
Forward
A User Guide to SNAIL LO GO

Contents

1 THE GUIDE TO THE GUIDE

1.1 Foreword
1.2 How to use the Guide

2. BACKGROUND & PRINCIPLES OF SNAIL LOGO

2.1 History
2.2 Introducing SNAIL LOGO
2.3 What SNAIL LOGO explores

3. STARTING TO USE SNAI L LOGO

3.1 Introduction
3.2 The Examples
3.3 First Steps
3.4 Next Steps
3.5 Variables
3.6 Procedures and Parameters
3.7 Recursive Procedures
3.8 Calculations

4. THE SNAIL LOGO OPERATING SYSTEM

4.1 Introduction
4.2 Loading the SNAIL LOGO system
4.3 Operating system facilities

5. REFERENCE INFORMATION

5.1 SNAIL LOGO Instruction summary
5.2 Notes on Instruction use
5.3 Operating limits
5.4 Error Reports

2.2 Introducing SNAIL LOGO

The best known feature of LOGO is its so-called 'T u rtle Graphics".
This idea is based upon a small mechanical turtle, with a pen under­
neath, which crawls along on a large sheet of paper, drawing lines
as it goes. Via a computer, the Turtle can be commanded to
perform movements like FORWARD, and TURN RIGHT. Its
command language is simple but has surprising power. The direct
relationship of the language to the patterns drawn by the turtle also
provides an illuminating visual illustration of programming structures
and sequences, and allows the programmer to observe the operation
of his program. Because it is so easy to use, the programmer may
well be a child, who can use the system to explore his or her own
ideas. The sense of creative achievement which can come from even
a simple program is a powerful motivating force.

SNAIL LOGO has a language and operating system which provides
an advanced version of "Turtle Graphics". Instead of an actual
mechanical turtle, it uses a graphical snail, which can be made to
move around the computer display screen. In the usual manner of
snails it leaves a track behind it, so it can draw shapes and patterns.

SNAIL LOGO can show many of the principles used in the design of
complicated things — like computer programs. Some of these
principles have particular names, like Hierarchy and Replication, but
it does not matter whether these names are meaningful at the start.
The actual use of SNAIL LOGO will make them clear.

2.3. What SNAIL LOGO explores

In this introduction, some points are illustrated by reference to a
motor-car rather than to a computer program. (Many design
principles are common between the two!) A young child however
can learn the principles from a simple "clean sheet" basis, without
being concerned about comparisons.

Computer languages are sets of words for instructing computers to
carry out specific activities. There are dozens of computer languages,
of many different types. One way of classifying them is by "level".
A low level language (like machine code assembler) is able to instruct
the computer to switch transistors on and off to represent Ts and
'0's. The programmer has to decide how the Ts and 'O's are to
represent numbers and facts however, which is an intricate task.

A higher level language (like Basic) has a different sort of vocabulary
and allows large chunks of computer operations to be called for
without troubling about the detailed processes necessary to carry
out each chunk.

Differences between languages can be seen in terms of different
ways of describing a motor-car. To describe to someone exactly how
to build a car, each nut, bolt and component would have to be
specified in an exact sequence, and a low level language would be
used. In principle it would not be necessary to use the word "engine".
That component would be produced by following the instructions
for putting its parts together. Such a description however, would be
a very poor way to explain to a visitor from another galaxy what a
car was, and how it worked. Some much higher level description in
terms of large units like engines and doors would be better, and
ignoring what engines and doors were made from would not
matter.

SNAIL LOGO language is very high level. It has simple and power­
ful commands like 'FORWARD' and 'REPEAT', which instruct the
Snail to move and to leave a line of track behind it. Also, like
LOGO, there is no need to be concerned with how this works inside
the computer.

There is a reason for SNAIL LOGO having a very high level language.
By making it simple to specify the basic operations, it becomes easy
to explore the ways in which complicated processes and structures
can be built up by combining simple ones in various ways.

Returning to the car illustration, words for parts of a car like seat,
engine and carburettor are not only names for working aspects of
the car, but refer to parts actually designed and made separately. A
car is in fact a group of sub-units which work at different tasks but
cooperate to provide an overa1' function. A computer program is
similarly made from a structure of different components which can
each contain further components. Such an organisation is called a
hierarchy, and it will also have a sequential organisation. The
components of a program can be called procedures. Some
components are used to assist or service several other components,
like the electrical system of a car. Some components work by
repetition, like a car engine. Sometimes components are replicated
like the wheels, headlights, and front seats of a car. Other
components perform a task which is standard in principle but varies
in some way, like a car gearbox, which always connects some gears
but can have a number of different ratios. Such a variable within a
component is retered to as a parameter. Also, systems like cars or
computer programs can be in different states, like braking or
accelerating, and running or crashed, and these states can be defined
by many separate state variables. Another important process, which
does not have a mechanical analogy but which is useful in computer
programs, is known as recursion.

SNAIL LOGO allows the various aspects of creating and using these
techniques tor definition and expression to be explored. All of them
are reflected in the SNAIL LOGO language capabilities, and can be
used in designing graphics programs. They can be observed in
operation because the "Snail" makes its tracks at a speed which
allows the graphics program to be followed as it runs.

A last general point Learning most computer languages is a rough
equivalent of learning how to put together nuts and bolts, or bricks
and mortal. Learning to draw graphics with SNAIL LOGO is more
the equivalent of learning how to design motor-cars, or houses (and
computer programs of course!).

3. STARTING TO USE SNAIL LOGO

3.1 Introduction

This section leads you into the use of SNAIL LOGO by describing
practical examples. Because this is just to start you off, it only gives
a small sample of the potential of SNAIL LOGO. After studying the
rest of the guide you will be able to expand and enhance the
examples and explore and develop your own ideas.

In case of problems, refer to the other sections of the Guide -
everything is explained.

Before starting the examples there are some important terms to
note:

Instruction, Program and Procedure.

There is no need to remember all the details at once — read the
descriptions below again when you need to.

Instruction: A SNAIL LOGO Instruction is made up of a Command
name, sometimes with values given as a number or a
variable name following the command. Instructions
either cause some action to be taken by the Snail, or
affect the operation of other Instructions. All the
Instructions are shown in Chapter 5, with explanations
of their operation. General principles are as follows:

(a) The Snail always has a position, and a direction. It
changes its position by the number of steps given in the
FORWARD and BACKWARD Instructions, and its
direction by the number of degrees given in RIGHT
and LEFT Instructions. (CENTRE, POSITION,
NORTH and RNORTH also cause changes).

(b) The Snail itself can be visible or invisible, according to
how SNAIL and NSNAIL Instructions are used.

(c) The track of the Snail can be visible or invisible,
according to whether its pen is DOWN or UP. If its
track is invisible, single points of track at its current
position can be shown if a OUTPUT Instruction is
used. The COLOUR Instruction defines the colour of
the track.

(d) REPEAT and PROCEDURE Instructions affect other
Instructions, and are described below.

Program: A program is a list of SNAIL LOGO Instructions which
are obeyed one after the other when the program is
run. The REPEAT and RFINISH Instructions cause all
the Instructions in between them to be repeated the
number of times stated in the REPEAT Instruction. A
program must always finish with an END Instruction.
If variables are used they can be manipulated by SET,
INCREASE, DECREASE and MAKE Instructions, and
inspected by the SHOW Instruction. A program or a
procedure can be made to end only under certain
conditions by the I FEND Instruction.

Procedure: A procedure is a list of Instructions just like a program.
However a procedure can not be run directly. Only
programs can be run. Procedures are used by programs
or other procedures. Procedures each have a name (like
SQUARE or CIRCLE) which you can choose, usually
to indicate what the group of Instructions which they
contain will do. Thus, programs can use the whole
group of Instructions in a procedure just by using the
procedure name. For example: PROCEDURE
SQUARE.

3.2 The Examples

When you follow the directions given for the examples in sections
3.3 to 3.8 below, your computer will show the results on its
display. Think about the relationship between the SNAIL LOGO
Instructions used and the patterns produced.

Before starting section 3.3 have a look at the list of SNAIL LOGO
Instructions in section 5.1, and refer to them as necessary to under­
stand what each Instruction is doing.

SNAIL LOGO is operated from its "Menu” display. The Menu is a
list of facilities displayed on the screen, in three groups. By entering
the single letter code (except for one case of three letters), the
facility is obtained for use. After use, the facility returns to the
Menu so that the next can be selected. Facilities can only be
obtained from the Menu when it is actually displayed.

The ENTER key is usually all that is required to step on from one
stage of a facility to the next, and eventually return to the Menu.
However, if entering a program, editing a program, or entering a
procedure, that operation must be finished first by entering END, or
cancelled, before the ENTER key can be used to return to the Menu.
Read section 4.3(1) NOW, to make sure that you understand this,
and note the use of the Z and U keys. Often the ENTER key must
be used several times to step through a facility to get back to the
Menu.

An important point:— you may find that the various checks and
error messages which arise are annoying! However you will soon get
used to the simple rules, and the checks are very important,
particularly for children. As far as is practicable they make sure that
your SNAIL LOGO program is sensible before you RUN it, so there
won't be silly or confusing results.

Until you alter it by a program, the Snail always starts in the centre
of the screen, pointing "North", with its pen down, and invisible.

Press any keys you like. You will not do any harm to your computer
or SNAIL LOGO, though if you try hard enough, BREAK might
stop SNAIL LOGO running. If you do, just reload from tape.

Early examples describe facility use in detail. Later examples refer to
the use of facilities without repeating all the details. Refer again to
earlier examples if necessary.

Finally, if you do not know what to do at any stage, always try
pressing the ENTER key.

3.3 First Steps

• Read all of each paragraph before trying it.
• All the keys mentioned must be "entered", that is, the particular

key must be pressed, then the ENTER key. Nothing will happen
until the ENTER key is pressed.

• If you do not have a printer, ignore references to entering C.
Use just the ENTER key instead.

(1) Load the SNAIL LOGO system tape as described in section 4.2.
When loading is complete the Menu will appear. It is titled
SNAIL LOGO followed by some dots and a Snail symbol.

(2) CAPS LOCK will be set automatically as only capital letters are
used in SNAIL LOGO.

(3) On the Menu, entei R to RUN a demonstration program
included on the tape. It is not a typical SNAIL LOGO program
but illustrates a number of techniques, including a particular use
of the Snail symbol.

(4) Enter C if you want a printed copy, or just ENTER to return to
the Menu if not.

(5) Enter L on the Menu to list and inspect the Flower program.

(6) Press ENTER to obtain a (P)ROC? message. Ignore this.

(7) Use ENTER again to obtain a (C)OPY? message. Enter C and
the program listing will be copied to the printer, then a return
made to the Menu.

The listing has an abbreviated form of commands using only the
first two letters of each command name. Check the full versions
of the commands using section 5.1, but there is no need fully
to understand the program at this stage.

(8) Enter K on the Menu. Next enter the procedure name STEM.
Have a look at the procedure listing. To print a copy, respond to
the (C)OPY? message by entering C. If you do not require one,
return directly to the Menu with ENTER.

(9) Use the method described in (8) to have a look at the pro­
cedures LEAF and BLOOM. Use ENTER to return to the menu
after each one.

3.4 Next Steps

Now to enter some Instructions which make up simple SNAIL
LOGO programs, and run them. To enter an Instruction, the whole
Instruction such as FORWARD 29 is typed, and appears at the
bottom of the screen. The Delete key can be used in the usual way
at that stage. When the Instruction is complete the ENTER key is
pressed.

(1) Enter EPR on the menu. (You have now overwritten the Flower
program). The system is now ready to accept program
Instructions.

(2) Enter 123ABC. The result is an error report. (Section 5.4
describes the various types.) ENTER to cancel it. (EN on the
screen means ENTER).

(3) Enter FORWARD 6 (Note the single space). Enter END. That is
an accepted program. ENTER twice to return to the Menu.

(4) Enter R on the Menu to run the program, and watch the
display. Check the 6 forward steps taken by the Snail. ENTER
to return to the Menu.

(5) Enter EPR on the Menu, and then the following program, (using
ENTER after each Instruction).

REPEAT 6
BACKWARD 1
RFINISH
END

(6) Return to the Menu and run the program with R. Notice the
effect of REPEAT and BACKWARD.

(7) Enter L on the Menu to list the program. ENTER to get the
(P)ROC? message, then enter P to convert the program to a
procedure. A request for a procedure name will be shown. Enter
SIXBAC. A request for a procedure number will be shown.
Enter 1.

(8) Enter the following program, (EPR), which uses the procedure
SIXBAC, and run it.

REPEAT 2
PROCEDURE SIXBAC
RFINISH
END

Notice the effect of using the procedure twice (by repeating it).

(9) Enter and run the following programs, given with abbreviated
commands. Use chapter 5 to check the command names. Whilst
entering these programs investigate the effects of entering U and
Z.

SN (b) PO 10,10 (c) RE 9
Rl 90 RE 4 FO 15
FO 8 Rl 90 Rl 160
END FO 8 RF

RF END
END

(10) Enter P on the Menu, and then give the name SQUARE to a
procedure. Give it the number 2. Write the procedure
Instructions to give a square of 6 steps each side. (Hint — look
at example 9(b) above). Enter and run a program to use pro­
cedure SQUARE. (Hint — look at (8) above, but there is no
need to REPEAT the procedure).

(11) Use N on the Menu and see what happens.

(12) Try entering and running this program:

RE 3
PR SQUARE
Rl 120
RF
END

(13) Enter E on the Menu for Edit. Enter line number 3. Enter R
for Replace. Enter the Instruction Rl 90 (to replace the
Instruction Rl 120), then END. When the changed program has
been listed, enter Z to finish the Edit. Run the revised
program.

(14) List the program and convert it to a procedure named
BLOCKS, number 3. Enter and run the following program:

PO 20,20
PR BLOCKS
PO 40,20
PR BLOCKS
END

Note how a hierarchy of procedures may be built up, each
using other procedures. How would you make the two Blocks
appear the same way around?

3.5 Variables

The next set of examples introduces the use of variables. These add
considerably to the power of the SNAIL LOGO language.

A variable is a numeric value which has a name. It is referred to by
its name, so the number which it represents can be any value and can
change, which is why it is called a variable.

SNAIL LOGO has eight different variables, named A,B,C,D,E,F,G,H.
They can all have any positive or negative numeric value. Only
positive whole number values can be entered directly, but negative
or fractional values can be obtained by performing arithmetic on
the variables.

The variables do not all behave in the same way. There are two
different types, "G lobal" variables and "Local" variables.

Global Variables: E,F,G,H

A Global variable is available to, and can be used by, any program or
procedure in the SNAIL LOGO system. If some procedure called
APPLE sets E to a value of 17, procedure ORANGE can read and
use and change that value. There is only one E, one F, one G, and
one H.

Local Variables: A,B,C,D

There are many copies of each local variable. Every procedure and
the program has its own separate copy. If the program sets A=3,
procedure APPLE cannot see or use that value of 3. APPLE might
set its A=24 and this would not disturb the value of 3 in the
program's copy of A. Procedure ORANGE can use yet another
different value and all the values of A would exist separately.

There is one way in which a program or procedure can set the
values of A,B or C (not D) for another procedure. That is by using
the PROCEDURE instruction. PR APPLE, 9 not only calls the
procedure APPLE, but sets the value of procedure APPLE'S copy of
A to 9. The PROCEDURE instruction does not affect the value of
the copy of A for the program or procedure in which it occurs. The
use of this facility is described below under the Procedures and
Parameters heading in section 3.6.

Variable D

Variable D is basically an ordinary local variable and can be used as
such. However it is used by the SNAIL LOGO system to hold the
direction in which the Snail is pointing on entry to programs and
procedures. This allows the RNORTH (Relative North) command to
operate, by enabling the "North" direction to be rotated as a pro­
cedure is rotated. If D is altered by Instructions, RNORTH will not
work correctly, though this effect can be useful in advanced
programs.

Controlling and Using Variables

Variables can be used in many Instructions, such as FORWARD A
and REPEAT F. Flowever they have to be given values before being
used. Initially SNAIL LOGO sets all variables to O. Other values can
be set by a PROCEDURE Instruction as described above, and by
several other types of Instruction.

SET

INCREASE

DECREASE

MAKE

directly gives a value
e.g. SET C.19

adds a number to the present value
e.g. INC F,3

subtracts a number from the present value
e.g. DEC G, 1

allows arithmetic to be carried out
e.g. MAKE A - B + C

MAKE C = F / G
MAKE D = H * A
MAKE E = D - A

To see the value of a variable on the display screen as the program
runs, use the SHOW Instruction e.g. SHOW C.

Note that for multiplication using the MAKE Instruction, the star
symbol must be used, as for Basic.

(1) Enter and run the following programs:

SET A, 0 (b) SET A,4
RE 6 SET B,5
INC A,20 MAG=A+B
FO 6 MA D=A/B
CE SH G
SH A SH D
Rl A END
RF
END

Input the following procedure TAR (give it the number 5)
by entering P on the Menu, then enter the program to use
it, and run it.

Program Procedure TAR

SE H,5 Rl 90
RE 4 DE H,1
FO 5 FO H
PR TAR RN
CE END
Rl 90
RF
END

This program illustrates both the use of the RN Instruction
(try replacing it with NORTH), and the global nature of the
H variable.

3.6 Procedures and Parameters

These examples illustrate the use of parameters in procedures. Look
at the general form of PROCEDURE Instructions in section 5.1
before starting.

The variables A,B and C used in a procedure can be given values by
the PROCEDURE Instruction which calls that procedure. For
example:

PROCEDURE APPLE,3,10,90

The first number given after the procedure name sets the value of A
in procedure APPLE, the second sets B and the third sets C. This
technique is referred to as passing parameters to a procedure. Thus a
program may call the same procedure a number of times and obtain
different results by passing different parameters. For example, three
different sized squares could be drawn with the three Instructions:

PROC SQUARE,3 PROC SQUARE,5 PROC SQUARE, 10

Note that if a PROCEDURE Instruction is included in a REPEAT
loop, the parameters are passed only on the first call. Thus the para­
meters are not reset on each loop cycle.

(1) Use P on the Menu and enter the following procedure named
CIRCLE (Number 4):

RE 8
FO A
RI 45
RF
END

Enter and run the following program. Notice the parameter
value of 2 given to the procedure, which is then used as the
value for A in the procedure.

RI 20
RE 4
PR CIRCLE, 2
LE 90
RF
END

(2) Use the Edit "Replace" facility to change line 3 of the program
to PR CIRCLE, 4 and run it again. Then again use Edit to
“ Insert" the Instruction PR CIRCLE, 2 as well as, and next to,
PR CIRCLE, 4 (Use either line number 3 or line number 4).
Run this program.

(3) Write the following procedure, POLY (decide on your own
numbers from now on), and a program to run it with different
values of A.

Procedure POLY Program

MA B=E/A
RE A
FO 6
LE B
RF
END

SET E, 360
PR POLY, 3
PR POLY, 5
PR POLY, 7
END

Using the relationship that A times B = 360 gives this particular
kind of result. Try other relationships.

If you have two minutes to spare, this program is worth waiting
for. It uses POLY. The same effect could be obtained, and
would run faster, by writing it as a single program.
SET E,360
RE 16
PR POLY,8
Rl 22.5
RF
END

(4) Try this:

Procedure SPIRAL
FOC
IN C,1
Rl 90
END

Program
RE 50
PR SPIRAL,1,1,1
RF
END

Note that the values for A and B are dummies, necessary to set
C. Stop this before completion if you wish, by pressing Z.

(5) Write a procedure TRISPI,
a triangular spiral effect.

(6) Try this:

Procedure SPITRI
FO A
IN A,1
Rl 120
END

a program to use it, that will give

Program
RE 50
PR SPITRI,1
Rl 5
RF
END

(7) Try this:

Procedure GALAXY
FO A
IN A,1
Rl 149
END

Program
UP
RE 50
OU
PR GALAXY, 1
RF
END

Experiment with different angles in the GALAXY procedure.

(8) Finally note that the simple procedure and program below can
be used for many shapes, simply by using different parameter
values. Try the example given:

Procedure FLEX I Program
REA PR FLEXI,3,4,720
f o b e n d
Rl C
RF
END

3.7 Recursive Procedures

As has been shown, hierarchic procedures can be written so that a
program may call a procedure HOUSE, which may call a procedure
DOOR, which may call a procedure KNOB. However a procedure
may also call itself; this process is known as recursion.

(1) Try this:

Procedure FRED Program

FO 1 PR FRED
PR FRED END
END

(2) Variables may be used, and changed, for example:

Procedure JOE Program

FO A PR JOE, 1
IN A,1 END
PR JOE, 1
END

If Bounce is set and Z is not used, both of the above examples
will run until the recursion stack is exhausted, when an error
message END OF RECURSION STACK will be given. To avoid
this, the I FEND Instruction is useful.

(3) Procedure JIM Program

SET B, 5 PR JIM, 1
f o a ' e n d
IN A, 1
IFEND A>B
PR JIM, 1
END

The conditions for an IFEND Instruction may use local or
global variables. The latter may be set by other procedures or by
program. (How could example 3 above be speeded up slightly
by using a global variable?) Note that IFEND may be used in
any situation, not just with recursive procedures. Use within a
Repeat loop will stop execution at that point however.

Careful examination of the running of the examples (2) and (3)
above will show that two single steps are taken before A incre­
ments to 2,3 etc. This illustrates an important point. When a pro­
cedure calls itself recursively, the same copies of its local variables
are used, so that changes to variables made in the procedure are
effective the next time the procedure calls itself. However, this
set of variables is not the same set as allocated by the program
when it first calls the procedure. Thus on the first call, the
program may set the variables and on the recursive call within
the procedure the values of the variables may again be defined,
not necessarily to the same values. It is only on the first re­
cursive call that the initial value settings wHI be applied how­
ever, else changes made to variables during the procedure would

be cancelled on each recursive call. It should now be possible to
see why two single steps are first taken by the above examples.
Try experimenting with different values and plenty of SHOW
instructions to see the effects. Use an initial value of 0 in the
program call to avoid an initial movement, as in the next
example.

(4) Try this:

Procedure REC Program

RE 8
FO A
RI 45
RF
IN A,1
IF A >H
PR REC,1
END

(5) Try this:

SE H,5
PR REC,0
END

Procedure SQR Program

RE 4
FO A
Rl 90
RF
IN A,1
Rl 25
PR SQR,1
END

3.8 Calculations

PR SQR, 1
END

Simple calculations related to shapes may be made as follows:

(1) Perimeter Length

Procedure MOV Program

MA H=H+A
FO A
SH H
Rl B
END

SE H,0
RE 2
PR MOV,6,90
PR MOV,4,90
RF
END

(2) Area

Areas can be calculated in a generally similar manner to peri­
meters but the area must be sectioned into rectangles and tr i­
angles. This can be shown effectively by first drawing an out­
line, then sectioning it and calculating the area of each section
as it is drawn in, with a second variable to sum the running
total. Colour is effective here. A variety of detailed techniques
may be used, and the exercise is left as a project for the user.

4. THE SNAIL LOGO OPERATING SYSTEM

4.1 Introduction

This chapter of the Guide does not directly deal with the SNAIL
LOGO language or its use. Rather it covers all the aspects of operat
ing the SNAIL LOGO system on your computer If you are not
already familiar with the usual features of an opeiating system, it
does not matter. They are all provided in a simple to use form and
allow the SNAIL LOGO language to he used in a flexible way:

- To enter a sequence of language Instructions as a program.

- To warn of incorrect or impossible Instructions.

To make changes, deletions or additions to a progiam.

- To enter a sequence of Instructions as a piocedure, or to
convert a program to a procedure, or to cancel a procedure

- To list a program or a procedure on the screen, and print it, and
to list the names of presently defined procedures.

- To run a program, and draw the resulting Snail tiack on the
screen, then print the result.

4.2 Loading the SNAIL LOGO system

(1) Read your computer handbook to check the general points
regarding loading programs from tape.

(2) Insert the tape in the tape recorder, and LOAD "

(3) After a few seconds the title display should appeal. If it does
not, adjust the volume setting on the tape tecoidei and try
again. To complete loading then takes a further 1 minutes.
When loading is completed, the main menu is shown.

4.3 Operating System Facilities

(1) General Aspects

The Menu display is introduced in section 3.2. All operating
system facilities are accessed from the Menu, and return to the
Menu after use. Access them by entering the code letter or
letters shown against each facility on the Menu

In general, use the ENTER key to progress through a facility
and return to the Menu. The one exception to this arises after
Instruction entry has been started. This may be for a program
(after EPR), for a procedure (aftei P), oi for insertion of
Instructions during an Edit. Once Instruction entry has been
started it must either be finished with an END Instruction, or
cancelled by entering Z, before it is possible to return to the
Menu. This applies even if no Instructions have actually been
entered.

Enter Z to cancel an Instruction entry process. Enter U to
delete just the last Instruction entered, though U may be used
repeatedly to delete a number of Instructions.

Each facility is described below. The easiest way to become
familiar with them is to use them! General guidance and error
messages are provided throughout.

All SNAIL LOGO inputs need CAPITAL letters, therefore make
sure that the CAPS LOCK remains set.

Have a glance at the reference list of language commands in
chapter 5 before studying the rest of this section if you have
not already done so.

(2) Enter Program (EPR)

This facility allows SNAIL LOGO Instructions to be entered in
sequence to form a program, entering each one with the ENTER
key. Because entering a new program cancels the previous one,
a 3 letter code is used to minimise the chance of accidents.

Line numbering is automatic. The simple organisation of
command words and numbers (the Instruction syntax) is shown
in chapter 5. One space is required between commands and a
number or name, and commas are used to separate variables and
numbers. If Instructions do not have a correct syntax, or can
not be understood, an error report is given. A list of these
reports appears in section 5.4. Following an error report use
ENTER to cancel that Instruction. Only the first two letters of
each command name are checked, therefore the other letters
can be omitted and an abbreviated form used, which is usually
preferred after a little use. (This also allows commands like
FOSSIL 19 and CLOUD to be input and accepted as
FORWARD 19 and CLEAR however!)

The last Instruction in every program (even for a "do nothing"
program with no other Instructions) must be END.

Instructions which are within a Repeat loop are indented in the
listing, making the repeated sections easy to see. Nested (that is,
inside each other) repeats are further indented.

The number of REPEAT and RFINISH Instructions in a
program must be equal. If they are not, a message saying RF
NOT EQUAL RE gives a warning when you try to END, and
does not permit the END Instruction. Press ENTER to cancel
the message, then add RE or RF Instructions as necessary. The
indentation makes this very easy to check. Almost always, one
more RF is needed. Use U and Z as necessary.

After END is used, an ACCEPTED message is given, which
means what it says, and at that stage two successive messages
(P)ROC? and (C)OPV? indicate that the program can, if you
wish, be converted to a procedure by entering P (followed by
a procedure name and number), and/or copied to a printer
with C.

(3) List Program (L)

This gives a listing of the current program, and after an ENTER, the
standard options are given to convert the program to a procedure, or
copy it to a printer.

(4) Edit Program (E)

This facility allows changes to be made to a program by replacing,
deleting or inserting Instructions. Start by entering a line number.
Deletions and replacements are of the specified line. Insertions are
made before the specified line, so use a number one more than that
of the last line to add extra Instructions at the end of the program.
If a "s illy" line number is given, there is a return to the Menu (via
(C)OPV?) if the number was less than 999. (Rubbish inputs are
ignored, as in other aspects of SNAIL LOGO).

After specifying a line number the option to Replace, Insert or
Delete is given. Enter R,l or D. For either R or I, a heading of
"Inserted Instructions" appears and Instructions can be entered in
the usual way. Note that the Instructions entered are line numbered
from I at this stage.

Finish a set of "Inserted Instructions" with END to return to the
Edit line number selection stage. Note that END is necessary to
return, even if no Instructions have actually been inserted. A second
line number can then selected for a further edit process. When all
changes are complete, return to the Menu with Z. The Menu return
is via the (C)OPY? option.

Note that when inserting or replacing Instructions, any number of
them can be put in together. Note also that when using Edit, single
RE or RF Instructions can be added or deleted (unlike when
Entering a program, when only pairs of an RE and an RF are
accepted). Warnings are given but "s illy" sequences of RE and RF
can therefore be generated by the Editor. Trying to run these will
lead to an error message.

A procedure named in a program PROCEDURE Instruction can be
deleted by having its number used by another procedure definition.
If a program including a PR Instruction with a procedure name
which no longer exists is edited, an error report w ll be given, and
the PR Instruction omitted from the edited version of the program.

(5) Enter Procedure (P)

Procedures can be generated directly with this facility. First a name
for the procedure must be specified, then a procedure number, from
1 to 9 . Any other number will cause a return to the name entry
stage. If either name or number is omitted there is a return to the
Menu. Different numbers must be used when more than one pro­
cedure is needed, as use of a number causes any other procedure
with that number to be overwritten. If two procedures have the
same name, that with the lower number is used when that name is
called by a program.

Procedures must be defined i.e. named, numbered and entered (the
Instructions can be simply END for a "do nothing" procedure)
before trying to refer to that procedure by name in a PR Instruction.

SNAIL — Causes a Snail symbol to be displayed at the
end of each track produced by the
following instructions.

NSNAIL — Cancels the effect of SNAIL.

DOWN — Causes Snail tracks (and symbol) generated
after this instruction to be visible.

UP — Causes Snail tracks (and symbol) generated
after this instruction to be invisible.

OUTPUT — Causes an element of Snail track to be printed
at the current position.

CENTRE — Moves the current position to the screen centre.

NORTH — Sets the current direction towards the top of
the screen.

RNORTH — Sets the current direction to the initial
direction when the program or procedure
started.

CLEAR — Clears the screen.

PROCEDURE name

PROCEDURE name,n,n,n (1,2 or 3 n's may be specified)

PROCEDURE Instructions action the Instruction sequence which has
previously been defined by the name. If desired one, two or three para­
meter values may be passed to the procedure, by including them as shown
after the name, separated by commas. Within the procedure the para­
meters are identified as A, B and C. The parameter values in the
PROCEDURE instruction are always assigned in the sequence A, B, C.

END — Must be used as the last Instruction in programs and
procedures.

Instruction

FORWARD, BACKWARD
REPEAT. SET
INCREASE, DECREASE

RIGHT, LEFT
PROCEDURE

POSITION

Range for n and N

Whole number 0 to 999

Whole number 0 to 999
and the value of 22.5

1 to 62 for horizontal
1 to 42 for vertical

COLOUR 0 to 6

5.2 Notes on Instruction Use

(1) All Instructions may be abbreviated down to a minimum of the
first two letters, except END.

(2) REPEAT Instructions must be followed by RFINISH at some
point. Repeat loops may be nested within each other, and
multiple loops may be used, both within programs and
procedures.

(3) Initial values of Variables are zero.

(4) A Snail symbol can be removed by rewriting it at the same
location. It can be displayed at the current location by the
sequence SN FO 0. (Try SN FO 0 FO 0).

(5) When A, B or C are used in procedures, values can be specified
in the PR Instruction when the procedure is called. A dummy
value must be given for A and B, if C alone is to be specified,
and for A if B alone is needed, to maintain the sequence A,B,C.

(6) Before any Instructions are given in a program, initial conditions
are CENTRE, NORTH, DOWN, NSNAIL, COLOUR O.

(7) For colour number definitions see computer manual.

(8) REO and RE1 both give a single pass through instructions.

5.3 Operating Limits

(1) Running the examples and some of your own will show how
short the typical SNAIL LOGO program is. The following limits
should be noted in that light:

Screen size

Max Procedure Length

Max Program Length

Max No. of Procs

Max Length of Proc Name

62 steps by 42 steps

15 instructions or 70 chars

45 instructions or 200 chars

9

7 chars (alpha only)

Max No. of chars in parameter values is 12 including decimal
points.

Max No. of proc calls in a program or a procedure is 10

Max nested depth of Repeat loops (program plus procs) is 15.

These maxima are rarely encountered. The abbreviated form of
Instructions is the normal one, so the 70/200 characters lim it is
ample. The normal program is under 20 Instructions, so can fit
one screen. A paging mechanism is provided for exceptional
cases.

(2) Exceptionally long Instructions within nested repeat loops,
(which are indented for each loop), can over flow on to the next
line of the screen. This does not cause any problem either for
the program listing or the editor, unless there is more than one,
and the screen is full, ana the 200 character lim it has not been
hit. In that case screen overflow can occur and a BASIC
"Continue" Instruction be needed, though this is most unlikely
to occur.

5.4 Error Reports

Error and warning reports are given under various circumstances. In
all cases use ENTER to clear the report. Subsequent actions depend
upon the report, and are indicated below.

(1) Instruction Syntax Errors

COMMAND ERR
The command word in the Instruction has not been recognized.

NUM IN COMMD
A number has been found in the Instruction command. Usually
caused by omitting a space.

NO SPACE REQ
Some inappropriate space has been found in the Instruction.
NUM/NAME ERR
Some inappropriate characters have been found in the part of
the Instruction which should be a number, a parameter value
or a procedure name.
NUM NO GOOD
A number outside the range given in section 5.1 has been found.
NUM/NAME REQ
A number, parameter A/B/C or procedure name has not been
given.
NUMBER ??
Some character other than a number has been found where a
number is expected.

NOT VAR NAME
Some character other than A to H has been found where a
variable name is expected.

PROCEDURE ??
The procedure name given is not recognised.

For all Instruction errors the offending Instruction is cancelled
by the ENTER used to clear the error message.

(2) Other Errors and Warnings

10 PROCS MAX
At attempt has been made to use 11 PROCEDURE Instructions
in a program or a procedure.

REP LOOP ERROR
An invalid REPEAT/RF INISH sequence has been found during
a program run, e.g. RF.......................RE, or RF and RE in un­
equal numbers. The run is aborted and ENTER returns to the
menu.

REPEAT LOOP ONLY PART EDITED
A warning given by the Editor, intended to prevent the problem
indicated immediately above.

ONLY 15 INSTRS IN PROCEDURES
An attempt has been made to use 15 Instructions other than
END in a procedure, or a conversion of a program to a pro­
cedure. (There would therefore be no room for the END).

NO SPACE LEFT
Arises if a procedure exceeds 70 characters or a program 200
characters. Unlikely if abbreviated Instructions are used. The
program or procedure is cancelled by ENTER.

PROC NAME CANCELLED
Shown after an ENTER to clear the message arising from the
two cases immediately above.

PAGE FULL/CONT
Shown when a program exceeds 20 Instructions. Use ENTER,
and a new page will be generated, headed by CONT. Line
numbers will restart from 1 however, so the Editor can not be
used on subsequent pages. A program of up to 45 Instructions
(on 3 pages) can be entered and run.

WALL
Shown when a program run has caused the Snail to hit the edge
of the drawing area (even if Snail is invisible at the time!).
ENTER returns to the Menu.

RF NOT EQUAL RE
See section 4.3(2)

END OF RECURSION STACK
Procedures may call themselves up to a maximum of 50 times
only.

REP LOOP IFEND
A Repeat loop has been terminated by an IFEND Instruction.
Execution of program can not continue.

DIVIDE BY ZERO
An attempt has been made to divide a variable by a variable
having a value of zero.

Appendix 1 - Use of Zeaker Micro-turtle

1 Introduction

Although SNAIL LOGO it complete end self-contained, it can also be used to
control the Zeaker micro-turtle, either as an alternative to the Snail track, or in
parallel, when both Snail and the micro-turtle will operate. All of the standard
SNAIL LOGO instructions may be used with the micro-turtle, though the
following notes on their operation applied:

SNAIL - Causes the micro-turtle to operate its horn at the end of each
movement.

OUTPUT. CENTRE
NORTH, RNORTH
CLEAR, COLOUR
POSITION

2 Control Facilities

The micro-turtle is controlled by a sub-menu selected by the letter T on the
main menu. The main menu indicates whether the Snail, the micro-turtle, or
both are currently selected by showing the Snail symbol and/or the letter T
against the RUN option.

On th e s u b -m e n u th e f o l l o w i n g f a c i l i t i e s are p r o v i d ed :

a) To select micro-turtle control and turn the Snail ; T
display off

b) To select both the micro-turtle control and Snail. X

c) To turn micro-turtle control off and to select the : O
Snail display.

d) To adjust the length of a "turtle step", by a number 1-9 : S

e) To calibrate right and left hand turns by setting K
coefficients in the range 1 to 96. These should be separately
adjusted to give accurate right and left 90 degree turns.

f) To select the output drive port addres for the : P
micro-turtle. Normally this should be left set to the standard
value of 63.

Standard initial settings for facilities (d). (e) and (f) are 1, 50 and 63
respectively. Snail/micro-turtle status and all current values ere displayed on
the sub-menu.

- Are inapplicable to the micro-turtle and do not
have any

