end of the
name.

TYPE addr count --- LO

Transmit count characters from addr to the selected output device.

IK ul u2 --- f

Leave the boolean value of an unsigned less-than oanparison. Leaves f=l for ul >
u2; otherwise leaves 0. This function should be used when comparing memory
addresses.

U* ul u2 — ud

Leave the unsigned double number product of two unsigned numbers.

U. u —

Prints an unsigned 16 bit number converted according to BftSE. A trailing blank
follows.

114

u/ ud u l ---u2 u3

Leave the unsigned remainder u2 and unsigned quotient u3 from the unsigned double
dividend ud and unsigned divisor ul.

UNTIL f ---(run-time)
addr n ---(compile) P,C2,L0

Occurs within a colon-definition in the form:
BEGIN ... UNTIL

At run-time, UNTIL controls the conditional branch back to the corresponding
BEGIN. If f is false, execution returns to just after BEGIN, if true, execution
continues ahead.

At compile-time, UNTIL compiles (OERANCH) and an offset from HERE to addr. n is
used for error tests.

UPDATE LO

Marks the most recently referenced block (pointed to by PREV) as altered. The
block will subsequently be transferred to disc should it's buffer be required for
storage of a different block.

USE ---addr

A variable containing the address of the block buffer to use next, as the least
recently written.

USER n --- ID

A defining word used in the form:
n USER occc

vrfiich creates a user variable cccc. The parameter field of cccc contains n as a
fixed offset relative to the user pointer register UP for this upper variable.
When occc is later executed, it places the sum of it's offset and the user base
address on the stack, as the storage address of that particular variable.

VARIABLE E,LO

A defining word used in the form:
n VARIABLE cccc

When VARIABLE is executed, it creates the definition occc with its parameter field
initialised to n. When occc is later executed, the address of its parameter field
(containing n) is left on the stack, so that a fetch or store may access this
location.

VOC-LINK addr U

A user variable containing the address of a field in the definition of the most
recently created vocabulary. All vocabulary names are linked by these fields, to
allow control for EORGETting through multiple vocabularies.

115

VOCABULARY E ,L

A defining word used in the form:
VOCABUIARY CCCC

to create a vocabulary definition cccc. Subsequent use of occc will make it the
CONTEXT vocabulary which is searched first by INTERPRET. The sequence "cccc
DEFINITIONS" will also make occc the CURRENT vocabulary, into which, new
definitions are placed.

In Fig-FORTH, cccc will also be chained so as to include all definitions of the
vocabulary in which cccc is itself defined. All vocabularies ultimately chain to
Forth. By convention, vocabulary names are to be declared MED I A T E . See
VOC-LINK.

VLIST

List the names of the definitions in the context vocabulary. Pressing "Break"
will terminate the listing.

WARNING --- addr U

A user variable, containing a value controlling messages.
If = 1 disc is present, and screen 4 of drive 0 is the base location for messages.
If = 0, no disc is present and messages will be presented by number. If = -1,
execute (ABORT) for a user specified procedure. See MESSAGE, ERROR, ABORT.

WHERE nl n 2 ---

If an error occurs during LOAD from disc, ERROR leaves these values on the stack
to shew the user where the error occurred. WHERE uses these to print the screen
and line number of where this is.

W HILE f (run-time)
addrl n l addrl nl addr2 n2 P,C2

Occurs in a colon-definition in the form:
BEGIN ... WHILE (tp) ... REPEAT

At run-time, WHILE selects conditional execution based on boolean flag f. If f is
true (non-zero), WHILE continues execution of the true part through to REPEAT,
which then branches back to BEGIN. If f is false (zero), execution skips to just
after REPEAT, exiting the structure.

At compile time, WHILE emplaces (OBRANCH) and leaves addr2 of the reserved offset.
The stack values will be resolved by REPEAT.

WIDTH ----- addr U

In Fig-FORTH, a user variable containing the maximum number of letters saved in
the compilation of a definitions name. It must be 1 through to 31, having a
default value of 31. The name character count and its natural characters cure
saved, up to the value of WIDTH. The value may be changed at any time within the
above limits.

116

WORD c — 10

Read the next text characters from the input stream being interpreted, until a
delimiter c is found, storing the packed character string beginning at the
dictionary buffer HERE. WORD leaves the character count in the first byte, the
characters, and ends with two or more blanks. Leading occurances of c are
ignored. If ELK is zero, text is taken frcm the terminal input buffer, otherwise
from the disc block stored in HER. See HER, IN.

X

This is pseudonym for the "null" or dictionary entry for a name of one character
of ASCII null. It is the execution procedure to terminate interpretation of a
line of text frcm the terminal or within a disc buffer, as both buffers always
have a null at the end.

XOR nl n2 — xor LI

Leave the bit-wise logical Exclusive-CR of two values.

£ P,LI

Used in a colon-definition in the form:
: xxx words more ;

Suspend ocnpilation. The words after are executed, not compiled. This allows
calculation or compilation exceptions before resuming ocnpilation with . See
LITERAL,

[c o m p il e) P,C

Used in a colon-definition in the form:
; xxx O O M P U R FORTH ;

COMPILE will force the ocnpilation of an immediate definition, that would
otherwise execute during ocnpilation. The above exanple will select the FORTH
vocabulary when xxx executes, rather than at ccnpile time.

1 LI

Resume ocnpilation, to the completion of a colon-definition. See

ADDITIONAL GLOSSARY

C/L --- n

A constant containing the number of characters per line (64).

W ARM ------

This will perform a warm-start.

117

NOOP

This will perform a no-operation, i.e. do nothing.

WAR COLD

This allows you to preserve any FORTH word defined to date, so that a GOLD start
will not delete them. When saving your code, save from 24832 to HERE.

e.g. : NEWWORD . " THIS WILL EE PRESERVED B£ WARM-XDLD " ;

If we now do a GOLD start this will be lost, but if we first key in WRRM-XDLD and
then do a GOLD start, it will still be there.

118

IDEAL GLOSSARY

WORD PARAMETERS ACTION

WCRV HGT, LEN, OOL,
ROW, NPX

Scroll the window vertically with wrap by
NPX pixels.

SCRV HGT, IEN, OOL,
ROW, NPX

Scroll the window vertically without
wrap by NPX pixels.

WRR1V HGT, LEN, OOL,
ROW

Scroll the window 1 pixel right with wrap.

WRL1V HGT, LEN, OOL,
ROW

Scroll the window 1 pixel left with wrap.

WRR4V HGT, LEN, OOL,
ROW

Scroll the window 4 pixels right with wrap.

WRL4V HGT, LEN, OOL,
ROW

Scroll the window 4 pixels left with wrap.

WRR8V HGT, LEN, OOL,
ROW

Scroll the window 8 pixels right with wrap.

WRL8V HGT, LEN, OOL,
ROW

Scroll the window 8 pixels left with wrap.

SCR1V HGT, IEN, OOL,
ROW

Scroll the window 1 pixel right without
wrap.

SCL1V HGT, LEN, OOL,
ROW

Scroll the window 1 pixel left without
wrap.

SCR4V HGT, LEN, OOL,
ROW

Scroll the window 4 pixels right without
wrap.

SCL4V HGT, IEN, OOL,
ROW

Scroll the window 4 pixels left without
wrap.

SCR8V HGT, IEN, OOL,
ROW

Scroll the window 8 pixels right without
wrap.

SCL8V HGT, IEN, OOL,
ROW

Scroll the window 8 pixels left without
wrap.

ATTRV HGT, IEN, OOL,
ROW

Scroll the window attributes 1 character
right with wrap.

ATTLV HGT, IEN, OOL,
ROW

Scroll the window attributes 1 character
left with wrap.

ATTUPV HGT, IEN, OOL,
ROW

Scroll the window attributes 1 character
ip with wrap.

ATTDNV HGT, IEN, OOL,
ROW

Scroll the window attributes 1 character
down with wrap.

WORM SPN Scroll the Sprite vertically with wrap by
NPX pixels.

119

SCRM SPN Scroll the Sprite vertically without wrap
by NPX pixels.

WRR1M SPN Scroll the Sprite 1 pixel right with wrap.

WRL1M SPN Scroll the Sprite 1 pixel left with wrap.

WRR4M SPN Scroll the Sprite 4 pixels right with wrap.

WRL4M SPN Scroll the Sprite 4 pixels left with wrap.

WRR8M SPN Scroll the Sprite 8 pixels right with wrap.

WRL8M SPN Scroll the Sprite 8 pixels left with wrap.

SCR1M SPN Scroll the Sprite 1 pixel right without wrap.

SC U M SPN Scroll the Sprite 1 pixel left without wrap.

SCR .VI SPN Scroll the Sprite 4 pixels right without
wrap.

SCL4M SPN Scroll the Sprite 4 pixels left without wrap.

SCR8M SPN Scroll the Sprite 8 pixels right without
wrap.

SCL8M SPN Scroll the Sprite 8 pixels left without wrap.

ATTRM SPN Scroll the Sprite attributes 1 character
right with wrap.

ATTLM SPN Scroll the Sprite attributes 1 character
left with wrap.

ATTUPM SPN Scroll the Sprite attributes 1 character
up with wrap.

ATTDNM SPN Scroll the Sprite attributes 1 character
down with wrap.

GETBLS SPN, OOL, ROW Block move screen data from screen to
Sprite.

GETXRS SPN, OOL, ROW Logically XQR screen data into Sprite data.

GETORS SPN, COL, ROW Logically OR screen data into Sprite data.

GETNDS SPN, OOL, ROW Logically AND screen data into Sprite data.

PUTBLS SPN, OOL, ROW Block move Sprite data from Sprite to
screen.

PUTXRS SPN, COL, ROW Logically XOR Sprite data into screen data.

PUTORS SPN, OOL, ROW Logically OR Sprite data into screen data.

PUTNDS SPN, OOL, ROW Logically AND Sprite data into screen data.

GWBLS SPN, COL, ROW,
SCOL, SROW, HOT,
LEN.

Block move screen data from screen window
into Sprite window.

120

GWXRS SPN, ODL, ROW,
9COL, SROW, HOT,
LEN

Logically XDR screen data fran screen window
into Sprite window.

GWORS SPN, COL, ROW,
SCOL, SROW, HOT,
LEN

Logically OR screen data from screen window
into Sprite window.

GWNDS SPN, COL, ROW,
SCOL, SROW, HGT,
LEN

Logically AND screen data fran screen window
into Sprite window.

GWATTS SPN, COL, ROW,
SCOL, SROW, HOT,
LEN

Block move attributes from screen window into
Sprite window.

PWBLS SPN, COL, ROW,
SCOL, SROW, HOT,
LEN

Block move Sprite data from Sprite window
into screen window.

PWXRS SPN, COL, ROW,
SCOL, SROW, HOT,
LEN

Logically XDR Sprite window data into screen
window.

PWORS SPN, COL, ROW,
SCOL, SROW, HOT,
LEN

Logically OR Sprite window data into screen
window.

PWNDS SPN, COL, ROW,
SCOL, SROW, HOT,
LEN

Logically AND Sprite window data into screen
window.

PWATTS SPN, COL, ROW,
SCOL, SROW, HOT,
LEN

Block move Sprite window attributes into
screen window.

GWBLM SP1, SP2, SCOL,
SROW

Block move Sprite SPl into Sprite SP2 at
SCOL, SROW.

GWXRM SP1, SP2> SCOL,
SROW

Logically XDR Sprite SPl into Sprite SP2
at SCOL,SROW.

GWORM SP1, SP2, SCOL,
SROW

Logically CR Sprite SPl into Sprite SP2
at SCOL, SROW.

GW NDM SP1, SP2, SCOL,
SROW

Logically AND Sprite SPl into Sprite SP2
at SCOL, SROW.

GW ATTM SP1, SP2, SCOL,
SROW

Block move attributes of Sprite SPl into
Sprite SP2 at SCOL,SROW.

PWBLM SP1, SP2, SCOL,
SROW

Block move window at SCOL,SROW of Sprite
SP2 into Sprite SPl.

PWXRM SP1, SP2, SCOL,
SROW

Logically XDR window at SCOL, SROW of Sprite
SP2 into Sprite SPl.

PWORM SP1, SP2, SCOL,
SROW

Logically CR window at SCOL, SROW of Sprite
SP2 into Sprite SPl.

121

PWNDM SP1, SP2, SCOL,
SROW

Logically AND window ̂ t SCOL, SROW of Sprite
SP2 into Sprite SPl.

PWATTM SP1, SP2,'SCOL,
SROW

Block move attributes of window at
SCOL, SROW of Sprite SP2 into Sprite SPl.

COPYM SP1, SP2 As GWBIM but SCOL, SROW assumed zero.

COPXRM SPl, SP2 As GWXRM but SCOL,SROW assumed zero.

COPORM SP1, SP2 As GWDRM but SCOL, SROW assumed zero.

COPNDM SPl, SP2 As GWNDM but SCOL, SROW assumed zero.

COPATTM SP1, SP2 As GWATIM but SCOL, SROW assumed zero.

IN W HGT, I£N, CDL,
ROW

Invert screen window.

MIRV HGT, I£N, CDL,
ROW

Mirror screen window about its centre.

MARV HGT, LEN, COL,
ROW

Mirror screen window attributes about
centre.

INVM SPN Invert Sprite data.

MIRM SPN Mirror Sprite about its centre.

MARM SPN Mirror Sprite attributes about centre.

SPINM SP1, SP2 Rotate Sprite SP2 90 degrees clockwise
into Sprite SPl.

DSPM SP1, SP2 Enlarge Sprite SP2 into Sprite SPl.

HALT Suspend CPU operation until next interrupt.

El Enable interrupt.

Dl Disable interrupt.

EXX Exchange Ideal variables with the alternate
Ideal variables.

I NT-ON FORTH WORD Execute specified Forth Word under interrupt.

INT-OFF Terminate execution of interrupt driven
word.

PROG Enter BASIC.

RESERVE N1 Reserve N1 bytes in the dictionary for
BASIC source.

GOTO N1 Begin execution of BASIC at line Nl.

RETUSR Return to BASIC frar. RANDOMIZE USR 30000
call.

122

DSPRITE SPN Delete Sprite and recover bytes frcm below.

ISPRITE SPN, HGT, LEN Create Sprite and move current Sprites
down to accommodate.

WIPE SPN Delete Sprite and recover bytes from above.

SPRITE SPN, HGT, LEN Create Sprite at free space after last
Sprite.

RELOCATE MLEN Relocate Sprite space by signed 16 bit
length MLEN.

COLD# SPST, SLEN Reset Sprite space to begin at SPST with
SLEN bytes cleared to zeros.

SETAV HGT, LEN, COL,
ROW

Fill the screen window with the current
attributes.

SETAM SPN Fill the Sprite with the current attributes.

CLSV HGT, LEN, GOL,
ROW

Clear the screen window and fill with the
current attributes.

CLSM SPN Clear the Sprite.

ADJV HGT, LEN, ODL,
ROW

Adjust the screen window to lie on the
screen.

ADJM SPN, COL, ROW Adjust COL, ROW, HGT, LEN, SCOL, SROW such
that GETS and PUTS lie on the screen.

RND Nl Leave a random number between 0 and Nl
on the stack.

O U T# Nl, N2 Output LSB of Nl to 16 bit port address N2.

IN # Nl Leave on the stack, byte from 16 bit port
address Nl.

ZAPINT Create run time program with interrupt
facility.

ZAP Create run time program without interrupt
facility.

CALL Nl Execute machine code subroutine at address
Nl.

KB Nl, N2 Test for key press at row Nl, col N2 and
stack true or false flag.

SCANV COL, ROW The character position is scanned for screen
data and a true or false flag stacked.

SCANM SPN The Sprite is scanned for data and a true
or false flag stacked.

BLEEP Nl, N2 Sinclair BEEP. Nl is duration, N2 is pitch.

123

ATTON Enable attribute switch.

ATTOFF Disable attribute switch.

FORTH/BASIC GLOSSARY

WORD PARAMETERS ACTION

COPY Copy screen to ZX-Printer.

AT Nl, N2 Move print position to Nl,N2.

BORDER Nl Set border colour to Nl.

CLS Clear whole screen, heme cursor and fill
with current attributes.

DRAW-ARC Nl, N2, N3 ± X,+ Y,ANGLE. As Sinclair's own.

CIRCLE Nl, N2, N3 X,Y,RADIUS. As Sinclair's own.

DRAW Nl, N2 ±X,±Y. As Sinclair's own.

PLOT Nl, N2 X,Y. As Sinclair's own.

SCREEN$ Nl, N2 Leave on the stack the ASCII code of the
character at ROW Nl, COL N2.

ATTR Nl, N2 Leave on the stack the attribute code of
the character at ROW Nl, COL N2.

POINT Nl, N2 Test pixel at Nl,N2 and leave a true or
false flag on the stack.

TAB Nl Set print position to CDL Nl.

OVER Nl Zero or one, as Sinclair's own.

INVERSE Nl Zero or one, as Sinclair's own.

BRIGHT Nl Zero or one, as Sinclair's own.

FLASH Nl Zero or one, as Sinclair's own.

PAPER Nl Set paper colour, as Sinclair's cwn.

INK Nl Set ink colour, as Sinclair's cwn.

124

USR CALLS

PRINT USR 24832 Enter Forth from BASIC via a COLD START

PRINT USR 24836 Enter Forth fran BASIC via a WARM START

PRINT USR 30006 Re-Enter Forth from BASIC and continue
execution of the next Forth ward.

RANDOMIZE USR 30000 Call Forth and continue execution
up to the first occurence of the Forth
word RETUSR.

EXTENDED SPECTRAFORTH GLOSSARY

WORD PARAMETERS ACTION

PRT-ON Send all subsequent output to the printer.

PRT-OFF Send all subsequent output to the screen.

EDIT Ml Edit line number Nl from the current screen.

W A R M - > COLD Create extended FORTH.

J Copy second loop index to the top of the
stack.

K Copy third loop index to the top of the
stack.

DUMP N1 Memory durtp fran address Nl.

W ARM Perform a warm start.

EM ITC Nl As EMIT but control characters are also
supported.

125

THE DEMONSTRATION PROGRAM - A BRIEF DESCRIPTION

THE W H ITE LIGHTNING SCREEN

The green text at the top of the screen, sprites 59 and 60, is scrolled right in
background.

The lightning bolt, sprite 32, is put to the screen using POTBIfi. It is then
mirrored and then mirrored again using MIRV. It is removed from the screen using
PUTXRS.

Two windows are defined over the 'WHITE LIGHTNING', sprites 30 and* 31. The left
window is scrolled left and the right window scrolled right using SCL8V and 9CR8V
respectively.

THE TRAIN

The steam engine is comprised of sprites 9, with sprites 18, 19, 20, and 21 for
the wheels in their four positions. The coaches are comprised of sprites 14 with
sprites 23 and 24 for the wheels.

The track, sprite 10, is scrolled left using WRLIV. By means of an increasing and
decreasing delay loop, acceleration and decceleration effects are achieved.

THE SPIDERS

Five spiders, sprite 7, are placed on the screen. Fran the left, spider 1 is
scrolled down by 1 pixel, spider 3 is scrolled up 8 pixels and spider 5 is
scrolled up 4 pixels all - in background.

Spiders 2 and 4 are animated up and down using sprites 7 and 8.

THE SIDEWAYS SCROLLING CIRCLE OF INVADERS

Twelve Invaders, sprite 24, are placed in a circle on the screen, using either
WRR1M, WRR4M or WRR8M they are scrolled in memory and then placed on the screen
using PUTBLS.

The Invader in the centre of< the screen is scrolled left by 1 pixel in
background.

THE ARRAY OF CLOCKWORK TOYS

The green clockwork toys are animated using sprites 49 and 50. Each sprite in the
array is individualy placed on the screen using PUTBLS. The movement is
controlled by simple ' DO LOOPS'.

THE VERTICAL ATTRIBUTE SCROLL

Using AITUPV and decreasing and increasing delay loops the attributes placed on
the screen are scrolled up, whilst a randan border colour change is executed.

126

THE THREE VEHICLE SCROLLING DEM O

This demonstrates the 3 precisions of scrolls available - 1, 4 and 8 pixels.

Sprite 1, the vintage car, demonstrates the fine 1 pixel scroll using SCLlV.

Sprite 2, the van, demonstrates the faster 4 pixel scroll using SCL4V.

Sprite 3, the dragster, demonstrates, the very fast 8 pixel, or 1 character
scroll, using SCL8V.

THE TELEVISION

The television, sprite 13, is placed on the screen, a window is defined inside the
screen.

Sprite 5, the dancer is used to demonstrate the 1 pixel scroll with wrap, WRRlV.

Sprite 4, the duck, is used to demonstrate the 4 pixel scrool with wrap, WRR4V.

Sprite 6, the rocket, is used to demonstrate the 8 pixel scroll with wrap, WRR8V.

THE THREE SPACESHIPS

In this demonstration the 3 spaceships, sprite 15, are placed on the screen along
with their shadows, sprite 16.

They are scrolled to the right by 1 pixel, with alternate 1 pixel up and down
scrolls, to give a sense of motion.

The attributes of the forground, sprite 17, and the background, sprite 11, are
scrolled to the left. The background being scrolled at one character per
execution with the foregound being scrolled two characters per execution to give a
seise of perspective.

THE BOUNCING M AN W ITH HAT

The bouncing man is animated using sprites 28 and 29. The sprites are placed on
the screen using PUTXRS, and removed again using PUTXRS, such that the character
appears to move behind the 'VHITE LIGHTNING' text without destroying it.

Simple DO IOOPS control his path.

Disabling interrupts, using DI, during the animation appeared to reduce the slight
flicker of the character, the interrupts where enabled again using El.

THE CIRCLE OF ROTATING INVADERS

Fran the original invader, sprite 24, sprites 25, 26 and 27 were created using the
'ROTATE' facility of the sprite development package.

This demo shows hew the centre invader, scrolling left by 1 pixel in background,
moves at a constant smooth rate, independent frem that of the increasing and then
decreasing rate of the rotating invaders in the outer circle.

127

THE PLAGUE OF CRABS

The BOW and COL varables for the FUTBLS are loaded up each time by a randan number
produced by using the Forth word RND.

The crabs, sprite 33, are placed on the screen using FUTBLS.

THE BOUNCING BALL

This is a sprite or to be more precise, 4 sprites, moving in background. Hie ball
is defined in four orientations to give half character resolution. Hie movement
is obtained by doing a FUTXRS, calculating the next oo-ordinates, blotting out the
old sprite with a second PUTXRS and then repeating the cycle. Hie listing for this
screen is given in section 3 under the heading - Programmable Sprites.

THE LUNAR SPACE SHIP

The radar dish on top of the space ship, sprite 34, is animated by sequentially
placing sprites 35 to 42, giving the effect of constant rotation.

Just before the spaceship takes off, an explosion, sprite 43, is XDRed over the
spaceship using PUTXRS. It is removed again by a second POTXRS.

The spaceship is then scrolled ip in a vertical window by 1 pixel. Hie Lunar
surface, sprite 44, is also scolled by 1 pixel, to the right using VRRlV.

THE ROTATING BALLS

Four sprites ware used to give the impression of rotation, these being sprites 45,
46, 47, and 48.

Once the sprites vare created, animation was a sinple process of sequentially
placing the sprites to the screen with an increasing and decreasing time delay
between each PUTBLS.

THE CREDITS

To achieve the text scrolling up frcm the bottan of the screen, the bottan line
\»s set with 0 INK and 0 PAPER colours, while the rest of the screen had 7 INK and
0 PAPER colours.

Each line of text vas printed into that line and then the whole screen scrolled up
8 * 1 pixel, such that the text data scrolls into the screen that has 7 INK
attributes and thus appears to smoothly scroll onto the screen.

128

THE THREE VEHICLE SCROLLING DEM O

This demonstrates the 3 precisions of scrolls available - 1, 4 and 8 pixels.

Sprite 1, the vintage car, demonstrates the fine 1 pixel scroll using SCL1V.

Sprite 2, the van, demonstrates the faster 4 pixel scroll using SCL4V.

Sprite 3, the dragster, demonstrates, the very fast 8 pixel, or 1 character
scroll, using SCL8V.

THE TELEVISION

The television, sprite 13, is placed on the screen, a window is defined inside the
screen.

Sprite 5, the dancer is used to demonstrate the 1 pixel scroll with wrap, WRRlV.

Sprite 4, the duck, is used to demonstrate the 4 pixel scrool with wrap, WRR4V.

Sprite 6, the rocket, is used to demonstrate the 8 pixel scroll with wrap, WRR8V.

THE THREE SPACESHIPS

In this demonstration the 3 spaceships, sprite 15, are placed on the screen along
with their shadows, sprite 16.

They are scrolled to the right by 1 pixel, with alternate 1 pixel up and down
scrolls, to give a sense of notion.

The attributes of the forground, sprite 17, and the background, sprite 11, are
scrolled to the left. The background being scrolled at one character per
execution with the foregound being scrolled two characters per execution to give a
sense of perspective.

THE BOUNCING M AN W ITH HAT

The bouncing man is animated using sprites 28 and 29. The sprites are placed on
the screen using PUTXRS, and removed again using FUTXRS, such that the character
appears to move behind the 'VHITE LIGHTNING' text without destroying it.

Simple DO LOOPS control his path.

Disabling interrupts, using DI, during the animation appeared to reduce the slight
flicker of the character, the interrupts where enabled again using El.

THE CIRCLE OF ROTATING INVADERS

Fran the original invader, sprite 24, sprites 25, 26 and 27 were created using the
'ROTATE' facility of the sprite development package.

This demo shows how the centre invader, scrolling left by 1 pixel in background,
moves at a constant smooth rate, independent from that of the increasing and then
decreeusing rate of the rotating invaders in the outer circle.

127

THE PLAGUE OF CRABS

The ROW and COL varables for the PUTELS are loaded up each time by a randan number
produced by using the Forth word RND.

The crabs, sprite 33, are placed on the screen using POTBLS.

THE BOUNCING BALL

This is a sprite or to be more precise, 4 sprites, moving in background. The ball
is defined in four orientations to give half character resolution. The movement
is obtained by doing a POTXRS, calculating the next co-ordinates, blotting out the
old sprite with a second PUTXRS and then repeating the cycle. The listing for this
screen is given in section 3 under the heading - Programmable Sprites.

THE LUNAR SPACE SHIP

The radar dish on top of the space ship, sprite 34, is animated by sequentially
placing sprites 35 to 42, giving the effect of constant rotation.

Just before the spaceship takes off, an explosion, sprite 43, is XDRed ever the
spaceship using PUTXRS. It is removed again by a second PUTXRS.

The spaceship is then scrolled up in a vertical window by 1 pixel. The Lunar
surface, sprite 44, is also scolled by 1 pixel, to the right using V®R1V.

THE ROTATING BALLS

Four sprites were used to give the inpress ion of rotation, these being sprites 45,
46, 47, and 48.

Once the sprites ware created, animation was a sinple process of sequentially
placing the sprites to the screen with an increasing and decreasing time delay
between each PUTBLS.

THE CREDITS

To achieve the text scrolling up fran the bottom of the screen, the bottom line
was set with 0 INK and 0 PAPER colours, while the rest of the screen had 7 INK and
0 PAPER colours.

Each line of text was printed into that line and then the whole screen scrolled up
8 * 1 pixel, such that the text data scrolls into the screen that has 7 INK
attributes and thus appears to smoothly scroll onto the screen.

128

SOME SIMPLE PROGRAMMING EXAMPLES

Example 1

To scroll a window at row 8, column 9, 5 characters high by 10 characters long, 1
pixel to the left with wrap - type:

: DEMI 5 HGT ! 10 I£N ! 8 ROW ! 9 00L ! WRLlV ; <CR>

To put sane data on the screen type: VLIST <CR>

To scroll the window 100 times type:

: DEM2 100 0 DO DEMI IOOP ; <CR>
DEM2 <CR>

To execute DEMI in background type: ' DEMI INT-ON <CR>

To halt the background execution of DEMI type: INT-OFF <CR>

Example 2

To scroll a window at column 12, rcw 3, 10 characters high, and 5 characters wide,
downward by 3 pixels with wrap - type:

: DEM3 10 H3T ! 5 LEN ! -3 NPX ! 2 ROW ! 12 COL ! WCRV ; <CR>

to define the word, then DEM3 <CR> to execute it.

To run EEM3 in background type:

' DEM3 INT-ON <CR>

To halt the background execution type: INT-OFF <CR>

Example 3

To invert a window at column 10, row 5, 4 characters high and 4 characters wide -
type:

: DEM4 4 H3T ! 4 I£N ! 5 ROW ! 10 OOL ! I N W ; <CR>

and then DEM4 <CR> to execute.

Example 4

It is not always necassary to use colon definitions to achieve a particular
result. TO PUT sprite 34 (If you've got the Demo sprites loaded or have already
defined your own sprite 34) at row 5, column 6, and replace any data currently at
that position - type:

34 SPN ! 5 ROW ! 6 OOL ! PUTBLS <CR>

129

Example 5

Often it is useful to define a word which carries out an operation that is used
frequently and which saves typing - for instance:

: DEM5 COL ! ROW ! SPN ! POTBIS ;

If we wanted to carry out the sinple PUT ocmmand in exanple 4 all we'd need to
type would be:

34 5 6 DEM5

Example 6

To scroll sprite 29 in memory by 1 pixel to the right with wrap and POT it on the
screen at row 10, column 11 - use:

: DEM6 29 SPN ! 10 ROW ! 11 COL ! WRR1M POTBLS ;

To run DEM6 in background use: ' EEM6 INT-ON

Example 7

To fill a screen window, at column 17, row 5, 5 characters long and 10 characters
high, with the attributes - 6 INK, 2 PAPER and 1 FLASH - use the following:

: DEM7 1 FLASH 6 INK 2 PAPER 10 HOT ! 5 LEN ! 13 ROW ! 17 COL I SETAV 0 FLASH 7
INK 1 PAPER ;

Example 8

To change the green face of sprite 28 into a red one use:

: DEM8 28 SPN ! 2 INK ! 1 BRIGHT 0 PAPER SETAM PUTBLS ;

Example 9

To pick a random number between 0 and 100 use:

: DEM9 100 RND . ;

Example 10

To pick a random INK colour and change sprite 34's INK colour to this colour, and
then put it at column 10, row 10 use:

: DEM10 7 RND INK 34 SPN ! SETAM 10 ROW ! 10 COL ! PUTBLS ;

To run DEM10 in background use: ' DEM10 INT-ON and to halt DEM10 use INT-OFF.

130

To place sprite 24 into the screen of sprite 13 use:

: EEM11 24 SPl ! 13 SP2 ! 7 SCOL ! 6 SROW ! GWBIM 10 ROW ! 10 COL ! ATTON PUTBLS

Example 11

Example 12

To XDR sprite 43, the explosion, with sprite 27, the 270 degree rotated Invader,
in memory use:
: EEM12 43 SPl ! 27 SP2 I COPXRM 10 ROW ! 10 COL ! 27 SPN ! ATTON PUTBLS ;

Example 13

To invert sprite 7, the spider, in memory use:

: EEM13 7 SPN ! INVM 10 ROW ! 10 COL ! PUTBLS ;

To enlarge sprite 24 into sprite 45 using the DSPM oanmand use:

: DEMI4 45 SPl ! 24 SP2 ! DSPM 45 SPN ! 10 COL ! 10 ROW ! PUTBLS ;

Example 16

To search through sprite space, locate any existing sprites, print out the start
of data, length and height use:
: DEM15 255 1 DO I SPN ! TEST 1 = IF I. SPACE EPTR @ U. SPACE LEW ? SPACE H3T ?
SPACE CR THEN LOOP ;

To scroll a landscape sprite numbered 128, 2 characters high and 64 characters
wide, left by 1 pixel under interrupt, use the following:

SCR # 6
0 o variable: CL 8 variable: PH : OPEN EXX 0 COL ! 12 ROW ! 2 H3T !
1 0 SROW ! 0 SCOL ! 128 SPN ! 0 PAPER 6 INK 32 LEN ! CLSV 0 INK
2 1 LEW ! CLSV 32 IEN ! PWBLS EXX ;
3 : NXB CL @ 1+ DQP 64 = IF DROP 0 ENDIF DUP CL ! 31 + 64 MOD SCOL
4 ! 1 IEN ! PWBLS 32 IEN ! ;
5 : SL WRLlV PH @ 1- DUP 0= IF NXB CROP 8 ENDIF PH ! ;
6 : GO 6 INK 0 PAPER 0 BORDER 1 BRIGHT CLS 14 ROW ! 1 COL !
7 6 PAPER 31 IEN ! 4 HOT ! SETAV OPEN 6 INK ' SL INT-ON ;

To speed this ip to faster 4 or 8 pixel scrolls change lines 0 and 5 to read:

0 0 VARIABLE CL 2 VARIABLE PH : OPEN EXX 0 COL ! 12 RCW ! 2 H3T !
5 : SL WRL4V PH § 1- DUP 0= IF NXB DROP 2 ENDIF PH ! ;

0 : VARIABLE CL 1 VARIABLE PH : OPEN EXX 0 COL ! 12 RCW ! 2 H3T !
5 : SL VRL8V PH @ 1- DUP 0= IF NXB DROP 1 ENDIF PH ! ;

Type: 6 LOAD <CR> to ocnpile and GO <CR> to run.
131

Example 14

Example 16

ERRATA - VHITE LIGHTNING MANUAL

Page 7, line 24:
"alter the number 75" should read
"enter the number 63".

Page 20, line 19:
" : Convert the number ... trailing
space" should read
". : Convert the number ..." etc.

Page 72, line 25:
"PWTXRM" should read "PWXFM".

Page 75, SCR#6, lines 6 & 7:
Ranove BASE from line 6 and place
at end of line 7.
(... IOOP 0 0 AT BASE ;)

Page 104, DUMP:
"addr n ---" should read "addr — "

Throughout the manual, the Forth ward
"— >" is constructed as - >", i.e.
two minus signs and a greater than.

