
Computer Graphics Language
INSTRUCTION MANUAL

Computer Graphics Language
Instruction Manual

by
Allen E. Pendle

Published by ISP Marketing Ltd
Crown House, 38b High Street, Godalming, Surrey

First published October 1983

© 1983 ISP Marketing Ltd
“SCOPE: computer graphics language” is a
registered trade mark.

“SCOPE” stands for:
Simple Compilation of Plain English

Publishers: ISP Marketing Ltd., Crown House,
38b High Street, Godaiming, Surrey.

No part of this publication or the “SCOPE” cassette
program may be reproduced, stored in a retrievable
system or transmitted in any form by any means
without prior permission from the publishers.

Whilst every effort is made to ensure that the
contents of this Instruction Manual are accurate, the
publishers and the printer can accept no liability for
errors and omissions.

Cover design by The Graphics Workshop, Godaiming.
Book design by Medimedia Ltd., Godaiming, Surrey.
Printed by Willow Press Ltd., Godaiming, Surrey.

Contents

Introduction 4
Loading and saving instructions 6
Memory organisation 7
Syntax 10
Compiling and running a SCOPE program 11
Dictionary 13
Handling colour with SCOPE 33
Handling sound with SCOPE 35
Examples of the use of SCOPE words 37
Putting characters to the screen 39
Plotting and drawing 41
Handling and printing numbers 43
Moving the whole display 44
Structured programming with SCOPE 46
Conclusion 48

Introduction

SCOPE is a multitask fully structured
language for the 48K Spectrum. From 31 command
words one can build up a program within BASIC
which is then compiled or re-written into an
area of memory reserved for it.

The compiled program is then run by a USR
call. Because the compiled code uses routines
which are part of SCOPE, a SCOPE program will
only run if SCOPE is present in high memory.
SCOPE is primarily intended for high speed
handling of graphics, colour, sound and
animation.

Most words only handle integer numbers in
the range 0 to 255. Plotting and printing
graphics do not need numbers outside of this
range.

To write games however, you will want the
facility of calculating and printing integer
numbers to the screen in the range 0 to 65535
- scores for example - and several words
support this facility. The handling of colour
and sound is approached in a different manner
than in BASIC. See relevant sections of this
manual for comprehensive details. In the

4

following pages the language and its operation
will be examined step by step.

Throughout this manual we have assumed that
you have an understanding of the operation of
your computer and will have read the BASIC
MANUAL.

SCOPE does not cover the generation of user
defined graphics which will be found at page
93 of your BASIC MANUAL.

5

Loading instructions

Type LOAD "scope"
Start tape and press ENTER, when loading is

complete it will be indicated on the screen
and after a short delay the screen and low
memory will be cleared ready for you to start.

To save SCOPE programs on tape:

a) UNCOMPILED PROGRAM; FOLLOW BASIC Procedure.
b) COMPILED PROGRAM; use the "SAVE BYTES"
facility in BASIC procedure.
Note: It is usually preferable to save the
uncompiled program and compile it when loaded.

6

Memory organisation

Before you start writing a SCOPE program
you must nominate an area where the compiled
SCOPE code is to be written. You must also
nominate an area where SCOPE routines should
be written, because SCOPE ensures that any
routines are written in a special area.

After SCOPE has been loaded, the memory
addresses from 23755 to 59999 are available to
the user for programming. You will be typing
SCOPE words in BASIC REM statements and there­
fore a SCOPE program must start with the word
ORG.

10 REM Org;40000,50000:

The above program line actually means:
Start compiling SCOPE at memory location

40000 and any SCOPE routines at 50000. There­
fore, you will have allowed yourself 16K area
for BASIC (from 23755 to 39999), 10K for SCOPE
statements (40,000 to 49,999) and 10K for
SCOPE routines (50,000 to 59,999).

These parameters are totally under your
control and at any time you can change these
parameters.

7

Sometimes it is useful to know how much of
any area you have used, this can easily be
done as follows: to find how much of the
BASIC area has been used type:- as a direct
statement:

PRINT PEEK 23645 + 256* PEEK 23646
press ENTER

and the last address used will be printed on
the screen.

To find out how far you have progressed in
the SCOPE program area, type in as a direct
statement:

PRINT PEEK 60316 + 256* PEEK 60317
press ENTER
this will print to the screen the next
location where any SCOPE programs will be
written.

To find out how far you have progressed in
the SCOPE routine program area enter as a
direct statement

PRINT PEEK 60318 + 256* PEEK 60319

this will print to the screen the next
location where any SCOPE routines will be
written.

It is suggested to start off with that you
use 40000 for the SCOPE compiled program and
50000 for the SCOPE routines.

8

This word ORG must always be the first word
of any SCOPE program, and the word EXIT must
always be the last word to enable a successful
return to BASIC.

It is therefore recommended as good
practise to type the following 2 lines firs-t
when starting to write any SCOPE program.

10 REM Org;40000,50000:
200 REM Exit;

9

Syntax

There are certain simple rules about the
grammatical construction of SCOPE words. Any
transgression of these rules will be greeted
with the error report "Parameter Error". It
is therefore worthwhile spending a little time
talking about those rules:
1 All command words must be entered in BASIC

REM statements.
2 All words must be typed in full, BASIC

KEYWORDS cannot be used.
3 All command words must start with a capital

letter. All other letters should be in
lower case. The word should be typed
exactly as shown in the dictionary.

4 All command words must be followed immedi­
ately by a semi colon, there are no excep­
tions to this rule.

5 Any operands should be separated by a
comma.

6 To make structured programming easier only
one statement or word can be entered in a
line.

7 Apart from the words which have no operands
or text following them all words MUST end
in a colon.

10

Compiling and running
a SCOPE program

When a series of command words has been
written as a SCOPE program it has to be com­
piled into machine code and rewritten into the
SCOPE program area. To do this type as a
direct statement:

PRINT USR 60450

press ENTER

you will either receive an error report if you
have made a mistake or a number will appear in
the top lefthand corner of the screen. This
number is the next address for any further
SCOPE program. There is a very good reason
for this being the next rather than the last
memory location used.

You may wish to use SCOPE to write some
machine code routines which you wish to use
within a BASIC program. You will therefore
need to know the start number of each routine
so that you may use a USR call from BASIC.

Used in this fashion SCOPE is a unique
assembler using plain word mnemonics and

11

enables you to write powerful machine code
routines without any knowledge of the com­
plexities of machine code.

To run your program when it has been com­
piled you can use either of the following
direct statements - RAND USR 40000 (presuming
that you have organised to this address) or
LET X = USR 40000. If you have used the word
RND; in your SCOPE program always use the
second statement so that the random number
remains truly random.

Let us now look at the dictionary.

12

Dictionary

ADD

Format
Add; a B v a r a number:

What it does
Increases the Bvar; specified by the amount
specified.

Example
10 REM Add;A,25:

or
20 REM Add;C,50:

Special comments
Must only be used to increase a Bvar; not a
Var;

13

ATTR (attribute)

Format
Attr; a variable3 line number3 column number:

or or
a variable3 a variable:

What it does
It puts into the variable specified the value
of the colour attribute at the co-ordinates
specified.

Example
10 REM Attr;a,10,10:

or
20 REM Attr;a,b,c:

Special comments
The colour attribute number will be the paper
and ink number as in the colour table (see
colour section).

BDR (bolder)

Format
Bdr; a number:

or
a variable:

What it does
Changes the colour of the border. The colour

14

numbers are the paper only colours in the
range 0 to 7.

Example
10 REM Bdr;6:

or
20 REM Bdr;a:

BVAR (big variable)

Format
Bvar; a letter3 a number:

What it does
Tells the computer to note that until changed
the specified Bvar; will contain the specified
value.

Example
10 REM Bvar;A,25000:

or
20 REM Bvar;C,50000:

Special comments
A big variable can contain a number in the
range 0 to 65535. There are 52 possible Bvar;
totally separate from Var; but using once
again the letters A to Z or a to z.

15

CALL

Format
Call; a letter

What it does
Instructs the computer to jump to the instruc­
tions following the specified label in the
routine area, carry out the routine and then
return and carry on with the next statement.

Example
10 REM Call;A:

or
20 REM Call;C:

Special comments
This must only be used for labels in the
routine area.

CHG (change)

Format
Chg; a number:

or
a variable:

What it does
Changes the permanent paper and ink colours
and clears the screen.

16

Example
10 REM Chg;16:

or
20 REM Chg;a:

Special comments
The colour numbers are the combined paper and
ink colours - see section on colour.

DEC (decrease)

Format
Dec; a variable, a number:

What it does
Decreases the variable specified by the amount
specified.

Example
10 REM Dec;A,5:

or
20 REM Dec;C,10:

DRAW

Format
Draw; colour number,

+ a number, + a number:
or or or or
- a variable, - a variable:

17

What it does
Draws a line from the last pixel plotted in
the colour specified, the number of pixels
specified to the right if the sign is plus, or
left if the sign is minus, and the number of
pixels specified up if the sign is plus or
down if the sign is minus.

Example
(note: let us assume that Var; A = 50 and Var;
B = 50)

10 REM Plot;58,50,50:
20 REM Draw;58,+A,-B,

In effect this has drawn a line from co­
ordinate 50 , 50 to co-ordinates 100 , 0.

END

Format
End;

What it does
Tells the computer that a routine must end
here and that any following lines must be
written in the SCOPE program area.

FSCR (fine scroll)

Format
Fscr; a number:

18

What it does
Instructs the computer to scroll the whole
screen pixel by pixel in the direction
specified. The number following the word
indicates the direction and equates with the 4
cursor keys

5 = scroll left
6 = scroll down
7 = scroll up
8 = scroll right

Any other number will produce an error report.

Example
10 REM Fscr;5:

or
20 REM Fscr;7:

Special comments
It is worth remembering that Fscr; 5 :
immediately followed by FSCR; 6 : will give
you a left downward diagonal scroll.

EXIT

Format
Exit;

What it does
Ends a SCOPE program and returns the user to
BASIC.

19

GET

Format
Get; a variable:

What it does
Instructs the computer to put the code value
of the last key pressed on the keyboard into
the specified variable.

Example
10 REM Get;k

or
20 REM Get;K

Special comments
If no key has been pressed since the last time
that the keyboard was read no action is taken.
It is good programming practice to use the
Var; k or K as it is self-explanatory, (i.e. K
= keyboard).

HALT

Format
Halt; a number:

or
a variable:

What it does
Tells the computer to stop processing and
display the picture for n frames of the tele-

20

vision at 50 frames per second, n can have a
value between 1 and 255. 255 would give you a
delay of 5 seconds. Do not use 0 as that
means Halt; for ever.

Example
10 REM Halt;25:

or
20 REM Halt;5:

INC (increase)

Format
Inc; a variable3 a number:

What it does
Increases the variable specified by the amount
specified.

Example
10 REM Inc;A,5:

or
20 REM Inc;C,10:

JUMP

Format
Jump; a letter

What it does
Instructs the computer to jump to the

21

instructions following the specified label in
the program area.

Example
10 REM Jump;A:

or
10 REM Jump;C:

Special comments
This must not be used to jump to a label in a
routine, (the word Call; caters for that).

LABEL

Format
Label; a letter

What it does
Makes a note of the next address so that you
may jump to it later in the program.

Examples
10 REM Label;A:

or
10 REM Label;C:

Special comments
You have 52 labels available to you, 26 capi­
tal letters and 26 lower case. Labels can be
used either in the program area or the routine
area. No label of course can be used more
than once.

22

LIM (limit)

Format
Lim; a Bvar;, a number> a label:
What it does
A special word enabling you to jump to a label
specified when a Bvar; reaches a specified
value. For example if you are using a Bvar;
to register a score you may wish to jump to a
specified point in the program when the score
reaches a certain level.
Example

10 REM Lim;a,0,B:
or

20 REM Lim;C,50000,A:

MINUS

Format
Minus; a Bvars, a number:

What it does
Decreases the Bvar; specified by the amount
specified.

Example
10 REM Minus;A,100:

or
20 REM Minus;C,500:

23

Special comments
Must only be used to decrease a Bvar; not a
Var;

NOTE

Format
Note; text:

What it does
Tells the computer to ignore anything on that
line, the same as a BASIC REM statement.
Enables the user to make comments for his
guidance.

Example
10 REM Note; this is a square:

NUM (number)

Format
Num; colour number, a Bvar;, a line number, a
column number:

What it does
Prints the Bvar; specified in the colour
specified at the co-ordinates specified.

Example
10 REM Num;56,A,10,10:

or
20 REM Num;40,C,5,10:

24

ORG (organise)

Format
ORG;a number,a number:

What it does
Sets the address pointers for the SCOPE
program area and routine area, the first
number being the start of the SCOPE program
area, the second number being the start of the
SCOPE routine area.

Examples
10 REM Org;40000,50000:

or
10 REM Org;35000,45000:

OVER

Format
Over; number 0:

or
number 1:

What it does
Over; followed by 1 tells the computer to put
any future graphic display over the top of
what was there previously without obliterating
it. Over; followed by 0 restores things to
normal where anything printed obliterates
anything printed there before.

25

Example
10 REM Over;0:

or
20 REM Over;1:

Special comments
If the same character is printed twice this
has the effect of printing a blank space.

PLOT

Format
Plot;

colour number, line number, column number:
or or or

a variable, a variable, a variable:

What it does
This illuminates a single pixel on the screen
in the colour specified and at the co-ordi­
nates specified.

Example
10 REM Plot;6,100,100:

or
20 REM Plot;a,50,b:

or
30 REM Plot;a,b,C:

Special comments
See section on colour for details of colour
numbers.

26

PUT

Format
Put; colour number,

line number, column number, text:
or or

a variable, a variable:

What it does
Puts to the screen in the colours specified
and the co-ordinates specified the text
specified.

Example
10 REM Put;32,10,10,SCOPE:

or
20 REM Put;56,b,c,COMPUTER:

or
30 REM Put;7,b,10,LANGUAGE:

Special comments
See table in colour section for colour
numbers. Text may consist of any characters
including quotation marks. Except, of course,
a colon which will end a word.

RND (random)
Format
Rnd; a variable, a number, a number:

What it does
This puts into the variable specified, a

27

specified random number using the following
simple rules: the number will be between 0
and up to and including the first number
specified, plus the second number specified.

Example
10 REM Rnd;a,10,0:

(this will give a random number between
0 and 10)

20 REM Rnd;a,10,3:
(this will give a random number between
3 and 13)

30 REM Rnd;a,7,56:
(this will give a random number between
56 and 63)

ROUTINE

Format
Routine;

What it does
Tells the computer that any lines following
must be written in the routine area until it
encounters an END; statement.

SCR (scroll)

Format
Scr; a number:

or
a variable:

28

What it does
This scrolls a specified number of lines of
the display. The lines are counted from the
bottom. The range is from 3 to 24 where 24
scrolls the whole screen.

Example
10 REM Scr;24:

or
20 REM Scr;12:

or
30 REM Scr;a:

Special comments
Care must be taken to remain in the range of
numbers or the system will crash.

SOUND

Format
Sound; pitoh number, delay number:

or or
a variable, a variable:

What it does
Sounds the beeper at the specified pitch for
the specified time.

Example
10 REM Sound;10,10:

or
20 REM Sound;a,1:

29

Special comments
This word is not the same as BEEP in BASIC.
See sound table in section on sound for
details.

TEST

Format
Test; a test number, a variable, a number, a
label:

What it does
The most complex word in SCOPE. It compares a
specified variable with a specified number and
conditionally jumps to a specified label. The
condition is the first number in the word and
is known as the test number. The details of
the test numbers are given below.

Test number
194

202

210

218

196

The condition
Jump if the number tested is
not equal to the variable
tested
Jump if the number tested is
equal to the variable tested
Jump if the number tested is
greater than or equal to the
variable tested
Jump if the number tested is
less than the variable tested
Call the routine specified if
the number tested does not
equal the variable tested

30

204 Call the routine specified if
the number tested does equal
the variable tested

212 Call the routine specified if
the number tested is greater
than or equal to the variable
tested

220 Call the routine specified if
the number tested is less than
the variable tested

Example
10 REM Test;202,a,10,A

or
20 REM Test;220,a,10,A

Special comments
Note that 4 tests make a Jump to a label and
that 4 tests call a routine. If you should
attempt to jump to a routine instead of a call
you will either return to BASIC during the
program or the system might crash.

VAR (variable)

Format
Var; a letter, a number:

What it does
Tells the computer to note that until changed
the specified variable will contain the
specified value.

31

Example
10 REM Var;A,10:

or
20 REM Var;c,5:

Special comments
A variable can only contain an integer in the
range 0 to 255. For numbers above this see
word Bvar; . There are 52 possible variables
A to Z or a to z.

WIPE

Format
Wipe; a number:

or
a variable:

What it does
This clears a specified number of lines of the
screen display. The lines are counted from
the bottom. The numbers used must be in the
range 1 to 24 where 24 wipes the whole screen.

Example
10 REM Wipe;1:

or
20 REM Wipe;24:

or
30 REM Wipe;a:

Special comments
Care must be taken to remain in the range of
numbers or the system will crash.

32

Handling colour with SCOPE

As you will know from your BASIC manual
colours are designated by the numbers 0 to 7
used in separate paper and ink statements.

In SCOPE the paper and ink colour and the
instructions for bright and flash are all
contained in a single colour number. This
colour number is calculated as follows:
Multiply the paper number (0 to 7) by 8 and
add to the ink number (0 to 7). Then if
bright is required add 64 and if flash is
required add 128. The table below shows the
paper and ink combinations to which must be
added 64 for bright, 128 for flash or 192 for
both bright and flash.

33

Co
lo

ur
 T

ab
le

34

No
te
:

Th
er
e

is
 o

ne
 w

or
d

Bd
r;
 i

n
wh

ic
h

th
e

co
lo
ur
 n

um
be

r
mu

st
 b

e
in

th
e

ra
ng
e

0
to
 7
.

IN
K

Bl
ac
k

Bl
ue

Re
d

Ma
ge

nt
a

Gr
ee

n
Cy
an

Ye

ll
ow

Wh

it
e

PA
PE

R
Bl

ac
k

0
1

2

3
4

5
6

7

Bl
ue

8
9

10

11

12

13

14

15
Re
d

16

17

18

19

20

21

22

23
Ma

ge
nt

a
24

25

26

27

28

29

30

31
Gr

ee
n

32

33

34

35

36

37

38

39
Cy
an

40

41

42

43

44

45

46

47
Ye

ll
ow

48

49

50

51

52

53

54

55
Wh

it
e

56

57

58

59

60

61

62

63

Handling sound with SCOPE

We have deliberately used the word sound as
distinct from the BASIC word BEEP because it
is used to make a sound as distinct from a
musical note. Because of its speed SCOPE can
handle repetitive sound statements and produce
results where the pitch of the note alters so
quickly that it produces a glissando sound.

The command word Sound; should not be used
to attempt to write musical sequences, it is
really intended for production of action type
sounds.

The following table gives an indication of
what note will be obtained by a particular
pitch number and the delay numbers which you
should use with the pitch number chosen.

Do not use delay numbers outside of the
range given or you could find yourself waiting
a quarter of an hour for the sound to finish.

35

Sound Table

Pitch No. Sound Octave Delay Numbers

225 C - 2 1 - 10
127 C - 1 1 - 20
63 Middle C 1 - 40
31 C + 1 1 - 80
15 C + 2 1 - 160
7 C + 3 1 - 255

Note: The higher the pitch number the lower
the sound. The higher the delay number the
longer the sound.

36

Examples of the use of
SCOPE words

We have already established that a program
must start with Org; and end with Exit; .

We will now give some examples of how to
program with SCOPE. We recommend that you
type these in and try them for yourself. Do
not forget; when you have typed in the program
enter as a direct statement PRINT USR 6045Cf
and press ENTER to compile it and type RAND
USR 40000 and enter to run it.

The use of sound

10 REM Org ;40000,50000:
15 REM Var;a,1:
20 REM Label;A:
25 REM Sound;a,l:
30 REM Inc;a,1:
35 REM Test;194,a,95,A:
200 REM Exit;

This will give a laser type sound. In plain
English this program means:- Arrange to
compile the program starting at address 40000
and any routines starting at address 50000.

37

Set the variable named a to the value 1. Note
the address after the label and store it in
the label called A. Make a sound with the
pitch at the value of a and the duration of 1.
Increase the value of the variable a by 1.
Test whether the value of variable a has
reached 95, and if it has not, jump back to
make another sound. When the value of variable
a is 95 then stop and return to BASIC.

Unlock your imagination, try making some
sounds of your own. You could for instance,
by adding to the above program, make 2 sounds
one sliding upwards and the other sliding
downwards concurrently.

Lets try it: Add to the above program:

17 REM Var;b,63:
26 REM Sound;b,l:
28 REM Dec;b,l:

38

Putting characters to
the screen

Type in the following:-

10 REM Org;40000,50000:
15 REM Var;a,0:
20 REM Routine;
25 REM Label;A:
30 REM Put;59,10,a,"SCOPE":
35 REM End;
40 REM Call;A:
200 REM Exit;

Experiment with different characters, words
and positions on the screen. You will want to
move characters. Add the following lines to
the above program:

36 REM Label;B:
38 REM Over;0:
45 REM Halt;3:
50 REM Over; 1:
55 REM Call;A:
60 REM Inc;a,1:
70 REM Test;194,a,30,B:

39

Now compile and run it.

Animation is also quite easy to do, the fol­
lowing program, although very simple shows the
ability to animate in colour:

10 REM Org;40000,50000:
15 REM Var;a,0:
20 REM Routine;
25 REM Label;A:
30 REM Put;49,10,a, %
31 REM Halt;3:
32 REM Put;59,10,a, fiH33 REM Halt;3:
34 REM Put;57,10,a, :
35 REM End;
36 REM Label;B:
40 REM Call;A:
45 REM Halt;1:
60 REM Inc;a,1:
65 REM Test;194,a,24 >B:
70 REM Call;A:

200 REM Exit;

(2 spaces)

40

Plotting and drawing

Enter the following program which is a simple
repetitive plot instruction:

10 REM Org;40000,50000:
15 REM Var;a,0:
20 REM Label;A:
25 REM Plot;58,a,a:
30 REM Inc;a,l:
35 REM Test;194,a,174,A:
40 REM Exit;

Now substitute the following line:
25 REM Plot;58,a,1:

Now compile and run it again.
To draw properly, however, add the following:

12 REM Var;b,174:
28 REM Draw;58,+b,+b:

Now compile and run it again.
Now try this:

10 REM Org;40000,50000:
15 REM Bdr;0:

41

20 REM Chg;0:
22 REM Var;d,100:
25 REM Var;a,5:
30 REM Var;b,0:
35 REM Routine;
40 REM Label;A:
45 REM Note;SQUARE:
50 REM Plot;6,d,50:
55 REM Draw;5,+a,+b:
60 REM Draw;4,+b,-a:
65 REM Draw;3,-a,+b:
70 REM Draw;2,+b,+a:
75 REM End;
80 REM Call;A:
85 REM Halt;100:
200 REM Exit;

This will give you a square with each side a
different colour. The size is dictated by
variable a . Simply by altering that variable
and the plot position you can draw different
size squares at different positions.

42

Handling and printing
numbers

In this example we show how to set an
initial score at 25000, increase it by 25, and
when it reaches 27000 return to BASIC.

10 REM Org;40000,50000:
15 REM Bvar;a,25000:
20 REM Label;B:
25 REM Put;49,10,A,SCORE:
30 REM Num;49,a,10,10:
35 REM Lim;a,27000,C:
40 REM Add;a,25:
45 REM Halt;3:
50 REM Jump;B:
55 REM Label;C:
200 REM Exit;

43

Moving the whole display

Scr; can only move upwards.
Type in the following:

10 REM Org;40000,50000:
15 REM Label;A:
20 REM Put;56,21,10,
25 REM Scr;24: _______
30 REM Put; 56,21,10, B 1 | | | # 1 I
35 REM Scr;24:
40 REM Var;k,0:
45 REM Get;k:
50 REM Test;194,k,110,A:
200 REM Exit;

Now compile and run. To stop this PRESS the
key N (the code for N is 110 see line 50).
Fscr; can move the whole display pixel by
pixel up, down, left or right.
Type in the following:

10 REM Org;40000,50000:
15 REM Put;56,21,0,SCOPE:
20 REM Label;A:
25 REM Fscr;7:
30 REM Fscr;8:

44

35 REM Var;K,0:
40 REM Get;K:
45 REM Test;194,k,110,A:
200 REM Exit;

This will print the word SCOPE in the bottom
lefthand corner and it will glide diagonally
up and to the right until it vanishes off the
screen. To stop press N.

All of the examples you have just tried are
very simple and are intended to show you the
use of SCOPE words.

45

Structured programming
with SCOPE

SCOPE gives you the ability to write your
programs in small separate sections. You can
test each section as you go and build up other
sections which will use the original sections
until perhaps one routine puts into motion the
whole program.

Let us examine how this is done. We will
pretend that you wish to write a very simple
game in which an alien spaceship passes across
the screen. You have a moveable gun which
appears at the bottom of the screen which can
fire at the alien.

In logical terms the program could be
written as follows:

ROUTINE A
Prints Alien at
specific position on
screen and erases last print
ROUTINE B
Prints gun at
specified position
on screen and erases last print

46

ROUTINE C
Prints missile
at specified position
on screen and erases last print

We now have the three main routines.
Now follow the operating routines:

ROUTINE D
Test if Key A pressed
if so update position and call
Routine B
ROUTINE E
Test if Key B pressed
if so update position and call
Routine C

ROUTINE F
CALL ROUTINE D
CALL ROUTINE E

The final program is now a simple loop.
LABEL G
CALL F
JUMP G

We have deliberately not written this as a
program. As an exercise we suggest you write
it yourself.

This is obviously a simplistic example but
we hope it shows clearly how programs can be
built up.

47

Computer Graphics Language
ISP Marketing l tci Crown House 381) High Street Godaiming Surrey

