
ZX Spectrum

Sinclair Logo 1
Turtle Graphics

by Ellen Sparer
and the editorial staff of SOLI/LCSI

This edition first published in 1984 by

Sinclair Research Ltd
25 Willis Road Cambridge CB1 2AQ England
ISBN 185016 018 X

Program and Documentation: © Copyright Logo Computer Systems Inc, 1983
© Copyright Les Systems d'Ordinateur Logo

International, 1983
Packaging: © Copyright Sinclair Research Ltd, 1984
Cover Illustration: © Copy right Dave Eaton, Young Artists, 1984

SINCLAIR and ZX SPECTRUM are Trade Marks of Sinclair Research Ltd.
LOGO is a Trade Mark of Logo Systems Inc.

All rights reserved. No part of the LOGO program or documentation may be
reproduced in any form, either in whole or in part, without the specific written
permission of either Logo Computer Systems Inc or Les Systems d'Ordinateur Logo
International. Unauthorised hiring, lending or sale and repurchase prohibited.

Production supervised by Business Literature Services Ltd;
Typeset by Goodfellow & Egan Ltd;
French's Mill, French's Road, Cambridge CB4 3NP

Printed in England by Staples Printers St Albans Limited at The Priory Press.

Contents
Chapter 1

Chapter 2

Chapter 2

Chapter 2

Logo on the ZX Spectrum
Introduction
What you need to start
The keyboard

Let's draw
Introduction
Changing the turtle's state
Snags
Sinclair Logo vocabulary

BACK BK
CLEARSCREEN CS
FORWARD FD
LEFT LT
RIGHT RT
SHOWTURTLE ST

A first procedure
Teach the turtle to draw a square
Snags
Sinclair Logo vocabulary

TO
END
ERASE

1
1
3

5
5
7

9
11

TEXTSCREEN, PRINT and REPEAT
Textscreen 13
Clearing the textscreen 14
The REPEAT command 14
Special keys 15
Sinclair Logo vocabulary

CLEARTEXT CT
PRINT PR
REPEAT
TEXTSCREEN TS

Chapter 5

Chapter 6

Chapter 7

Chapter 8

The Sinclair Logo Editor
Introduction 17
EDIT 17
SETSCRUNCH 19
Building on your procedures 20
Special keys 22
Sinclair Logo vocabulary

EDIT ED
HIDETURTLE HT
SETSCRUNCH SETSCR

Saving and retrieving your work
Introduction 23
Saving your work on cassette 23
Retrieving your work 24
Sinclair Logo vocabulary
LOAD "filename
SAVE "filename "procedurename(s)

The turtle's pen and colour
Introduction
Pen commands 24
Using Sinclair Logo colour graphics 25
Snags 27
Sinclair Logo vocabulary 30

BACKGROUND BG
PENCOLOUR PC
PENDOWN PD
PENERASE PE
PENREVERSE PX
PENUP PU
SETBORDER SETBR
SETPC
SETBG
WAIT

A second look at editing procedures
Introduction 31
Entering the Editor 31
Leaving the Editor 32
Summary of editing keys 33
Editing outside the Editor 33

Chapter 9 Your workspace
Introduction
Printing out procedures 35
Erasing from the workspace 35
Saving your work on the printer 36
Sinclair Logo vocabulary

COPYSCREEN
ERASE ER
ERPS
PO
POPS
POTS
PRINTOFF
PRINTON

36

Chapter 10 A first project: Drawing a garden
Introduction 39
1 House 39
2 Two trees 41
3 Lawn 41
4 Sun 42
Garden 42

Chapter 11 Simple turtle geometry
Polygons 43
Circles 44

Chapter 12 Introducing variables
Introduction 45
Big squares and small squares 45
Some procedures using squares 47
Snags 48

Chapter 13 Numbers and arithmetic
Infix and prefix 49
Sinclair Logo numbers
Sinclair Logo vocabulary

/ division
* multiplication

subtraction
+ addition

50

DIV
PRODUCT
SUM

Chapter 14 The turtle's field
Introduction 51
WRAP, FENCE and WINDOW 53
Using position to draw 54
Sinclair Logo vocabulary

FENCE
HEADING
POS
SETH
SETPOS
WINDOW
WRAP
XCOR
YCOR

Chapter 15 Assigning values to variables
Introduction 57
Using MAKE to draw 57

Chapter 16 More circles and arcs
Circles 59
The radius 60
Arcs 61

Chapter 17 Exploring polygons and spirals
Polygons 65
Spirals 67

Chapter 18 Exploring recursive procedures
Introduction 71
Stopping recursive procedures 71
Sinclair Logo vocabulary

BUTFIRST
FIRST
IF
STOP

Chapter 19 A game project
Creating a game 75
Making a key into a game button 76
Expanding the game project 77
Tailpiece 80

Neither the authors nor the publishers can be held liable for any direct,
indirect, incidental or consequential damages relating to the use of the
LOGO program and documentation.

While every effort has been made to ensure the accuracy of the LOGO
program and documentation, the authors and publishers cannot be held
responsible for any error which may occur.

The authors and publishers reserve the right to change the LOGO manuals,
glossary and software at any time and without notice.

Les Systems d'Ordinateur Logo Computer Systems Inc
Logo International LCSI Inc
SO LI I ntl 9960 Cote De Lisse
33 de Poissy Lachine Quebec
75005 Paris CANADA H8T 1 A1
FRANCE

Howto connect your ZXSpectrum

Chapter 1
Logo on the ZX Spectrum
INTRODUCTION
Welcome to Logo, a computer language which enables you to use your
computer to:

Draw
Write
Play games
Calculate.

This manual will teach you to do all these things.
Unlike languages such as English or French, Logo does not have many

words or grammatical rules. However, there are a number of words - called
primitive procedures (primitives for short) - which Logo understands. These
primitives allow you to program your Spectrum in a number of ways. You can
write programs which draw, or which manipulate words and lists.

However, you can also extend Logo's vocabulary. You can take the
primitive procedures which exist and use them to build new procedures. You
can then use your new procedures to build even more complex programs.

This manual concentrates on programs which produce computer
graphics, i.e., pictures on the computer screen. Computer graphics allow you
to see clearly what you are doing as you are doing it, and are therefore a
good introduction to programming.

This manual is not a complete user's guide, but it does enable you to start
programming and to edit your programs, and to save and retrieve your work.
For more advanced Logo you should refer to Sinclair Logo2 - Programming
Reference Manual.

You may run into problems as you work through this book, so we have
included some sections called Snags, which suggest how to solve them.

WHAT YOU NEED TO START
To use Sinclair Logo you'll need four things:

1 A 48K Sinclair Spectrum computer and power supply;
2 A television or monitor;
3 A cassette player;
4 A Logo language cassette.

Connect the equipment as shown in the diagram.

Switch on the television set and turn the volume right down. Adjust the
tuning until the message:

© 1 9 3 2 S i n c l a i r R e s e a r c h Ltd
appears on the screen.

Put the Logo cassette into the tape recorder and set the volume control to
Just over half way.

Press the J key on the Spectrum. The word LOAD will appear on the
television screen. Hold down the SYMBOL SHIFT key and the P key
twice. The message on the screen will now read LOAD “

If you have made a mistake typing the loading instructions in you can
delete an incorrect letter or word by holding down the CAPS SHIFT key and
pressing the 0 key.

Press ENTER key. The message will disappear, and your Spectrum is
Now ready to be loaded with Logo.

Press the 'Play' on your tape recorder. After a few seconds you will
See a pattern of rapidly moving horizontal lines around the edge of the
Screen. This means that the program is loading.

If this doesn’t happen, rewind the tape and adjust the tape recorder
volume a little. Unplug the 9V DC plug from the back of the Spectrum to
Clear its memory; then plug it back in. The Sinclair message will reappear, and
You can start the loading procedure again. When loading has finished, the
following message will appear on your screen:

U E L C O M E TO S I N C L A I R L O G O © LOS I —SO L I 1984-
This means that Logo is loaded, and you can switch off your tape
recorder.

If the 'Welcome' message does not appear on your screen, rewind the
tape and start the loading procedure again making sure that you have carried
out each step correctly. The Spectrum Introduction Manual gives detailed
instructions.

The copyright notice on the screen:

LO S I -SOL I 1984-
means that the program cannot legally be copied.

Logo uses the ? sign as a prompt. The small flashing rectangle is called the
cursor. It moves along the line as you type. Think of it as the point of a pencil;
it tells you where Logo is going to write the next character. The cursor shows
that Logo is ready and waiting to receive your instructions, a state known as
top level in Logo’s language

THE KEYBOARD

The keyboard is fully described in the manuals accompanying your ZX
Spectrum. However, the following notes will help you with your introduction
to Logo.

BREAK/SPACE The BREAK/SPACE key leaves a blank space.

ENTER The ENTER key tells Logo to execute, or carry
out, any instructions you have written and
returns the cursor to the beginning of the next
line.
The ENTER key must be pressed each time
you finish typing a Logo instruction. A Logo
instruction begins with the prompt ? and may

contain up to 250 characters - thus occupying
many screen lines.

SYS SYS is our abbreviation for the SYMBOL
SHIFT key.

for example: Pressing the SYS and P keys at the same time
will produce

CAPS CAPS is our abbreviation for the CAPS SHIFT
key.
Pressing CAPS and the letter keys will produce
upper case (capital) letters.

C MODE Pressing CAPS and 2 will lock the keyboard in
upper case mode - C MODE.

L MODE Pressing CAPS a second time will return you
to lower case - L MODE.

Delete If you press CAPS and 0 at the same time,
Logo will delete one character to the left.

If you press CAPS and 5 at the same time,
Logo will move the cursor one character to
the left- but will not delete anything.

- a . If you press CAPS and 6 at the same time in
EDIT mode (Chapter 5), Logo will move the
cursor one line down.

-LT

EMODE

If you press CAPS and 7 at the same time in
EDIT mode (Chapter 5), Logo will move the
cursor one line up.

If you press CAPS and 8 at the same time,
Logo will move the cursor one character to
the right.

When you press CAPS and SYS at the same
time, you will see an E in the lower left hand
corner of your screen. E MODE allows you to
use the characters printed in red underneath
each key. You must hold the SYS key down
when pressing the third key indicated.

Chapter 2
Top of the Document
Let's draw
INTRODUCTION

The best way to learn Logo is to experiment!

Let's begin programming by learning to draw designs. We will learn to draw
by driving a turtle, a small animal which 'lives' on the screen. Some Logo
turtles are robots which move about the floor on wheels, attached to the
computer by a cable. Our graphics turtle appears as a small triangle on the
screen. There are many instructions, or commands, you can give the turtle. In
this chapter we will introduce you to some of the most important. Type:

?SHOWTURTLE (press ENTER)

Every time you give a command related to the turtle, your screen will split
into two parts. There will be two lines at the bottom where you write your
commands; the rest of the screen is the field over which the turtle can move.

Notice that the shape of the turtle tells you both its position and its
heading (\n which direction it is pointing). The position and heading are
known as the turtle's state.

CHANGING THE TURTLE'S STATE

We will now look at some of the instructions or commands for changing the
turtle's state. Many of them have abbreviations to make it simpler and
quicker to type them in. We will show these abbreviations as we introduce
new commands.

We give specific examples, such as FORWARD 50, but you should
experiment with different figures as you work though the text so that you
become familiar with the effects of the commands. You may type in upper or
lowercase characters (large or small letters), although Logo will interpret
them in upper case.

Remember that you have to press the ENTER key to make Logo execute
your commands.

?FORWARD 50 FD 50

FORWARD is a command, which needs an input: information, which tells
Logo how to carry out the command. In these examples, the input is a
number. You may, of course, choose almost any input you like for Logo

commands - Logo will tell you if the input is not acceptable
The space between the command and the input is very important

Because Logo distinguishes between the command FORWARD 50 and the
word FORWARD50. On the other hand, if you leave extra spaces between
commands and their inputs, Logo will ignore them

Notice that the turtle has changed its position, but not its heading the
direction in which it is pointing.

?RIGHT 90 TR 90

To change the turtle's heading, ask it to turn RIGHT (RT), or LEFT (LT),
followed by the number of angular degrees through which you want it to

Notice that, in this example, the turtle changes its heading but not its
position.

?BACK 50 BK 50

BACK, like FORWARD, tells the turtle to change its position but not its
heading. BACK tells the turtle to back away from its current position.

?LEFT 45 LT 45

The turtle turns 45° left of where it had been heading; it does not change its
Position. You can perhaps see what has happened more clearly if you now
ask the turtle to move FORWARD 25.

? CLEARS CREEN CS

If you wish to clear the screen and start again, give the command
CLEARSCREEN. It erases all the lines the turtle has drawn and returns the
turtle to its original central position, facing towards the top of the screen.

SNAGS
You may run into snags when using your Sinclair Logo. The turtle may not do
what you expect. Often, this will be caused by typing errors. In computer
jargon, an error is known as a bug.

The most common bug for beginners is forgetting the space between the
command and the input. For example, FORWARD 50 is a Logo instruction.
FORWARD50 is a word you might define yourself but probably haven't at
this point.

The difference between the two instructions is merely a space between
words. The difference between FRWARD and FORWARD is merely 0, but
for Logo, it is the difference between its being able to execute an action, and
sending you a message.

If you type:

? FORWARD5 0
Logo will return a message:

I d o n ' t K n o w h o w t o F O R U R R D 5 0

Such messages are Logo's way of telling you that it has run into a snag, but it
will try to tell you what the snag is. If the message is more than one screen
line long, Logo will stop printing at the end of the line and a flashing arrow
will appear. Press ENTER to see the next line, and continue until you have
read the whole message.

Chapter 3
A first procedure
TEACH THE TURTLE TO DRAW A SQUARE

There are certain words Logo automatically understands. These words, such
as FORWARD, RIGHT etc, are the primitive procedures. From the moment
your Logo is loaded, it will understand FD 50, but the word SQUARE, for
example, will mean nothing to it.

However, Logo can be taught to understand new procedures. For
example, you can give SQUARE a meaning by combining instructions so that
Logo knows how to SQUARE. You may call a procedure by any name,
provided that it is not the name of a primitive procedure.

Using the commands FORWARD and RIGHT, we can make the turtle
draw a square.

?FD 30

?RT 90

?FD 30

?RT 90

We chose 30, as an input to FD for our example, but we could have chosen
any other number. The angle has to be 90, or the shape won't be square!

Before you define a new procedure, you should first choose its name. We
might as well call the procedure for drawing a square SQUARE. You use the
instruction TO to signal to Logo that you will be defining a procedure; then
you write the name of the procedure on the same line.

?FD 30

?RT 90

?FD 30

?RT 90

?T0 SQUARE
Then tell Logo what you want the procedure to do.

>FD 30 RT 90
>FD 30 RT 90
>FD 30 RT 90
>FD 30 RT 90
>END

Logo uses the > instead of the ? as a prompt while you are defining a
procedure. This is to remind you that Logo is not executing your commands,
but remembering them. The word END - typed on a line of its own - signals
to Logo that you have finished defining the procedure. Logo will now return:

SQUARE defined means that Logo now knows how to SQUARE, i.e., to carry
out all the instructions contained under the name SQUARE.

The prompt ? shows that Logo is ready to accept new instructions.
Now let's ask Logo to SQUARE.

SNAGS

Suppose SQUARE does not work. Perhaps you have made a typing error.
Soon, you will learn to edit your procedures so that you can change parts
which do not work, or which you do not like.

In the meantime, you can erase your procedure by typing:

7ERASE "SQUARE
If you now ask Logo to:

?SQUARE

SQUARE defined

?SQUARE

a Logo message appears:

I d o n ' t K n o w h o w t o

Now rewrite your SQUARE procedure.

S Q U A R E

Chapter 4
TEXTSCREEN, PRINT and REPEAT
TEXTSCREEN

If you have been drawing with your Logo turtle, the command TEXTSCREEN
(TS) will make 22 lines of the screen available for text. The cursor is at the top
left hand corner.

Try typing the following:

?print [h o w ar e y o u?] (press SYS Y for the [)
h o w ar e y o u? (press SYS U for the])
?

Don't forget to leave a space between PRINT and the input.
Suppose you made an error and typed:

?PRINT [HW RE YOU?]
DO NOT press the ENTER key; press the DELETE (CAPS 0) key until your
screen shows:

?PRINT [H
and then retype the rest of the line.

?PRINT CHOW ARE YOU?]
HOW ARE YOU?

The DELETE key (CAPS 0) is one of many editing facilities that Logo offers
you, enabling you to change what you have typed without rewriting the
entire instruction. You will meet more editing keys in the next chapter.

You can experiment with Logo printing by typing PRINT, and enclosing
the sentence to be printed in square brackets [] .

You can also ask Logo to print single words by using ".

?print "he ll o (press SYS P for the " sign)
HELLO

CLEARING THE TEXTSCREEN
The command CLEARTEXT (CT) tells Logo to clear the screen of text, and
puts the cursor at the top of the screen.

If you are in graphics mode, the command CT will erase what is written on
the two lines used for text. You remain in graphics mode with the cursor on
the first of the two lines.

Let's write a procedure using PRINT.

?TO GREET
>SHOWTURTLE
>PRINT [HI THERE]
>END
GREET defined
?GREET

The REPEAT command
You can use the command repeat to tell Logo to REPEAT an instruction, for
example:

?REPEAT 4 [GREET]

You can ask Logo to repeat something many, many times, and then stop it in
the middle.
For example:

?TH
?REPEAT 100 [PR [I AM THE GREATEST]]

If you press the CAPS and BREAK/SPACE keys simultaneously before Logo
has finished executing the procedure, it will send you a message:

STOPPED !!!

SPECIAL KEYS

SYS P
CAPS BREAK/SPACE
CAPSO
SYS Y
SYS U

STOPPED!!!
deletes
[
]

?

Chapter 5
The Sinclair Logo Editor
INTRODUCTION

While you are writing a procedure, you may wish to modify a previous line;
after you have tried running it, you may want to change or rewrite it.

The Sinclair Logo Editor allows you to move the cursor anywhere on the
screen within a program, so that you can easily erase, move or insert
characters. This is known as a fullscreen editor.

Note that, when you use the editor you will lose whatever is on your
screen; your turtle graphics, or text, will be replaced by the editing screen.

EDIT
EDIT (ED) followed by the name of a procedure tells Logo that you want to
edit that procedure. You must put a " (quote mark) before the name; do not
leave a space between th e " and the name.

NOTE: the name of a procedure may not include spaces, but may include
numbers. You may choose any name you like as long as it is not the name of
a primitive, or a name already given to another procedure.

Is your procedure SQUARE still in the computer? If so, type

?EDIT "SQUARE
TO SQUARE
FD 30 RT 90
FD 30 RT 90
FD 30 RT 90
FD 30 RT 90
END

When a procedure is already defined, Logo reprints the entire definition.
The cursor is at the beginning of the top line.
There is no prompt symbol when in the Editor.

L O G O E D I T O R C O 5 0 L I / L C 5 I
appears at the bottom of the screen.

To leave the Editor without having made any modifications to your
procedures, type CAPS BREAK/SPACE.

You may also use the Logo Editor to write a new procedure. The
advantage of this is that you may make any corrections or modifications you
like while defining the procedure.

?edit "sq u a r el Logo enters the Editor and prints

TO SQUARE1
You may now type the instructions which make up SQUARE1.

FD 40 RT 90 FD 40 RT
FD 40 RT 90
FD 40 RT 90
END

To move back, type <=■ (CAPS 5)

To move forward, type ■=> (CAPS 8)

To move up, type (CAPS 7)

To move down, type n (CAPS 6)

When the cursor passes over characters, they remain unchanged.
To erase one character left of the cursor, type DELETE (CAPS 0).

Note that typing CAPS 0 at the beginning of the line will move the next line
of text to the end of the previous line, for example:

FD 40
RT 90

FD 40 RT 90
Leave the cursor where it is, and press ENTER to separate the line again.

When you have finished editing, type END and press E MODE, followed
by C; Logo will tell you:

SQUARE1 defined

Note that entering CAPS BREAK/SPACE causes Logo to forget all the work
you have done in this session of the Editor.

Try your new command; type:

?sq u a r el

If you type SQUARE1 again, the turtle will retrace its path. Using the REPEAT
procedure we met earlier, we can tell Logo:

?REPEAT 8 [SQUARE1 RT 45]

Let's make a procedure for this design, and call it SQUARESTAR. We can do
this using the EDIT command.

?EDIT "SQUARESTAR
TO SQUARESTAR
REPEAT 8 [SQUARE1 RT 45]
END

Don't forget to press E MODE C when you finish editing. Let's try our new
procedure; put the turtle in its original position at the centre of the screen.

?cs
?SQUARESTAR

If you don't want to see the turtle, you can type

7HIDETURTLE
or its abbreviation HT.

SHOWTURTLE (ST) makes the turtle visible again.

SETSCRUNCH
If your squares look like rectangles, the problem may lie in your television or
monitor, and not in Logo. The Logo command SETSCRUNCH allows you to
change the aspect ratio (the ratio of one vertical turtle step to one horizontal
turtle step) on the screen. Try:

then:

?CS SQUARESTAR

One turtle step on the y-axis will be twice as long as one turtle step on the
x-axis.

Try other settings to vary your designs. SETSCRUNCH parameters are set
in multiples of 100.

Your normal Logo screen should be SCRUNCH [100100]. Try different
settings until you are satisfied with the results.

Although you may write to Logo in either upper or lower case letters,
Logo will, in most cases, transform the lower case to upper case. However,
Logo will keep the lower case letters for instructions within a list, which
follows a : (colon) and in some cases a " (quote mark).

For example:

?to smile
>pr [pr "joke]
>end
SMILE defined
?edit "smile
TO SMILE
PR [pr "joke3
END

7SETSCR [50 100]

NOTE
If you type EDIT without an input, Logo will give you the last procedure you
edited.

BUILDING ON YOUR PROCEDURES
Once you have defined a procedure, it has the same status and behaviour as
a primitive procedure. Even if you press ENTER or CS, Logo will retain its
knowledge of the procedures you have defined.

Moreover, once you have defined a procedure, you may use it as you
would any Logo primitive procedure, such as BK, RT, etc. A procedure you
define may therefore be used as part of other procedures; this is one of
Logo's powerful features.

FLAG, CROSS, FLAGBACK, FLAGS, MANYFLAGS
Let's look at some designs which can use SQUARE 1.

?TO FLAG
>FD 30
>SQUARE
>END
FLAG defined
?FLAG

?TO CROSS
>REPEAT 4 [FLAG RT 90]
>END
CROSS defined
7CROSS

?TO FLAGBACK
>FLAG
>BK 30
>END
FLAGBACK defined
?TO FLAGS
>REPEAT 4 [FLAGBACK RT 903
>END
FLAGS de-fined
?FLAGS

?T0 MANYFLAGS
>FLAGS
>RT 45
>FLAGS
>END
MANYFLAGS defined
?MANYFLAGS

Both FLAG and FLAGBACK make the turtle draw the same design but they
leave the turtle in different states. Both procedures leave the turtle with the
same heading, but FLAG leaves the turtle in a different Position.

FLAGBACK leaves the turtle in the same position on the screen as it
Started in. We can see the effects of these differences in CROSS and FLAGS.
CROSS runs FLAGS four times, while FLAGS runs FLAGBACK four times.

If you turn your computer off now, you will lose all the procedures you
have written - not to mention Logo itself. In the next chapter, we will

describe how you can save your procedures.

SPECIAL KEYS

(CAPS 5) <=■

(CAPS 6)

(CAPS 7) D

(CAPS 8) >=>

(CAPS O)
E MODE C
CAPS BREAK/SPACE

delete

Chapter 6
Saving and retrieving your work
INTRODUCTION
While you are programming in Sinclair Logo, your Spectrum remembers all
the procedures you have taught it. Unfortunately, when you turn the
machine off, it 'forgets'.

When you define procedures, Logo puts them in your workspace-t he
space in the computer memory that lasts only while the computer is on.

However, you may save the procedures you have written on a cassette
tape. You can do this at any time during a Logo session using the command
SAVE, and retrieve them later using the command LOAD. If you don't save
your work, everything you have done will be destroyed when you turn the
machine off.

Information is organised into files. You give the file a name and decide
how many of your procedures - from one to all of them - you want to put
into the file with that name.
Then you can name another file for more procedures, and so on.

SAVING YOUR WORK ON CASSETTE
Any cassette recorder with an input socket for use with a microphone will do.
It is useful if it has a tape counter, but this is not essential. Look at the
diagram at the front of the book. Before trying to save your work, you should
remove the EAR - EAR connection and connect MIC - MIC. If you have any
problems, see your Introduction to the Sinclair Spectrum.

When you are using cassette Logo, everything in your workspace at the
time can be saved on one cassette. The first time you create a file of your
workspace, insert a blank cassette into the tape recorder, rewind the tape to
the beginning of the magnetic part (not the leader), and set the counter to
000. Next type:

?SAVE "MYFILE "SQUARE1

You may give your file any name you like, as long as it has no more than
seven characters. The filename must be preceded by a " (quote mark), and
followed by the name of the procedure to be saved, also preceded by a

You may save more than one procedure in a file by using brackets. For
example:

?SAVE "MYFILE [SQUARE1 GREET]

Pull out the 'ear' jack from the ZX Spectrum.

Set the tape recorder by simultaneously pressing PLAY, RECORD and
PAUSE. Type in the SAVE message and press ENTER. Logo will then tell you
to press any key and start the tape; do so. While Logo is recording, the screen
flashes. When it finishes flashing, stop the tape; Logo will have saved the
procedures you have named.

When saving is complete, the prompt and cursor reappear on the screen,
and you can turn the computer off.

The same side of your cassette can be used to save several different files.
It's a good idea to keep a written record describing each file; write down

the beginning and end counter number each time you save. Advance the
tape recorder approximately 10 counts before saving the contents of another
workspace.

RETRIEVING YOUR WORK
Set up your Spectrum, and load Logo. (Don't forget to make sure that the
tape recorder is connected for loading, rather than saving.) Prepare your
tape, by setting it and the counter of your recorder to the number of the file
that you want to retrieve. Then type:

?LOAD "MYFILE
(or whatever the name of the file is).

Replace the 'ear' jack if it is out; don't forget to press ENTER on your
Spectrum, and start the tape.

Logo will print the name of the file it is loading followed by LOG.
While loading, your screen flashes. When the file is loaded, Logo will tell

you that the procedures are defined, for example:

?LOAD "MYFILE
MYFILE LOG

(screen flashes)

SQUARE1 DEFINED
GREET DEFINED
?

Everything you saved in MYFILE will be loaded back into your workspace. The
prompt and cursor reappear on the computer screen when the loading is
complete.

Careful: If you give the same filename to two or more files, Logo will replace
the older one with the more recent. So, for example, if you wish to have more
procedures in MYFILE, load "MYFILE, and then save it again, containing your
new selection of procedures.

Chapter 7
The turtle's pen and colour
INTRODUCTION
The turtle leaves a trace whenever you give it a graphics command: it has a
pen with which it can draw. If you want the turtle to move without leaving a
trace, you can ask it to lift its pen. You can also change the colour of the trace
by changing the colour of the pen, the colour of the background, and the
colour of the border. This chapter tells you how to use the pen and the colour
graphics.

PEN COMMANDS
To lift the turtle's pen, type:

7PENUP (PU)

To make the turtle draw again, type:

? PENDOWN (PD)

Experiment with these two commands.

?FD 20

?PU FD 20

?PD FD 20

In addition to PEN UP (PU) and PENDOWN (PD), there are two other
commands for changing the state of the turtle's pen, PENERASE (PE) and
PENREVERSE (PX).

PENERASE turns the turtle into an eraser. When it travels over a line, it erases
it. To make it draw again, type PENDOWN or PD. For example (assuming
SQUARE1 is loaded):

?CS PD
?SQUARE1

Now type:

?PE
7SQUARE1

PENREVERSE (PX) is a mixture of PD and PE.
When you give Logo this command, the turtle will draw where there is a

blank space and erase where a line already exists. For example:

?PX
7SQUARE1

7SQUARE1

▲

7SQUARE1

PENDOWN (PD) will return the pen to its normal drawing state.

USING SINCLAIR LOGO COLOUR GRAPHICS
This section is applicable only if you are using a colour television or monitor;
in black and white you will see only shades of grey.

There are three types of colour changes you can make. You can change
the colour of the turtle's field or BACKGROUND by using the command
SETBG.

You can change the colour of the turtle's pen or PENCOLOUR, by using
the command SETPC.

You can change the colour of the border of the turtle's field and of the
text screen by using the command SETBORDER or SETBR.

Each of these commands takes one input: a number which corresponds to
the desired colour, as it appears above the top row of keys on your Spectrum
keyboard.

0 Black
1 Blue
2 Red
3 Magenta (purple)
4 Green
5 Cyan (blue)
6 Yellow
7 White

Changing the colour of the background

7SETBG 0
7SETBG 1
7SETBG 2
7SETBG 3
7SETBG 4

We can write a procedure which cycles through all the colours. Let's make
use of the command WAIT, which tells Logo to WAIT for n/60ths of a second
before executing the next command.

?TO COL.BK
>SETBG 0 WAIT 20
>SETBG 1 WAIT 20
>SETBG 2 WAIT 20
>SETBG 3 WAIT 20
>SETBG 4 WAIT 20
>SETBG 5 WAIT 20
>SETBG 6 WAIT 20
>SETBG 7 WAIT 20
>END
COL.BK defined

Try:
?REPEAT 3 [COL.BK]

The command BACKGROUND (BG) will give you the current colour of the
background.

?PR BG

We can modify our program:

?TO BACKGR
>SETBG BG + 1 WAIT 20
>END
BACKGR defined
?TO CB
>REPEAT 7 LBACKGR3
>END
CB defined

Changing the colour of the pen
Use the command SETPC; the code for the pen colours is the same as that for
the background.

If you have changed the pen colour, and give the command
TEXTSCREEN, Logo will write in the pen colour you have set. However, the
two lines at the bottom of your graphics screen will always appear in black
(or white if you have a dark border) regardless of the pen colour set.
Try typing the following:

7SETBG 0
?CS
7SETPC 2 SQUARE1
?RT 45 SETPC 3 SQUARE 1
?RT 45 SETPC 4 SQUARE1

Now type:

RT 45 SETPC 0 SQUARE1
No square appears! Of course - since the pencolour and the background
colour are the same, nothing shows on your screen.

The command PC will give you the current code number for the pen
colour.

?PR PC
0

Try the following procedure:

?TO TOTO
>REPEAT 8 [FD 30 RT 45]
>END
TOTO defined
7SETBG 7
7SETPC 1
7TOTO
7TO TOTAL
>CS REPEAT 18 [TOTO RT 20]
>HT
>END
TOTAL defined

Now try changing the background and pen colours:

7TO CHANGECOL
>SETPC PC + 1
>SETBG BG + 1
>REPEAT 4 [FD 30 RT 45]
>RT 20
>END
CHANGECOL defined
7REPEAT 8 [CHANGECOL]

Changing the colour of the border
The primitive SETBORDER or SETBR allows you to change the colour of the
border of your screen. The colour codes are the same as before. Try:

?SETBR l
SNAGS
You will sometimes find that changing the background affects the colour of
the traces already on the screen. This shows up most often with PENERASE
and PENREVERSE.

Colours will vary depending on the type of television or monitor and its
condition and adjustment.

Chapter 8
A second look at editing procedures
INTRODUCTION
You may use your Sinclair Logo Editor to change existing procedures as well
as to define new ones. This is helpful if you want to correct an error or change
what a procedure does.

For example, let's draw a triangle:

?TO TRIANGLE
>FD 45 RT 120
>FD 45 RT 120
>FD 45 RT 120
>END
TRIANGLE defined
?TRIANGLE

ENTERING THE EDITOR
You may enter the Editor in several ways. Each one has a slightly different
result. If you type:

ED or EDIT

not followed by a procedure name, Logo will bring you the last procedure
you wrote, or modified in the Editor.

ED "TOTO or EDIT "TOTO
or

ED [TOTO TOTAL] or EDIT [TOTO TOTAL]

will tell Logo to look for the named procedure(s) and put them on your Editor
screen. If the named procedure(s) have not been previously defined, Logo
will bring you an empty Editor screen.

ed [] or ed it []

(with empty brackets), tells Logo to give you a blank Editor screen
Suppose we want to turn our triangle. Type:

Your screen will now show the text of the procedure TRIANGLE:

TO TRIANGLE
FD 45 RT 120
FD 45 RT 120
FD 45 RT 120
END

The cursor is positioned on the letter T of the word TO; to edit you move the
cursor where you want to add or delete characters.

First, move the cursor to the end of the title line using the => key
(CAPS 8). Now press the ENTER key; this will insert a line. You can now type

To move the cursor to the end of the text, type E MODE E.

LEAVING THE EDITOR
Typing E MODE C tells Logo to incorporate the modifications you have
made, and that you have finished editing. Logo will now send you a
message:

If you change your mind and decide you do not want Logo to incorporate the
modification you have made, type CAPS BREAK/SPACE. Logo will then exit
from the Editor, leaving the program exactly as it was before you started
editing.

?EDIT "TRIANGLE

RT 30

TRIANGLE defined

?TRIANGLE

SUMMARY OF EDITING KEYS
CAPS 5
CAPS 6
CAPS 7
CAPS 8
CAPSO
E MODE CAPS 5
E MODE CAPS 6
E MODE CAPS 7
E MODE CAPS 8
E MODE B
E MODE E
E MODE N
E MODE P
E MODE Y
E MODE R

Moves cursor left one character
Moves cursor down one line
Moves cursor up one line
Moves cursor right one character
Deletes character to left
Moves cursor to beginning of line
Moves cursor to end of screen
Moves cursor to beginning of screen
Moves cursor to end of line
Moves cursor to beginning of text
Moves cursor to end of text
Moves cursor to next page
Moves cursor to previous page
Erases (yanks) line from screen
Re-inserts line just erased by the E MODE Y command
At the beginning of a line, will order Logo to execute the
instructions it just carried out

EDITING OUTSIDE THE EDITOR
While all the special editing keys work outside the Editor, many of them only
work within one Logo line. A Logo line is a line which starts with the prompt ?
and finishes when you press the ENTER key, and may contain up to 250
characters.

Certain editing commands work all the time. For example, type:

?TRIANGLE

Now type E MODE R. This will copy the last line you typed, and TRIANGLE
will reappear on your screen. The cursor is at the end of the line. Type E
MODE 5 to move cursor to beginning of the line.
Now enter:

?LT 90

Type E MODE R again, and press ENTER.

Logo 2, the Programming Reference Manual gives a more detailed
Description of the Editor and editing keys.

Chapter 9
Your works pace
INTRODUCTION

Your workspace contains all the procedures you have defined. Logo has
certain primitives which help you to organise your procedures in the
workspace, and to eliminate those you no longer want.

To find out what is in your workspace, you can ask Logo to print out the
titles of the procedures, or their definitions.

PRINTING OUT PROCEDURES
POTS (Print Out TitleS), prints out the title and the title lines of each of the
procedures in the workspace.

?TS
?POTS
TO TRIANGLE
TO CHANGECOL
TO TOTAL

If you type SYS S, Logo will stop its display and wait until you ask it to
continue by pressing any key.

POPS (Print Out Procedures) prints the definitions of all the procedures in
your workspace.

?POPS
TO TRIANGLE
RT 30
FD 45 RT 120
FD 45 RT 120
FD 45 RT 120
END
TO CHANGECOL
SETBG BG + 1
REPEAT 4 [FD 30 RT 45]
RT 20
END

?

You can print out the definition of a particular procedure with the command
PO (Print Out).

?PO "SQUARESTAR
TO SQUARESTAR
REPEAT 8 [SQUARE1 RT 45]
END

PO can also be given a list of names; for example:

?PO [SQUARE1 SQUARESTAR TRIANGLE]
will tell Logo to print out the three procedures whose names are in the input
list. Remember, you can use TS orTEXTSCREEN to get a full screen of text,
which will make it easier to read.

ERASING FROM THE WORKSPACE
You can erase procedures from your workspace. But, be warned! If you want
your procedures and have not saved them, you will have to type them in
again, so be sure that you really have finished with them before you erase
them.

ERASE (ER) eliminates the definition of the named procedure.

?ER "TRIANGLE

will erase the procedure TRIANGLE.

?ER [TRIANGLE SQUARE1 FLAG]

will erase the procedures in the list.

?ERPS

(ERase Procedures) erases all your procedures from the workspace.

SAVING YOUR WORK ON THE PRINTER
In order to get a hard copy (on paper) of your workspace, you must have a
ZX Spectrum Printer connected to your Sinclair Spectrum. If you do, typing:

?PRINTON
?PO "TRIANGLE

will tell Logo to print the procedure TRIANGLE. You may ask Logo to print
more than one procedure by typing:

7PRINT0N
?P0 [TRIANGLE SQUARE]

To stop the Printer, type:

7PRINTOFF

If you wish to save a graphics screen, ie a design or drawing you have made,
use the command:

COPYSCREEN
? TOTAL
7COPYSCREEN

Logo will copy everything on your screen except the two lines of commands
at the bottom.

Chapter 10
A first project: Drawing a garden
INTRODUCTION
Our first project will be to draw a GARDEN which contains a HOUSE, a SUN,
two TREES and a LAWN.

Logo's capacity for defining new procedures allows us to divide the
project into smaller parts.

Let's start by drawing a picture of our garden on a sheet of paper.

We can see that the GARDEN is made up of:
1 HOUSE
2 two TREES
3 LAWN
4 SUN

We can write separate procedures for each. Then we will think about putting
them together.

1 HOUSE
As a first step, let's break the HOUSE down into its subparts. We see it is
made up of a SQUARE and a TRIANGLE. Let's write a procedure for each.

We will call the house square SQUARE2

?TO SQUARE2
>REPEAT 4 [FD 45 RT 90]
>END
SQUARE2 defined

Let's print our previously defined procedure TRIANGLE.

?P0 "TRIANGLE
TO TRIANGLE
RT 30
FD 45 RT 120
FD 45 RT 120
FD 45 RT 120
END

Now we'll put the two together to make a house.

?TO HOUSE
>SQUARE2
>TRIANGLE
>END
HOUSE defined
7HOUSE

Not quite what we had in mind!

?ED "HOUSE
TO HOUSE
SQUARE2
FD 45
TRIANGLE
END
HOUSE defined
7HOUSE

That’s better!

2 two TREES
Let’s start by making one TREE.

?T0 TREE
>FD 50
>REPEAT 36 [FD 30 BK 30 RT 10]
>BK 50
>END
TREE defined
?HT TREE

We can now write a program which draws a tree, moves the turtle, and
draws a second tree.

?T0 TREES
>TREE
>PU LT 90 FD 30 LT 90 FD 50 RT 1 !
80 PD
>TREE
>END
TREES defined
7TREES

3 Let's now make the LAWN which will border our GARDEN.

?TO LAWN
>REPEAT 45 CFD 10 BK 10 RT 90 FD!
5 LT 90]
>END
LAWN defined
7 LAWN

4 Finally, let's make the SUN which rises on the GARDEN!

?TO SUN
>HT
>REPEAT 26 [FD 15 BK 15 RT 18]
>END
SUN defined
?SUN

Let's think about how to put these procedures together to draw the
GARDEN. We have to make sure that at the end of each procedure, the turtle
is in the right position for executing the next procedure. Try drawing the
garden before you look at the procedure below.

?TO GARDEN
>HOUSE
>PU LT 150 FD 80 RT 120 PD
>TREES
>LAUN
>PU FD 100 LT 90 FD 15 RT 90 PD
>SUN
>PR [WELCOME TO MY GARDEN]
>END
GARDEN defined
?GARDEN

Now try drawing each part in a different colour!

Chapter 11
Simple turtle geometry
POLYGONS
When we wrote the procedure HOUSE, we made an equilateral triangle, that
is, a triangle where all the sides are equal and all the angles are equal.

If you remember, we had to turn 120° at each corner. Here is the reason
why. When the turtle starts a triangle trip, it must turn 360° - a complete turn
- before it returns to its starting state: 3 x 120° = 360°. Remember that to
draw a square the turtle turned 4 x 90° = 360°. As long as the sum of the
angles is 360°, you will get a closed figure. We call this the turtle's theorem!

REPEAT 3 [FD 30 RT 120] -*« TRIANGLE
REPEAT 4 [FD 30 RT 90] — SQUARE
REPEAT 5 [FD 30 RT 72] PENTAGON
REPEAT 6 [FD 30 RT 60] — HEXAGON

Let's make a new TRIANGLE procedure using the instructions we have
written above, and then play with it a bit.

?TO TRI
>REPEAT 3 [FD 30 RT 120]
>END
TRI defined
?REPEAT 3 [TRI RT 120]

?REPEAT 6 [TRI RT 60]

If you want to work out how many times the turtle needs to repeat a set of
instructions to make a closed figure, divide the number of degrees into 360.
For example, if the turtle turns an angle of 30° each time, it has to repeat the
instructions 360/30, or 12 times.

However, Logo can do arithmetic so it can therefore do the division for
you:

?REPEAT 360/30 [TRI RT 30]

CIRCLES
Have you noticed yet that the more sides a polygon has, the more it
resembles a circle? If you have experimented with polygons by increasing the
number of sides, you may have discovered the circle!

?REPEAT 360 [FD 1 RT 1]

This circle looks fine, but it takes a long time to draw. That's because it
repeats the instructions 360 times.

Can you make a plausible circle more quickly?

Chapter 12
Introducing variables
INTRODUCTION
We are now quite familiar with the notion of inputs: the specific information
which primitive procedures such as FORWARD and RIGHT need to give
them meaning. The procedures you write can also have inputs. Because you
can choose any input within an allowed range, it is sometimes called a
variable - because it can vary. Let's see how we can use variables.

BIG SQUARES AND SMALL SQUARES
We might want the turtle to draw squares with sides of 50 or 60 or 100 or 10.
One way to do this is to write many procedures:
SQUAREFIFTY, SQUARESIXTY etc.

But there is a short cut. We elm change the procedure SQUARE so that it
takes a variable input. Then we can tell Logo how long to make its side by
typing:

?SQUARE 50
? SQUARE 60 etc

Let's edit our SQUARE procedure:

?ED "SQUARE
TO SQUARE
FD 30 RT 90
FD 30 RT 90
FD 30 RT 90
FD 30 RT 90
END

Since what should vary here is the length of the SIDE of each square, we can
call our variable SIDE.

Variables are always indicated on the title line by writing: (colon)
followed by the name of the variable. The colon tells Logo that the word
which follows is the name of a variable. So use your editing commands to
change the title line of the procedure.

TO SQUARE :SIDE
FD :SIDE
RT 90
FD :SIDE
RT 90
FD :SIDE
RT 90
FD :SIDE
RT 90
END
SQUARE defined

The : (colon) tells Logo that the word which follows names a container that
may have in it a number, another word, a list, or a list of lists.

Here, the expression :SIDE stands for 'whatever happens to be in the
container SIDE'. There must be something in the container for Logo to carry
out the command FORWARD :SIDE.

You can now give any value you wish to the variable SIDE; indeed, you
must indicate the value of SIDE before you can execute the procedure.

?cs
?SQUARE 10
?SQUARE 20
?SQUARE 30
?SQUARE 40

Not enough inputs to SQUARE

If you now ask Logo to:

?SQUARE

you receive a message:

The container is filled when you type SQUARE 10 (or whatever value you
like); Logo puts the value you type into the container named SIDE.

SOME PROCEDURES USING SQUARES

?TO SQUARES
>SQUARE 10
>SQUARE 20
>SQUARE 30
>SQUARE 40
>END
SQUARES defined
?TO DIAMONDS
>RT 45
>REPEAT 4 [SQUARES RT 90]
>HT
>END
DIAMONDS defined
?DIAMONDS

?TO FLAGR :SIZE
>FD :SIZE
>SQUARE :SIZE
>BK :SIZE
>END
FLAGR defined
?FLAGR

But note, our procedure was called SQUARE :SIDE. It had a different name
for its input.

SIDE, which is the variable name for SQUARE, receives its value from
:SIZE. A subprocedure may use different names for its inputs from those

r given in the original procedure, as long as the total number of inputs does not
change.

?T0 6FLAG :SIZE
>REPEAT 6 [FLAGR :SIZE RT 60]
>END
6FLAG defined
? 6 FLAG

?TO SPINFLAG :SIZE
>6FLAG :SIZE
>6FLAG :SIZE - 20
>END
SPINFLAG defined
7SPINFLAG

SNAGS
1 You forgot the space before the : (colon)
2 You typed a space between the : and SIDE
3 You typed : in front of a number
4 You typed :SIE or something like that
5 You forgot the :
6 You inserted an extra instruction
7 You accidentally erased an instruction

Chapter 13
Numbers and arithmetic
INFIX AND PREFIX
As we have seen in some of the examples, Sinclair Logo can carry
out arithmetic operations. To do this, you use the computer symbols for the
operations:

/ division
* multiplication

subtraction
+ addition

These signs are written between the numbers, and are known as
infix operations.

If there is more than one operation, division is performed before
multiplication, both are performed before subtraction, and addition is the last
operation to be performed.

?PR 5 + 3
8
?PR 4 * 23
92
?PR 345 - 32
313
?PR 25/5
5

Note:

?PR 3+4*2
11

but

?PR (3+4) * 2
14

Parentheses () tell Logo to perform what is within them first.
You can also write the name of the desired operation (DIV, PRODUCT,

SUM) followed by the numbers to be figured. There is no prefix operation
name for subtraction.

?PR SUM 3 4
7
?PR DIV 12 6
2
?PR PRODUCT 4 4
16

SINCLAIR LOGO NUMBERS
Logo can deal with both integers and fractions.

PR 25/6
4.1666667
?PR 4 * 2.3
9.2
?PR 19 - -2.5
21.5

Note the importance of the spaces in the expression 19 - - 2.5.
For more discussion about arithmetic in Logo, consult the Sinclair Logo

Programming Reference Manual.

Chapter 14
The turtle's field
INTRODUCTION
The turtle has a position and a heading.

Its heading is given in degrees like a compass, where 0°, or north, is facing
straight up.

90° is directly east, 180° is directly south and 270° directly west. We
might think of the screen as follows:

When Logo starts, the turtle's heading is 0. After CS, the heading is 0. You
can find out the turtle's heading whenever you want.

?cs
RT 90
?PR HEADING
90

HEADING outputs the turtle's direction.
HEADING is a primitive procedure, but it is different from PRINT or

FORWARD or the other commands we have seen.
HEADING is not a command; it is an operation. It does not cause something
to happen; rather, it outputs something which can be used as an input.

| If you don't tell Logo what to do with an operation, you will get a Logo
message.

?PCS RT 90
?HEADING
You don't say what to do with 90

The turtle's position is described by two numbers, which indicate how far the
turtle is from the centre of its field. When Logo starts, or after CS, the turtle's
position is [0 0].

The first number indicates the turtle's location along the horizontal or

x-axis. If the turtle is west of centre, the number is negative. The second
number indicates the turtle's location along the vertical or y-axis. If the turtle
is south of centre, the number is negative.

The turtle screen can be represented by a gwtfdivided into
coordinates. The x-coordinate runs along the horizontal and the y-coordinate
runs along the vertical. The turtle at the centre has both XCOR and YCOR

equal to 0. The screen dimensions, measured in turtle steps, are:

If you type:

?CS LT 90 FD 30
?PR POS

you will get:

-30 0

If you now type:

?BK 60
?PR POS

you will get:

30 o

You can also find either coordinate by itself.

?PR XCOR
30
?PR YCOR
0

SETPOS, which stands for SET POSition, is a command that sets the turtle at a
specific position on the screen. SETPOS is different from FORWARD or BACK
in that the end result does not depend on the turtle's initial position. SETPOS
does not change the turtle's HEADING. For example,

7SETP0S [50 - 52]

Leave a space before the -52, but do not leave a space between the - and
the 52. If you do, Logo will think you are giving it three inputs, 50, - and 52.
It will therefore send a Logo message:

SETPOS doesn't like - as input

WRAP, FENCE and WINDOW
The turtle starts out being able to WRAP; it can walk off one edge of the
screen and reappear on the opposite edge along the same horizontal or
vertical line. If it's facing at an angle, it will draw stripes as it moves. It does
not change direction.

For example:

?cs
?FD 500
?PR POS
0 - 2 8

Notice that the turtle is not 500 steps from the centre.
By typing FENCE, you can set up the screen boundaries so that the turtle

cannot move off the screen.
Type:

?FENCE
PCS
?FD 500

r Logo sends a message:

Turtle out of bounds

The turtle screen will act this way until you type WRAP or WINDOW.

WINDOW is a command which allows the turtle to move off the screen
without wrapping. Thus the turtle may be invisible to you, but still carry out
your orders. When you are in WINDOW mode, you may move the turtle up
to +32767 or -32768 steps.

If you ask Logo to go more than that, you will receive a Logo message.
For example:

?cs
?FD 50000
FD doesn't Like 50000 as input

USING POSITION TO DRAW
Now that we have learned about SETPOS and variables, we can add some
features to our GARDEN.

1 Let's start by putting windows on our HOUSE.
Note: You cannot name a procedure WINDOW, because, as we have just

seen, there is already a primitive of that name.

?ED "HOUSE
TO HOUSE
SQUARE 45 FD 45 TRIANGLE
PU SETPOS [10 26] PD
SETH 0
SQUARE 10
PU SETPOS [25 26] PD
SQUARE 10
END
HOUSE defined

2 We can also draw a little person who lives in the GARDEN. Let's make a
stick figure.

?TO V :SIZE
>LT 50
>DRAW :SIZE
>RT 100
>DRAW :SIZE
>LT 50
>END
V defined
?TO DRAW :SIZE
>FD :SIZE
>BK :SIZE
>END
DRAW defined

Try it:

7HOUSE

?T0 PERSON :SIZE
>SETH 180
>V :SIZE
>RT 180
>FD :SIZE
>V :SIZE
>FD :SIZE /2
>END
PERSON d e f in e d

Try it:

?PERSON 10

3 Let's now add these features to our GARDEN

?ED "GARDEN
TO GARDEN
WINDOW
HOUSE
PU SETPOS [-50 15] SETH 0 PD
TREES
PU SETPOS [-98 -45] PD
LAWN
PU SETPOS [90 60] SETH 0 PD
SUN
PU SETPOS [20 0] PD
PERSON 7
PR [WELCOME TO MY GARDEN]
END

Try it:

?GARDEN

Chapter 15
Assigning values to variables: the
procedure MAKE
INTRODUCTION
In Logo, MAKE allows you to assign a value to a word or list. (Remember that
a number is considered as a word in Logo.) In Chapter 12 we said that
variables can be thought of as containers which contain Logo object(s) - a
word or a list. Within the container we find the value that was given to the
object.

?MAKE "AGE 8
?PR :AGE
8

the : tells Logo to look for the value assigned to the name AGE.

MAKE gives the value 8 to the name AGE.
MAKE needs two inputs. The first is the name of the variable; the second

is its value.

USING MAKE TO DRAW
There is an easy way to draw a right angled triangle, provided that you know
the lengths of the two sides forming the angle. Using the command MAKE,
we can record the starting position of the turtle:

?cs
?MAKE "START POS
?PR :START
0 0

We can now ask the turtle to draw the two sides:

?FD 33
?RT 90
?FD 42
?SETPOS :START

We instruct Logo to move the turtle to the position indicated by the value of
START.

Since the pen is down, Logo draws a line.
We can write a procedure for this:

?TO TRE :SIDE1 :SIDE2
>MAKE "START POS
>FD :SIDE1
>RT 90
>FD :SIDE2
>SETPOS :START
>END
TRE defined

Try:

?cs
TRE 40 50
7SETH 0
?TRE 75 20

Chapter 16
More circles and arcs
CIRCLES
Let's write a procedure for experimenting with circles of different sizes:

?TO CIRCLE :STEP
>REPEAT 36 [FD :STEP RT 10]
>END
CIRCLE defined

Now try it with various inputs:

7CIRCLE 1

7CIRCLE 5

7CIRCLE 10

Notice that the circle's size changes in proportion to its input. This is not
surprising because each circle has the same number of FORWARDS in it. The
FORWARD distance determines the length of the circumference.

THE RADIUS
Sometimes it is more convenient to choose the size of a circle by stating its
radius - the distance from the centre to any point on the circumference. With
the CIRCLE procedure we need to calculate the radius of each circle. Why not
let Logo calculate it? To do this, we'll write another procedure which uses
CIRCLE, and call it CIRCRAD.

?TO CIRCRAD :RADIUS
>CIRCLE 2 * 3.14 * :RADIUS/36
>END
CIRCRAD defined

Note: 2 * 3.14 * : RADIUS represents the circumference of a circle (2 n r). The
circumference has 36 FORWARDS. Thus we divide by 36 to get the step size.

Now try:

7CIRCRAD 30

?RT 90 FD 30

?FD 30 HT

Here are some drawing using circles. See if you can write programs for
them!

FLOWER

TARGET

FACE

ARCS
Many projects require only arcs (pieces of circles). One way to draw an arc of
a circle is to run the CIRCLE procedure and quickly press the CAPS
BREAK/SPACE keys to stop the turtle before it finishes drawing.

Of course, this method doesn't allow you to control the size of your arcs
very well. The best way to control the size of an arc is to give another input to
the CIRCLE procedure, which varies the number of times the small steps and
turns are repeated.

Let's change the name of the procedure to ARC.

?ED "CIRCLE
TO CIRCLE :STEP
REPEAT 36 [FD :STEP RT 10]
END

Edit this procedure to:

TO ARC :STEP :TIMES
REPEAT :TIMES [FD :STEP RT 10]
END
ARC defined

Now try:

?ARC 10 36

?cs
?ARE 10 18

?cs
?ARC 10 9

We can use the number of degrees that we want in our arc as the input and
let Logo calculate how many times to repeat.

?ED "ARC
TO ARC :STEP :DEGREES
REPEAT :DEGREES/10 [FD :STEP RT 10]
ARC d e f in e d

USING ARCS

?ACR 6 90

?RT 90

?ARC 6 90

A petal!

Now try using some negative number.

?HT

Chapter 17
Exploring polygons and spirals
POLYGONS
Just as you can vary the number of steps the turtle takes, you can also vary
how much it turns. In fact, you can get beautiful and surprising designs by
varying these two components of the turtle's state.

Let's look at some examples:

?TO POLY :STEP :ANGLE
>FD :STEP
>RT :ANGLE
>POLY :STEP :ANGLE
>END
POLY defined

To stop the triangle, press the CAPS BREAK/SPACE.
What has happened here? After turning right the number of degrees in

the angle (in this example 120), the procedure calls itself as an instruction,
and Logo runs the entire procedure again and again and again, until you tell
it to stop.

A procedure which calls itself as a subprocedure is known as a recursive
procedure.

There is a story which is often told to explain recursivity. A fairy
godmother offers you two wishes. Your second wish is always to have two
more wishes!

Try these POLY shapes, or use inputs of your own. It's a good idea to CS
between each drawing. Remember to press CAPS BREAK/SPACE when you

want the procedure to stop.

Try:
?POLY 30 120

?POLY 30 90

7P0LY 30 60

Let's now make a polygon which turns and changes its colour!

?TO POLYT :N :SIDE :ROT
>P0LY1 :N :SIDE
>RT :ROT
>SETPC PC+1
>POLYT :N :SIDE :ROT
>END
POLYT defined
?TO POLY1 :N :ANGLE
>REPEAT :N [FD :SIDE RT 360/:N]
>END
POLY1 defined
?POLYT 6 40 30

?POLY 30 144

?POLY 30 40

?POLY 30 160

Note that when the pen has the same colour as the background, the polygon
is invisible.

To stop POLYT, press CAPS BREAK/SPACE.

SPIRALS
The POLY procedure draws closed figures. The turtle moves forward and
rotates so that it eventually gets back to where it started. (However, if the
turtle turns 0 or 360° - or a multiple of 360° - on each round, it walks in a
straight line.)

To draw a spiral, the turtle must not return to where it started; instead, it
should increase its forward step on each round so that it gets further and
further away from its starting point.

We can make it do this by adding a little bit to :STEP each time POLY
instructs itself to start the procedure again, ie, on the recursion instruction.

?TO SPI :STEP :ANGLE
>FD :STEP
>RT :ANGLE
>SPI :STEP+6 :ANGLE
>END
SPI de-fined

Now try SPI!

?HT
7SETSCRUNCH [50 50]
?SPI 5 90

?SPI 5 120

?SPI 5 60

Let's now modify SPI, giving it a third input called INCrement. Then we can
change how much the turtle's step increases by choosing different numbers
for the third input.

?ED "SPI
TO SPI :STEP :ANGLE :INC
FD :STEP
RT :ANGLE
SPI :STEP + :INC :ANGLE :INC
END
SPI defined

Now try:

Remember, type CAPS BREAK/SPACE to stop the SPI procedure.

?spi 5 144

?SPI 5 160

?SPI 5 160

7SETSCRUNCH [100 100]
?SPI 5 75 1

Try stopping the turtle at different places. Make up your own inputs. You can
Also try:

?cs
?FENCE
?SPI 5 125 2

Press CAPS BREAK/SPACE

?CS WINDOW
?SPI 5 125 2

Press CAPS BREAK/SPACE

?SPI 5 75 2

?cs
?WRAP
?SPI 5 125 2

Chapter 18
Exploring recursive procedures
INTRODUCTION
One of the most powerful features of Logo is that you can divide a
complicated task into procedures, each of which has its own name and is
completely separate from the others. A procedure can call, or be called by,
any other procedure including itself. As we have seen, a procedure which
calls itself is known as a recursive procedure.

?TO POLY :STEP :ANGLE
>FD :STEP
>RT :ANGLE
>poly : step : an gl e (this is the recursive call)
END
POLY defined

POLY calls POLY as part of its definition.
Recursion allows repetition of a procedure. Recursive calls may be directly

within the procedure (as in POLY), or may cross procedures, for example:

?TO GO ?TO HI
>FD 10 >PE BK 10PD
>HI >GO
>END >END

GO calls HI and HI calls GO ... until you tell Logo to stop by pressing CAPS
BREAK/SPACE.

Not all recursive procedures work this way; they can be made to stop. In
fact, making up appropriate 'stop rules' is an important part of writing
recursive procedures. We will look at some stop rules here; consult the
Programming Reference Manual for further examples.

STOPPING RECURSIVE PROCEDURES
Let's look at some ways of stopping recursive procedures within a program.

Example 1: Stopping the SPI procedure

?TO SPI :STEP :ANGLE :INC
>IF :STEP >150 CSTOP3
>FD :STEP
>RT :ANGLE
>SPI :STEP + :INC :ANGLE :INC
>END

In this example we have told Logo to stop if the size of the step is greater
than 150.

In brief, the statement IF :STEP >150 [STOP] can be translated as:
If the value of STEP is greater than 150, STOP the procedure; if not,

continue executing the procedure. Now try:

SPI 5 125 10

IF expects its first input to be either TRUE or FALSE.
> is a special kind of operation, which outputs either

TRUE or FALSE. We call this kind of operation a predicate.
Predicates are used as the first input to IF; see the Programming Reference
Manuaiiox a more detailed discussion.

Example 2: This recursive procedure introduces two new primitives: FIRST
and BUTFIRST

FIRST and BUTFIRST deal with Logo objects (words and lists). FIRST
instructs Logo to look for the first element of a word, or the first element of a
list. BUTFIRST instructs Logo to look for everything BUT the first letter of a
word or list.

There are many primitive procedures to put Logo objects together, and to
take them apart and examine them. See the section WORDS and LISTS in the
Programming Reference Manual.

?TO VERTICAL :WD
>IF :WD = " ESTOP]
>PR FIRST :WD
>VERTICAL BUTFIRST :WD
>END
VERTICAL defined
?VERTICAL "NONSENSE
N
0
N
S
E
N
S
E

What happens when we VERTICAL "NONSENSE?
1 he instruction IF :WD = " [STOP] tells Logo to STOP if the value of

WD is the empty word (a " followed by a blank space).
2 f it is not, Logo goes to the second instruction, PRINT FIRST :N, which

ells Logo to print the first character of :WD.

3 The third instruction, VERTICAL BUTFIRST :WD is a recursive call, and
ells Logo to look for the procedure VERTICAL "ONSENSE which is the
UTFIRST of VERTICAL "NONSENSE.

4 his continues until the value of :WD is empty. The IF statement is then
rue, and Logo stops.

Example 3: A recursive twist
Simple recursion is quite simple. But sometimes recursion can be quite
complex, even subtle! If you would like to see an example look at the
procedures below. If not, just skip this section.

These two procedures appear quite similar:

?TO COUNTS :N
>IF :N = 0 ESTOP]
>PRINT :N
>COUNTS :N - 1
>END
COUNTS defined
?COUNTS 3
3
2
1

?TO ACCOUNT :N
>IF :N = 0 ESTOP]
>ACCOUNT :N - 1
>PRINT :N
>END
ACCOUNT defined
?ACCOUNT 3
1
2
3

The COUNTS :N procedure instructs Logo to stop when the value of :N is 0,
otherwise print N and re-execute the procedure, subtracting 1 from the value
of N.

This procedure is quite straightforward and similar to the other examples
we have examined.

The ACCOUNT procedure is more complicated.
1 The first instruction tells Logo to check if the value of :N is 0. If yes, the

procedure stops, If no, Logo continues to the next instruction.
2 The second instruction tells Logo to look for the procedure ACCOUNT

which has an input of :N -1 (the value of N minus 1).
But what has happened? The second instruction is a recursive call
instructing Logo to start the procedure again. Logo cannot proceed to the
next instruction until the IF statement (IF :N=0) is true. When :N = 0,
Logo will no longer be able to execute the ACCOUNT :N-1 instruction.
It is only then that Logo passes to the next instruction.

3 PRINT :N.
But Logo now has several N values to print, which are all waiting in Logo's
memory. Logo prints the number of the last instruction it carried out.
Thus, we see a 1 on the screen.

4 The next instruction is END. Logo cannot yet end because it still has some
values in its memory. So, it passes back one procedure. This was
CCOUNT with the value of 2. Thus, it prints a 2 on the screen. It does
his until there are no more unfinished instructions left in the procedure.

Thus, in placing a recursive call in the midst of a procedure, rather than at the
end, there may be several 'results' existing at the same time. In this case, the
last procedure called is the first one to stop.

Chapter 19
A game project
CREATING A GAME
Let's make up a game. A target and a turtle appear somewhere on the
screen. The player tries to get the turtle into the target with the smallest
number of moves.

For our first version, we will use regular Logo commands such as LT 45 or
FD 80. Later, we will refine the game by assigning Spectrum keys to direct
the turtle. Developing the game in stages illustrates the kind of 'project
management' to which Logo is well suited.

First, we need to set up a target; then we need to set up the turtle. We
can write one procedure that will perform both tasks. An example of a SETUP
procedure is printed below. SETUP sets the turtle up in a random position on
the screen. It leaves the turtle heading in the same direction as it was at the
start of SETUP.

?TO SETUP
>PU
>RT RANDOM 360
>FD RANDOM 85
>SETHEADING 0
>PD
>END
SETUP defined

The Logo operation RANDOM returns a number which Logo chooses
randomly between 0 and one less than the number given as RANDOM'S
input.

In SETUP, for example, the turtle turns some angle which can be as small
as 0 or as large as 359. The actual number is computed each time
RANDOM is used. The input to FD is also a random number. Here the
number can be no larger than 84. Notice that SETUP leaves the turtle facing
north.

SETUP can be used to set up the turtle as well as the target. It's a good
idea to put the turtle back at the centre first.

The following procedure, SETGAME, sets up the game.

>TO SETGAME
>CS
>SETUP
>TARGET

>PR [TRY TO HIT THE TARGET]
>SETPOS [O 0]
>SETUP
>END
SETGAME defined
?TO TARGET
>BOXR 10
>END
TARGET defined
?TO BOXR :SIDE
>REPEAT 4 [FD :SIDE RT 90]
>END
BOXR defined

Try SETGAME a few times. It's hard at first. For example:

?SETGAME
?RT 45
?FD 100

A miss!

MAKING A KEY INTO A GAME BUTTON
You can write many kinds of interactive programs. You can ask Logo
questions and receive answers in words or sentences: see Chapter 9 of the
Programming Reference Manual, Interaction with the Machine, for further
examples and explanations.

Sometimes you may want to trigger Logo into action by a touch of a key.
This requires the operation READCHAR or RC. Type:

?PR RC

Logo waits for a key to be pressed. Type the letter A. RC receives the
Character A and passes it to the PRINT command. The PRINT command them
Puts an A on the screen.

?PR RC
A

Logo does not wait for you to do anything else. It acts immediately Try RC a
few more times. Note that if you type RC (followed by ENTER) ,and then
type in a character (for example T),Logo sends a message :

?RC
Now type T
Y o u d o n ' t s a y w h a t t o d o w i t h T

RC is an operation, like HEADING or POSITION. It is used as an input to
another command or operation. We could name RC's output using MAKE,
for example:

?MAKE "KEY RC

Now type the character z. :KEY will be the character z. To verify, type:

?PRINT :KEY
Z

We can use this idea of giving things names so that we can talk about them.
Imagine we have a procedure called PLAY.

?TO PLAY
>MAKE "ANSWER RC
>IF ANSWER = "F [FD 10]
>IF ANSWER = "R [RT 15]
>IF ANSWER = "L [LT 15]
>PLAY
>END
PLAY defined

F makes the turtle move forward 10 steps.
R makes the turtle turn right 15°.
L makes the turtle turn left 15°.

In PLAY, the value of :ANSWER is what RC outputs. PLAY then checks
:ANSWER using the Logo primitive, IF. IF requires two inputs. The first input
is either TRUE or FALSE. The second is a list of instructions to be carried out

when the first input is TRUE.
Notice that PLAY is recursive; that is, the last line of the procedure PLAY

calls PLAY. PLAY does not stop unless it has a bug or you press CAPS
BREAK/SPACE. Try it.

EXPANDING THE GAME PROJECT
In this section we build a better target game out of SETGAME and PLAY.
Some of the techniques used in this section are new. We can write a
procedure, GAME, which uses SETGAME and then PLAY:

?T0 GAME
>SETGAME
>PLAY
>END
GAME defined

Try GAME.
Perhaps we should raise the turtle's pen. We can ask GAME to print some

instructions:

?TO GAME
>RULES
>SETGAME
>PU
>PLAY
>END
GAME defined
?TO RULES
>PR [HIT THE TARGET WITH THE TURTLE]
>WAIT 100
>PR [TYPE R OR L TO TURN AND F TO ADVANCE]
>WAIT 100
>END
RULES defined

Try GAME now.
This is much better, but there is still room for improvement. The game

plays too slowly; let's make it more challenging by giving the player only one
chance to land on the target. The player can turn the turtle many times, but
will have only one chance to tell it how far to go forward.

Here is the plan: after Logo has set up the scene for the game, we want it
to let you play. Once you've had your try, you can see if you've landed in the
target. Logo should leave the screen unchanged for a little while and then
start the game again with a brand new target and position.

We use a 'top - down' approach to plan this game. That means we
plunge in and write the overall structure of the game before we know how
we are going to write all the details.

(This sets up each game)

?T0 GAME
>RULES
>SETGAME
>PU
>PLAY
>wa it 100 (Logo pauses before restarting)
>GAME
>END
GAME defined

We can now edit the procedure PLAY to give you only one chance to move
the turtle forward into the target. The point of the game is to judge the
distance.

When you press the T key (T for try), you get your only chance to land in
the target.

?TO PLAY
>MAKE "ANSWER RC
>IF ANSWER = "R [RT 15]
>IF ANSWER = "L [LT 15]
>IF ANSWER = "T [TRYLANDING ST
OP]
>PLAY
>END
PLAY defined

Now edit the RULES and change F to T.

?ED "RULES
TO RULES
PR [HIT THE TARGET WITH THE TURTLE]
WAIT 100
PR [TYPE R OR L TO TURN AND T
TO TRY LANDING]

WAIT 100
END

We've used the 'top-down' approach again; we've asked PLAY to call a
procedure name TRYLANDING which we haven't yet defined.

Let's define it now.

?T0 TRYLANDING
>PR [HOW FAR DO YOU WANT TO MO
VE FORWARD?]

>FD READWORD
>END
TRYLANDING defined
?TO READWORD
>OUTPUT FIRST READLIST
>END
READWORD defined

READWORD functions like RC, except that you can type a word instead of a
single character: it waits for you to press the ENTER key to signal that you
have done so.
READWORD is an operation which returns the a word you typed.
READLIST (RL) is a primitive procedure; it too is an operation, but it returns a
list. So READWORD uses READLIST, but only takes the first word you type

Operations return a word or a list. The command OUTPUT or OP outputs
something, and stops the procedure at that point.

Now we have written the whole game. To try it, type:

?GAME

Remember, you can give the commands R and L to turn the turtle and T to
try landing on the target. After you type T, Logo will wait for you to type a
number and then ENTER.

You may try adding to this program yourself!

TAILPIECE
We have now come to the end of our introduction to Logo, but we hope you
will explore other turtle projects on your own. The Programming Reference
Manual describes many other features of Logo which you will want to try as
you become more familiar with the language.

Index

<=> 3 D
3 define 11

ft 4 delete 3
■=> 4 DIV 49
» 13 division 49
* 49
+ 49 E
- 49 E Mode 4
/ 49 ED, EDIT 17

20 edit 11
[] 13 empty word 72
0 49 END 11> 11 ENTER KEY 3? 11 ER, ERASE 36

ERPS, Erase Procedures 36
A execute 3
addition 49
arcs 61 F
arithmetic 49 FENCE 53

field 5
B files 23
BF, BUTFIRST 72 FIRST 72
BG, BACKGROUND 28 FD, FORWARD 6
BK, BACK 6 fullscreen editor 17
brackets 13
BREAK/SPACE key 3 G
bug 7 game 75

grid 52
C
C MODE 3 H
CAPSO 15 HEADING 51
CAPS/ BREAK/SPACE 15 heading 5
CAPS SHIFT 3 HT, HIDETURTLE 19
circle 44
colour codes 27 I
commands 5 INCrement 68
coordinates 52 IF 72
COPYSCREEN 37 input 6
CS, CLEARSCREEN 7 Infix operation 49
CT, CLEARTEXT 14
cursor 2

K
keyboard 3
L
L MODE 3
LT, LEFT 6
LOAD 23
M
MAKE 57
multiplication 49
N
numbers 49
O
operation 51
OP, OUTPUT 80
P
PC, PENCOLOUR 27
PD, PENDOWN 25
PE, PENERASE 26
PO, Printout 36
polygons 65
POPS, Print Out Procedures 35
POS, POSition 52
POTS, Print Out Titles 35
predicates 72
prefix operation 49
PR, PRINT 13
primitive procedures 1
PRINTOFF 37
PRINTON 36
procedure 1
PRODUCT 49
prompt 2
PU, PENUP 25
PX, PENREVRSE 26
Q
quote mark 13

R
RANDOM 75
RC, READCHAR 76
RL, READList 80
READWORD 80
recursion 65
recursive procedure 71
REPEAT 14
RT, RIGHT 6
S
SAVE 23
SETBG, SETBackGround 27
SETBR, SETBORDER 27
SETH, SETHEADING 75
SETPC, SETPENCOLOUR 27
SETPOS, SETPOSition 52
SETCR, SETCRUNCH 19
SETUP 75
SNAGS 1
spirals 67
ST, SHOWTURTLE 5
state 5
state, turtle’s 5
STOP 71
SUBTRACTION 49
SUM 49
SYS P 14
SYS, SYMBOL SHIFT 3
SYS U 13
SYS Y 13
T
theorem 43
TO 10
top level 2
TS, TEXTSCREEN 13
turtle 5
V
varibles 45

w
WAIT 28
welcome message 2
WINDOW 53
workplace 23
WRAP 53
X
XCOR 52
Y
YCOR 52

