V e r s i o n 3 - 5

Operating Syst

by
Freddy Vachha B.Sc.

1985

THE USER MANUAL

THE ULTIMATE zX TOOLKIT

FOR THE

SPECTRUM PLUS AMD 48K SPECTRUM

Adapted fro* the Original Supercode
written by F.A.Vachha B.Sc. and V.B.Ruasey

CONTENTH

I INTRODUCTION .envvennnnsn *
11 USING SUFERCODE X P
III TABLE OF ROUTINES 12

v DETAILS OF ROUTINES 15

Published and distributed by Deep Thought Boftware, . Hawthinn
Road, Chapel Allerton, Leeds LS7 4PH, United kingdum.

Copyright F.A.Vachha B.Sc. 1985.

The material in this User Manual and on the tape Hupercode 3.7,
or any part thereof, shall not be copied for ume by any other
person or organization, neither shall 1t he loaned or hired,
without the prior permission in writing from the publisher.
Where any part of Supercode 3.9 {s used commercially
otherwise a prominent credit of the use muat bhe given both to
Supercode 3.5, its author F.A.Vachha B.#Hc. and its publiwher.
While every care has been taken and wvery weffort made 4n the
preparation of this manual and program, the publisher underta
no responsibility for any errors nor liability for dama
however arising, from their use.

-3-
T oeunns . INTRODUCTION

1.1 Supercode III is the finest toolkit available for any
computer in the world. Its like has not been seen before. It
consists of one hundred and fifty two (yes, 152!') purpose
written state-of-the-art machine code routines, compact and
almost all relocatable, accessed by a powerful BASIC program.
The routines can be called either from BASIC or from machine
code, either within your program or as direct commands. And, if
you have a ZX Interface One, you will be able to transfer
Supercode % to Microcartridge as easy as 1-2-3 (no program
changes of any sort at all, the program does it all for you) for
the ultima in convenience (if you don’'t have an Interface One,
all the af Supercode’s features are still there for youw).

1.2 Congratulations on purchasing Supercode III ! It will give
you countless hours of pleasure. And there is an added bonus: as
you have purchased this copy after Zlst December 1984 vyou are
the owner of Supercode III with its Version 3.5 operating
system, which gets the very best out of Supercode and is &
great improvement (both in speed and in friendliness) over its
predecessor 3.0. You can confirm that you have the very latest
version by checking the colourful Screen you get while loading
the program: it will say ‘Version 3.5 on it.

1.3 The routines in Supercode 2.5 (which is Supercode III with
the Version 3.5 Operating system) can be broadly classified
under two headings: -

&) UTILITIES give your programming far more flexibility than
you would have imagined possible as a BASIC programmer . Indeed,
Supercode 3.5 begins where the Spectrum ROM left off! The
routines include a variable speed TRACE, ON ERROR GOTO, ON BREAK
GOTD (the last two can make youwr program breakproof and
crashproof), SUFERCATALOGUE, several types of RENUMBER (the full
version being able to handle all GOTDs, GOSUEs, RESTOREs, LISTs
LLIBTs,LINEs etc and highlights calculated arguments), Block
Moves and Deletes, Line Moves and Deletes, Frogram Compacting
Routines (such as REMkill,Line Contract,Number->VAL"" converter)
Variable Search+lList+Replace, Frogram scrambling routines, an
ultrafast random number generator, a SCREEN# compactor/expander,
all the routines you will ever need for Channel, Network, Data
file and Microdrive manipulation, diagnostics, Tape Header
Reader, Frogram Editing aids like Amend and the Case Converters,
and much much more besides....

b) SFECIAL EFFECTS of all sorts are to be found within
Supercode 3.5. Every conceivable scroll, in high (pixel) or low
(character) resolution, up/down/lett/right/diagonal, the whole
screen or a user—-definable window, with selectable wrap-around,
scroll-off, ripple/shutter effects, with or without attributes.
Also, instant changes or swaps of INK, FAFPER, BRIGHT, FLASH;
instant filling, saving, exchanging, overprinting, merging and
inverting of screens, ‘impossible’ border effects, five sound
generators (simulation of whistles,horns,bells,laser zaps,etc),
a screen interrogator (useful for finding what is where on a
screen, say for detecting collisions in an arcade game) and so
very much more..... Any of these routines incorporated in your
own programs could make you into an overnight machine code
arcade/adventure game programmer, with the colossal speed of ZI80
machine code at your disposal. Yes, Supercode 3.5 could well
repay your investment hundreds or thousands of times over.

Clearly, Supercode 3.5 is in a class of its own, with over FOUR
TIMES AS MANY ROUTINES AS ANY OF ITS CURRENTLY AVAILABLE
COMPETITORS. It incorporates many features never previously
available to home microcomputer users.

“h-

1.4 Supercode 3.5 will work oun wither the Spectrum Plus or on
the 48K Spectrum computer. It Iw fully compatible with all
approved Sinclair accessories (such as the ZX Printer, the Primm
modem, ZX Interfaces One and [wo, etc). While any properly
designed Spectrum accessory (thiw includes most keyboards, RAM
extensions, sound generators and joystick controllers) should
also work with SBupercode 3.5, we cannot guarantee such
operation. In exceptional camwew it may be necessary to
disconnect such devices before loading Bupercode 3.5. This is th
fault of the device (which {interferes with the Spectrum
Operating System) and not of Supercode 3.5, Devices you are
specifically warned against include accessories (specially
printers) for the U.S8. TB1000/2048/ 2068 computers. They are
liable to permanently damage your Spectrum.

1.5 The BASIC program which enables you to eccess Supercode’s
152 routines is there only for your convenience. The program is
NOT in any way essential to the operation of the routines:
indeed when you use the routines in your own programs or as
program preparation aids, it will not be present at all. What
the BASIC program does do is largely replace the need for this
manual - it is designed like a book, with some 200 screen pages.
Each routine has a page to itself, and that page contains all
you need to know about the routine: its name,purpose, address in
memory, length in bytes, how to call/access it, how to Save it,
any customising FOKEs to tailor it to vyour very specific
purpose (say in defining the length,width and position of a
scren window and the attribute value(s) you wish to be scrolled
within it), whether it is relocatable (if not, how to move it),
what accessories (eg; Interface One) it requires, and so on.
A menu of commands is available at each such page: in most
cases, you can actually have an example of the routine working
(great fun to watch) fully under program control. This can be
repeated as often as you wish. You can also return to that page,
to the next page in sequence, to any specified page or back to
the Index; print the details to an attached printer; quit to
BASIC or Save and automatically verify the routine to either
tape or any (1-8) microdrive, with the facility of using either
the default filename or of defining your own filename, and all
this at Jjust the touch of a key. The program is fully
error—trapped using its own ON ERROR GOTO routine.

1.6 Other pages not specific to individual routines give menus
with similar options as well as options to Locate routines, to
turn the pages of the Index in sequence or jump to & wpecific
page, or have a Demonstration of a compendium of routines, or
Transfer the whole of Supercode 3.5 from tape to microcartridge.
Do not let the wealth of options put you off ~ Supercode 3.9 iws
incredibly user—friendly too.

1.7 Supercode 3.5 has 152 routines but also has the fecility to
modify these routines for specific purposes. The permutations ot
possibilities is enormous, running into the hundrede ot
trillions: Supercode 3.5 is an entire Library on one tape. Used
intelligently, Supercode 3.5 can replace the need for mountains
of software (assemblers,monitors,di blers,debuggers,editors
program generators,games designers,sprite gen tor ycompilers
and other miscellaneous toolkits,print utilities,tape utilities
etc included) and mounds of reference books.

1.8 Yes, Supercode 3.5 has it all (this documentation wae

produced using & word processor which utilises SBupercode
routines !) - I wish you as much satisfaction using it we had
writing it. Happy programming !

-5-
1 P USING SUPERCODE 11l

2.1 Supercode 3.5 is supplied to you on a cassette.
Side A: Routines 1 to 76
Side B: Routines 77 to 152

2.2 Yo load Supercode 3.5, first enter RANDOMIZE USR 0 (or
simply reset) a Spectrum Flus / 48K ZX Spectrum and play the
appropriate side of the cassette. Each side comprises four
blocks:
(i) 8C3.5-1, a short loader program
(ii) SC3.5-2, a colourful display screen
(iii) SCE.5-3, the actual routines + misc. data
(iv) SC3.5-4.x, the BASIC Access program (x=1 for
Side A and x=2 for Side B)

Supercode 3.5 will autostart after about 4 minutes, showing you
a diagnostic display (this tells you whether you loaded from
cassette or from microdrive, whether or not you have a
functional ZX Interface One connected, and the amount (to the
nearest K) of working RAM you have in your computer). Ramtop is
automatically cleared to S51000.

2.3 The first three blocks on Side A are identical to the first
three blocks on Side B. Hence in order to switch from Side A to
Side B you can use a shortcut method: Guit the program using the
@ option. Enter LOAD "". Start playing the other side of the
tape, not from the start but from say 40Z or S0% of the way
through. The program will now autoload.

2.4 As stated in the Introduction, the BASIC Access program is
present only to help you access, tailor and test the routines
easily. It is not in any way essential to the operation of the
routines. If you wish to 1load only the routines from tape,
proceed as follows:
ar» Enter CLEAR 51000:L0AD "SC3.5-3"CODE and play the tape (it
doesn’'t matter which side) from the start (or from about 15% of
the way through to save a little time!). The routines will now
load as a block.
If, however, space is at a premium you have two options. Either:
br»» Save the routines you want, and only those routines,to tape
(possibly relocating them as well to the top of RAM). There is
more information on how to do this later on in this chapter, in
the sections dealing with Menu options and Relocation.

or
c»» Alternatively, some space can be saved by ignoring the data
etc on routines which is loaded en bloc with the routines
themselves. SC3.5-3 is 14535 (hex I8C7) bytes long, starting at
51001 (hex C739) and ending at the very top of RAM,ie 65535 (hex
FFFF). Of this area, the first 4351 (hex 10FF) bytes (from
51001 to 55351 (hex D837)) is data used by the Basic Access
program. The routines themselves occupy just 10184 <(hex 27C8)
bytes, from 55352 (hex D838) to 65535. It is hence possible to
save space by loading the whole block (using the method in a>>»
and then entering SAVE "SC3.5-R"CODE 55352,10184. Record this
file on your own tape (and not on the Supercode tape). You now
have a recording which contains the 152 routines (mean length
exactly 67 bytes) and nothing else, a saving on space of 30%Z on
SC3.5-3 . To use this recording, it is necessary to enter CLEAR
55351 (or any valid lower number, of course) before LOADing.

2.5 Both SC3.5-3 & SC3.5-R will overwrite the UDG area (normally
21%8 bytes starting at 65368 (hex FF58)). If you wish to use
UDGs POKE 23675/6 with the 2 byte equivalent (see 2.6) of a
more suitable location for them (ensure it is above RAMTOP).

—6-

2.6 The term 2-byte equlvalent is one that you will come artime
frequently, both in Supercode 3.5 and in this manual. The ¢ hiiwm

equivalent of a number N is said to be L (less significant bylw)
and M (More significant byte) if, and only if, L + 25&6#M » N, N
being in the range 0 to 65535. For example, the 2 hylw
equivalent of 54321 is 49 (less sig:) and 212 (more sig:) am 47
+ 256%212 = 54321. To compute the 2-byte equivalent of a numbwer
N (say 54321 again) first divide N by 2356, and examine the
answer (54321/256 = 212.1914062). The integer part of the anwwer
(212) is the more significant byte, while the fractional part o4
it (.1914062) when multiplied by 256 and rounded to the nearost
integer, gives the less significant byte(.1914062%256=48.999987.
which when rounded gives 49). Alternatively, one can use routine
101 which does the calculation automatically. Lastly, if you are
required to FOKE X/X+1 with the Z byte equivalent of a number N,
you should FOKE X with the less significant byte and FOKE X+1
with the more significant byte. For example, FOKE 23670/1 with
the 2-byte equivalent of 54321 is accomplished by FOKE 23670,49:
FOKE 23671,212 (the lower/first memory location should always
contain the less significant byte, please note).

2.7 The BASIC Access program has a number of menu options, which

are available at different times. Here is a full list:—

A .. Agaln: This option permits you to see the example of any
routine another time. It is available after each time you
opt to have an example (using E) of a routine.

€ .. Comtinue to next routine: This option, available each time
you access a routine, moves to the next routine in sequence
(ie, if you have been looking at routine 45 it will access
the details of routine 46). If you are at the last routine
for the Side (76 for Side A, 135 for Side B) and you try C
you will be returned to the first page of the Index, except
in the case when the program was loaded from Microdrive and
you are on 76, in which circumstance SC3.5-4.2 will auto-
load from microdrive to allow you to access routine 77.

D.. Demeo: This option is available both from the I[ndex and
after accessing a routine, and allows you to view a rather
colourful and noisy demonstration of the operation of a
random compendium of routines, after which vyou arse duly
returned to the first page of the Index.

n.. lx...l‘x This option iw smvailable after attmuning Certain
routines (an exhaustive list of whith iw provided in the
next chapter) and demonstrates that routine in operation.

I .. Index: This option iw available as & detault when you first
load or restart the progrem, from Have and Locete screens
after accessing a routine. It provides a list of a«ll the
routines, showing their number, name and start adudrees (if
applicable), and & table of options available (all of
which are detailed in this list). Most important (Ieatures
are the pressing of Enter to turn to the next page in the
Menu (also refer to J below), and the entering ot the no:
of a routine (either by typing it in and then Enter, or by
first pressing N and then the number and Enter) wo as to
access that routine. Details of this are given under N.

.. Jump: This permits you to jump to the next page of Lhe
Index (there are 4 Index pages on each side, the firet 3
containing 20 routines and the 4th 16 routines,and thwy are
numbered 1 - 4). Entering an invalid page number will cause
a jump to the next page in sequence (after page 4 conwes
page 1 again). The Jwoption is available from the Index.

L .. Lecate: This routine provides details on the relocation of
routines, giving on-screen instructions on how to modify
some of the routines (namely: 22,23,71,76) clasified as non
relocatable in order to relocate them. L is available from
the Index & after accessing a routine.Refer to 2.8 as well.

-7=

Microdrive: This option is available after accessing a
routine, provided that the routine is non-ROM based and
that a ZX Interface One is connected to the computer (note
that whether or not Supercode 3.5 was itself loaded from a
Microdrive is irrelevant). It allows a routine to be saved
either with its default name or with any name of up to 10
characters of your choice, to any Microdrive (1-8, default
1). Immediately after the Save the routine is Verified: if
there has been an error restart the program with GOTO O and
repeat the Save. If the Save is OK you return to the Index.
Number: This option is available from the Index as well as
after accessing a routine: it allows you to access any
routine by entering a routine number in response to the
prompt. Valid responses are 1-76 on Side A and 77-152 on
Side B, with any other response causing either an error
message or a direct return to the first page of the Index.
There is one exception, though: provided vyou loaded
Supercode 3.5 from Microdrive, entering a routine number in
the range 1-76 from Part 2 (ie, the eguivalent of Side B)
or in the range 77-152 from Part 1 (the eguivalent of Side
A) will cause the program (SC3.5-4.1 or SC3:.5-4.2, as
appropriate) containing the routine you want to load from
Microdrive automatically.

N has another feature too: for example, if you have just
accessed routine 31 and wish to access routine 38 next, all
you need enter is N+7. All mathematical expressions are
valid, so to get routine 60 from routine 10 just enter &*N.
Printer: This option is available on each Index page, on
each routine page, on the Locate page and on the Save page.
FProvided a powered and functional ZX Printer is connected
to the computer when F is used, a printer dump of the
current screen page is obtained.

Quit: This option is available on almost all pages, and
allows you to return to BASIC. There are two ways of re-
starting Supercode 3.5, as explained below:

You will have noticed that Supercode 3.5 is protected
against errors and breaks using routine 65 (ON ERROR GOTO)
- you can check this by pressing BREAK while the program is
running, by entering N when asked Scroll? or by replying 76
or G7 when asked for a routine number, all of which give
different Error Messages (the program even spells out the
Error type as defined in the Appendix to the Spectrum
manual). To restart the program while retaining this error
protection, use GOTO 0. To restart it with the protection
disabled, use GOTO 10 instead. ON NO ACCOUNT USE RUN: the
program will crash and you will have to reload Supercode.
l.’.lﬁ This option is available each time you access a
routine. It allows you to refer to the details/notes on the
routine again (as distinct from A, which gives you the
example again) - you can use it as often as you wish.

Save to Microdrive: This option is available from the Index
as well as after accessing a routine, and gives on-screen
instructions on how to transfer Supercode 3.5 (supplied on
cassette tape) to Microcartridge. The S operation is valid
only when Supercode 3.5 has been loaded from cassette:it is
not meant to be a swift method for pirating copies of the
program (if you try 8 from the version transferred to a
Microdrive, you will get a Copyright warning message)! The
operation of S is as follows:

Load Side A keeping the S key pressed until you are told to
release it. This transfers SC3.5-1 % SC3.5-2 to the blank
microcartridge you have placed in Microdrive 1. Now reload
Side A from the start (not pressing any key) and choose the
8 option once the main program loads. Press the S key to
transfer SC3.5-3 & SC3.5-4.1. Finally, load Side B from the

-8-

start (not pressing any key) and choose the 8 oplion
once the main program loads. This transfers 8SC3.%-4,2 1o
microcartridge, so you now have a complete Supercode Y.™
installed on it. Note the following: The original cartridye
need not be formatted, it will be auto—formatted while you
transfer the first two parts. SC3.5-1 will be transferrwed
with the name ‘run’. To load Supercode 3.5 from microdrive
either enter RUN on a NEWed / just switched on Spectrum, or
enter LOAD *"m"31;"run" .

T .. Tape: This option is available each time you access a non-
ROM / Operating System routine. It permits you to Save the
routine (with either its default name or any 10 character
or less filename specified by you) to tape. Immediately
.after the Save you MUST verify the routine. If the Verify
fails you will be automatically returned to the menu from
which you chose T,and you can attempt the Save again if you
wigh. If the Save is successful you are returned to the
first page of the Index.

2.8 You will often wish to relocate @ routine (ie, locate it at
an address other than the one at which it was supplied) either
because you want to have more room for BASIC or that you wish to
havé another machine code routine at the same address. This
section explains the relocation of Supercode 3.9 routines. Most
of these routines, whose detailed pages do NOT carry the message
‘Non-Relocatable — use Locate’, can be relocated very simply by
uslng either Method ax** or Method b’ below 1- .
» Bave the desired routine to tape or microcartridge. Reset
the Spectrum and load it back using LOAD Name$# CODE N or
LOAD *"M";1:Name$ CODE N where N is the new address at which
you wish the machine code routine to reside. Resave the
routine back to tape or m)rro:artrldge wsing BAVE Name$ CODE
N,L or SAVE *"M";1;Name$ CODE N,L where L repressnts the
lpnth of the routine. This Achioven your objective.
or
Alternatively, to relocate a routine of length L currently
located at € to a new address N, use the following program
1 LET L=(length) :LET Cw(Current Address) iLET Ne (New Address)
2 FOR Z=C+(N<C)*{L-1) TO C+(N>C)#(L-1) BTEF (NC)#*2-1
3 FOKE Z+N-C,FEEK Z:NEXT Z
The routine is now relocated ready for saving.

It is vital to note that the relocated routine MUST be stored
above RAMTOF -~ if necessary, CLEAR & new RAMTOP lower than it.
If stored below RAMTOP it may be corvrupted by,or itself corrupt,
the machine stack,the BABIC program or the variable area, with
certainly undesirable, and probably fatal, results
Another point worthy of mention is that many routines can be
tailored/customised by making certain POKEs. Unless the address
to be FOKEd is in the Systems Variable Area (ie, its address is
lower than 23813) it too should be 'shifted’ by the same amount
as has the routine. For example, if you were to relocate the
routine 11 CHR$ MID/LOW LEFT SCROLL from its current location at
64400 to a new address, say 50000, using either Method a)>> or
b»> above, you would also need to shift the tailoring POKE (POKE
64416 with either 119(for Wrap Around) or S4(for 8Bcroll of)). As
the routine has been shifted by S0000-64400 = -14400,the address
to be POKEd (previously 64416) must also be shifted by the same
amount. The new address to FOKE is hence 64416+(-14400) = 30016.
POKEs to addresses less than 23313\@ust NOT be shifted at all.
To relocate routines which are marked 'non-relocatable’, it is
first necessary to mndlfy them. an experienced machine code
programmer will be able to disassemble and then modify them to
work from whatever location is required (except 77,768,120 & 125
which by their very nature are almost impossible to freely
relocate). However, we have formulated an easy way for the BASIC

s

-9~

programmer to relocate routines 22,23,71 & 76 to addresses that
are integral multiples of 256 away from their original
addresses (ie, 52683 is an integral multiple of 256 away from

58571 because 5S8571-52683=5888 which is exactly 2856%23). Be
warned that this method will NOT work unless this is the case.
Use the following BASIC program:

1 LET L=(length):LET C=(Current Address):LET N=(New Address):LET
= (Routine number (22,23,71 or 76))

OR @=23 THEN LET Z1=228:LET Z2=229

IF @=71 THEN LET Z1=235:LET Z 1

IF @=76 THEN LET Z1=231:LET Z2=271

FOR Z=C TO C+L-1:1IF PEEK Z=Z1 OR PEEK Z=Z2 THEN FOKE Z,FPEEK Z
(N=C) /2

NEXT Z:STOF

RUN this program with the routine in place: the routine will be

modified. Once this is done use either Method ax» or Method bx>»
to relocate it to address N.

O 4+ U by

2.9 In the unlikely event that you wish to MERGE your own BASIC
program with Supercode 3.5 , here is the information you need:
Only use line numbers between 2700 & 2400 for your program.
Further, there is only 9.1K free on Fart 1 (SC3.5-4.1) and 2.2K
free on FPart 2 (8C3.5-4.2), and when the .8K which must be
reserved for temporary Microdrive/Channel files is deducted from
these figures, it leaves FPart 1 with B.3K & Part 2 with 1.4K.
These are the maximum Frogram (incl Variables) sizes which can
be merged with B8C3.5-4.1 & SC3.5-4. respectively. Lastly,
certain variables are reserved for use with Supercode 3.5: their
values must on no account be changed/cleared by vyour program.
Th 2 variables are (with their value in brackets):
DO JECL) ,F(2) ,B4(3) ,H4) ,T(10) ,J (%) ,K (25) ,M(7) ,0(8) ,F(&), B(i1),
R(.04) ,8(255) ,T(24) ,U(2440) ,V (2430) ,W(2600) , X (1000), Y{(40) and
NMAX (7). You are free to use any other variables you choose.

2.10 When you savwe Supercode 3.5 routines for use with your
EASIC programs you may wish that the BASIC % machine code could
be saved as one block rather than as two or more blocks. There
are two ways of doing this:-—

Method 1 This method will work only with tape and not with
Microdrive. Let us say you have a BASIC program called GAME
which is about 10K long (use routine 104 to find its length).
You wish to SAVE it as well as Routine 65, ON ERROR GOTO. As
your program takes up 10K, we need to reserve all memory from
24k (start of BASIC area,approx:) to 24K + 10K + 2K (safety area
for temporary variables etc) = 36kK. Let us then relocate routine
65 s that it starts at around 36000 (say at 36100). To see how
to do that refer to section 2.8 . Now enter CLEAR 459535, (Yes,
this will result in the code being stored below RAMTOF but we
have located it well above the BASIC area with a 2K margin of
error, and far far below the machine stack which grows downwards
from RAMTOF). Save the program and code as code (!) uwsing BSAVE
"GAME" CODE 23755,12417 (12417 being the difference between
36100 + 73 (length of routine 65) - 1 = 36172 and 23755 being
the start address of the BASIC area when no initialised
Interface One is present). Use the method given in routine 116
to make the FOKEs (for the code to autostart when loaded back)
to it before saving it, if you so wish.

Another possible location for routine(s) is in the Printer
Buffer which stretches from 23296 to 23551, provided they will
fit and that a printer is not going to be used by the program.
If ON ERROR GOTO were to be stored here, the save command would
be SAVE "GAME" CODE 23296,12704 (12704 being 36000 - 23296).
Method 2&> This method will work both with tape and microdrives,
and is to be recommended over 1»». It will work with all
routines that are freely relocatable (ie, all but 22,23,71,76,

=10~

77478,120,125 & the RDM/Dperatzng S stem routines). Let um say
you wish to save a routine of le L bytes with your program.
Use routine 84 REM FILL to create a REM statement of length L as

line | of your program. Use routine 68 NON-DELETABLE LINE to
make the line number O, which ensures it will be the first line
in the program. Use routine 88 LINE ADDRESS to find the addruss
of this line: it will be either 23817+or 23759 (depending on (he
presence or absence of an initialised InterfacesOne). Add 1 to
this value: the result is the address to which you must relocate
the routine. With your program in place all the time , reloca
the routine using either Method a*» or br» in section 2.8 . You
have now got the routine POKEd into a REM statement which i
part of your program. To call the routine, do not assume that
the program must remain statically located (with an initialised
Interface One attached, it wil not). The address of the routine
will be PEEK 23635 + 206%PEEK 23636 + 5, so the call should be
RANDOMIZE USR ¢ or PRINT USR or LET L=USR, according to the
routine) PEEK 23635 + 206#PEEK 23636 + S. Further, if a
customising FOKE was located at Start Address + K, the FOKE you
use in your program would be FOKE (FEEK 23635 + 256%FEEK 23636 +
S + K), value.

The program may now be saved to tape or microdrive as a program.

2.11 The 152 Supercode 3.5 routines may be analysed as follows:

SCREEN SCROLLING :- 1-23,37-40,47,48,67,122.

SCREEN EFFECTS 1~ 24— 36 41, 49 54 69 74 76,89,108,118,119,121,
127,133,147,148.

OTHER EFFECTS ~ 42-46,77-7%9,87,102,126,134.

PROG PROTECTION - 58,59,65,66,80,98, 99 114 115,117,123,124,

FROG COMFRESSION :- 64,82, Ba,lOO.

FROG MANIPULATION: - 57,60,61,68,70—‘3,81,B4,85,86,88,90,94~97,
103,104,107,116,135.

GENERAL UTILITIES:- 55,56,62,63,91-93,101,105,106,120.

MDRIVE UTILITIES :- 109-113,125,130,131,136-144.

RS232C UTILITIES :- 128,129,145,1446,149-152.

These headings are very broad and some routines would fit into 2

or more different categories: here for simplicity each routine

has been classified in only one way.

Also note that Routines 109-113,118,125,128-146 and 149-152 all

require an Interface One to be attached to the computer. For

Routines 109-112,125 and 136-144 at least one Microdrive must be

attached as well, or the routines will not work.

2.12 We have seen a lot of things which Supercode 3.3 can do.
Here are two things it cannot do: It cannot teach vyou ZI80
Machine Code, and it cannot create programs totally by itself.
If you want to learn Z80 the best buy by far is ‘Frogramming the
Z80' by Rodnay Zaks. The third revised edition is freely
available (it is published by Sybex, ISBN: 0-89588-094-6) and is
a good deal better than sliced bread! The Spectrum BASIC manual
is excellent too, with the chapters on ‘The Memory’ and 'The
System Variables’' absolutely vital reading. By far the best
guide to the Spectrum ROM is the definitive 'The Complete
Spectrum ROM Disassembly’ by Df Ian Logan % Dr Frank O’'Hara (it
is published by Melbourne House (Publishers) Limited, ISBN:
0-86759-117-X). 1 have examined many books on the Interface One
but am unable to really recommend any to you.

As to creative ideas, these must come from vyou. Creative
software of any seriousness is some way off yet. But Supercode
3.5 should make things easy for you. I will confine myself to
just one example: you want an arcade/adventure with scrolling
screens, colourful pictures, random enemy targets as well as a
galaxians section. For scrolls you have a gigantic choice. To
store and retrieve screen pictures without wasting memory you
can use 147 SCREEN$ COMPRESS & 148 SCREEN$ RETRIEVE. It may be

-11-

possible for you to draw some of the pictures from within your
program itself, using 76 FAINT-FILL to colour it. Random enemy
targets can be produced using 55 RND#&GENERATDR and 54 SCREEN#
FRINT, while collisions/accuracy of fire can be monitored using

3 BUREEN¥ SEARCH. Sound effects for firing is best done with 42
LASBER ZAF (with different values FOKEd in to tailor it for types
of fire) with 44 DUAL-NOTE SOUND-GEN % 46 MULTI-BEEF SIMULATOR
to signal the end of the game, progression to a new level, etc.
Screens can be very elegantly cleared using 19 SHUTTER LEFT-
SCROLL (or SHUTTER RIGHT-SCROLL), possibly preceded by either
18 RIFFLE EFT SCROLL or 20 RIFFLE RIGHT-SCROLL, called
repeatedly, and some calls of 41 ATTR SWOF or 74 FLASH SWOF to
simulate full screen explosions. Galaxian effects are best
caused with 2 FIXEL DOWN SCROLL with successive reprinting of
the lower landscape (29 SCREEN$ MERGE could be handy) or even
the sideways scrolling of it (9 CHR$¥ LOW LEFT-8CROLL or 15 CHR#
LOW RIGHT-SCROLL). Make the character set look more interesting
with 79 SCIFI CHR% SET. Frotect the program with 68 NON-
DELETABLE LINE and 66 ON BREAK GOTO (or 124 DISABLE BREAK). Save
the program with 115 HEADERLESS FILES, check with 80 PROTECT
FROGRAM and 123 ANTI-MERGE FROGRAM. If you wish to be nasty use
78 CONFUSELIST. To save space try 100 COMFRESS NUMBERS and 8
CONTRACT FPROGRAM. To make it look neat, use &0 SUPER-RENUMBER.
That is just a taste of what is possible.......

2.1% Supercode .9 routines are meant for use in your own
programs, and the authors do not wish to exercise any of their
rights under the laws of copyright relating to such use. You are
free to use Supercode 2.5 routines without limitation, except in
other toolkits (a very necessary precaution, as Supercode G
h many imitators but no equals). Further, if you use these
routines in programs which are sold commercially, we reqguire you
to acknowledge the fact that you are using Supercode 3.9
routines both in the advertising copy for the program and within
the program itself (possibly on the loading screen). I am sure
you agree tf these conditions are very reasonable. You do not
require the permission of the authors to use any of the
routines, or pay any royalty to them, provided you comply with
the above conditions.

ITD eeeeenenns TABLE OF ROUTINES

No: Routine Name Address Length (1) (2)
1 FPIXEL UF-SCROLL 64001 RL EX
2 PIXEL DOWN-SCROLL 64098 RL EX
3 CHR¥ / ATTR UP-SCROLL 3190 EX
4 FIXEL LEFT-SCROLL 65462 RL EX
5 PIXEL RIGHT-SCROLL 65494 RL EX
-3 CHR# LEFT-SCROLL L4275 RL EX
7 CHR$ TOP LEFT-SCROLL &L4T00 RL EX
8 CHR# MID LEFT-SCROLL b4T25 RL EX
9 CHR# LOW LEFT-SCROLL 64350 RL EX
10 CHR# TOF/MID LEFT-SCR b4TTE RL EX
11 CHR# MID/LOW LEFT-SCR 64400 RL EX
12 CHR$ RIGHT-SCROLL 64425 RL EX
1z CHR# TOFP RIGHT-SCROLL HA450 RL EX
14 CHR# MID RIGHT-SCROLL L4475 RL EX
15 CHR# LOW RIGHT-SCROLL L4500 RL. EX
16 CHR# TOP/MID RIGHT-SCR 64525 RL EX
17 CHR$ MID/LOW RIGHT-SCR 64550 RL EX
18 RIFFLE LEFT-SCROLL 64575 RL EX
19 SHUTTER LEFT-SCROLL 64593 RL EX
20 RIPPLE RIGHT-SCROLL 64611 RL EX
21 SHUTTER RIGHT-SCROLL bAL2T RL EX
22 FIXEL BOXLEFT SCROLL 58571 EX
23 FIXEL BOXRGHT SCROLL 58608 EX
24 SCREEN# FILL 64828 RL EX
25 SCREEN¥ STORE 64744 RL

26 SCREEN# OVERFRINT &A756 RL EX
27 SCREEN% EXCHANGE 64784 RL EX
28 SCREEN# INVERT 64809 RL EX
29 SCREEN$ MERGE b3976 RL EX
30 INK CHANGE 64858 RL EX
31 PAPER CHANGE 648873 RL EX
32 FLASH ON 64914 RL EX
33 FLASH OFF 64931 RL EX
34 BRIGHT ON 64948 RL EX
35 BRIGHT OFF 64965 RL EX
36 ATTR FILL 64982 RL EX
37 ATTR UF-SCROLL 65026 RL EX
38 ATTR DOWN-SCROLL. 65081 RL EX
39 ATTR LEFT-SCROLL 65204 RL EX
40 ATTR RIGHT-SCROLL 651473 RL EX
41 ATTR SWOF 65256 RL EX
42 LASER ZAF 63950 RL EX
43 UNI-NOTE SOUND-GEN 63647 RL EX
44 DUAL-NOTE SOUND-GEN 64675 RL EX
45 UNI BEEP SIMULATOR &Z000 RL EX
46 MULTI BEEF SIMULATOR 63010 RL EX
47 OBLIQUE SCROLL-OFF 63034 RL EX
48 CHR$ DOWN-SCROLL &3051 RL EX
49 CHR$ ROTATE 63163 RL EX
50 CHR$ REFLECT Y-AXIS 63124 RL EX
S1 CHR$ REFLECT X-AXIS 63143 RL EX
52 24 LINE PRINTING ROM Based EX
53 SCREEN$ SEARCH [-Yelnxad 123 RL.

54 SCREEN$ PRINT 63728 49 RL EX
55 RND# GENERATOR 63777 18 RL EX
S6 BLOCK MEMORY INSERT 63795 11 RL EX

-13-

No: Routine Name Address Length (1) (2)
57 BLOCK LINE ERASE &63BOE 9é RL

58 CHR#$ SWOF &IFOZ 473 RL EX
89 CHR$ SCRAMELE ROM BRased EX
&0 SUPER~RENUMBER 59294 681 RL

61 LINE RENUMBER 64706 I8 Ri.

b2 DEC-*HEX CONVERTER L0595 118 RL EX
b3 HEX->DEC CONVERTER 60713 113 RL EX
b4 REM KILL CONDENSER 60494 101 RL

65 ON ERRORGO TO 60826 73 RL

&b ON EBREAKGO TO 60899 72 RL

&7 FREE-SCROLLER ROM Based EX
68 NON-DELETABLE LINE ROM Based

69 BORDER EFFECTS 60000 B RL EX
70 INITIALISE 63382 108 RL

71 VARIABLESLIST 60222 185 EX
72 STR¥ LIST 6Z490 154 RL EX
73 STR$ REFPLACE bI644 83 RL

74 FLASH SWOF 0162 RL EX
75 BRIGHT SWOF 60192 = RL. EX
76 FAINT-FILL G9136 158 EX
77 RECORD SOUND &SR0 28

78 REFLAY SOUND 65318 32

79 SCIFI CHR# SET S7344 768 RL

80 FROTECT PROGRAM ROM BRased

81 AFFEND STATEMENT 60407 86 RL

82 CONTRACT FROGRAM 61400 687 KL

83 EXFAND FROGRAM 62087 17 RiL.

84 REM FILL 58892 244 RL

85 DATA FILL I205 177 RL.

86 ANALYSE FROGRAM 62404 129 RL EX
87 TAFE HEADER READER 625IT 286 RL

88 LINE ADDRESS 59975 13 RL

89 SCREEN# GRID 62819 I8 RL EX
0 MONOCHROME FROGRAM 62943 54 RL

91 ANALYSE MEMORY 62857 86 RL EX
92 HEXINPUT 65350 112 RL.

93 AWAIT KEYFRESS 60972 24 RL.

94 UFPER-CS STR#¥ 58833 59 RL

95 LOWER-CS STR#% 58774 59 Ri.

96 UPPER-CS PROGRAM 58715 859 RL.

97 LOWER-CS PROGRAM 64211 59 RL.

98 CONFUSELIST 58263 135 RL.

99 UNCONFUSELIST 58198 173 RL.

100 COMPRESS NUMBERS S8115 148 RL

101 2 BYTE CONVERTER ROM Based EX
102 FOREIGN ACCENTS 57176 168 RL EX
103 MEMORY AVAILAEBLE 64197 14 RL EX
104 PROGRAM LENGTH 59988 12 RL. EX
105 RESET 0 N/A

106 BLOCK MEMCOPY 58683 31 RL EX
107 BLOCKLINE COPY &£1000 400 RL

108 STAR/RING DRAW ROM Based EX
109 FAST LOAD MDRVE ROM Based

110 SURE SAVE MDRVE 65277 8 RL

111 MDRVE DIAGNOSIS ROM Based

112 ADAPT PROGRAM 57159 17 RL.

1h-

No: Routine Name Address Length (1) (2)

SURE CLOSE # 57126 33 RL
STOF FROGRAM ROM Based
HEADERLESS FILES 57108 18 RL
AUTORUN CODE ROM Based
ANTI- COFY PROGRAM 57094 14 RL
ATTR RESET ROM Based EX
LOWER SCREEN$ CLS 3438 N/A EX
TRACE VARI-SPEED 56640 450 EX
FARTIALCLS 57090 6 RL EX
LOWER UP-SCROLL 65526 6 RL EX
ANTI- MERGE PROGRAM ROM Based
DISABLE EREAK ROM Based
SUFER-CATALOBUE 55648 992
REACTION TIME ROM Based EX
FSEUDOLOAD 1278 N/A
SEND RS2T2 BYTE 55643 5 RL
RECEIVE RS232 BYTE 55637 6 RL
DESELECT DRIVE 55632 5 RL
SELECT DRIVE 55627 05 RL.
EYEOARD INFUT 55621 6 RL
SCREEN$ OUTFUT 55616 5 RL
FRINTER OUTFUT 55611 5 RL
IF1 INITIALISE 55608 3 RL
OFEN # DATA FILE 55601 7 RL
CLOSE # DATA FILE 55594 7 RL
ERASE MDRVE FILE 55591 3 RL
139 READ NEXT DATARECORD 55584 7 RL
140 SAVE NEXT DATARECORD 55577 7 RL
141 READ RND DATA RECORD 55570 7 RL.
142 READ RND DATA SECTOR 55563 7 RL
143 READ NEXT DATASECTOR 55556 7 RL
144 SAVE NEXT DATASECTOR 55549 7 RL
145 ERASE CHANNEL 55542 7 RL
146 CREATE CHANNEL 55535 7 RL
147 SCREEN$ COMFRESS 55430 105 RL
148 SCREEN$ RETRIEVE 55383 47 RL
149 OPEN#ENET CHANNEL 55376 7 RL.
150 SEND#NET FACKET 55366 10 RL
151 GET #NET PACKET 55359 7 RL
152 CLOSE #NET CHANNEL 55352 7 RL

NOTES

ax*» RL in Column (1) impliés that the routine is relocatable.
If RL is absent, the Ldcate option may state how to modify
routine to make it suitable for relocation.

bx> EX in Column (2) implies that an example of the operation
of the routine is provided in the program.

-15-
IV e DETAILS OF ROUTINES

All routines are called by RANDOMIZE USR start address, (the
latter being found from the table given in III) except where
stated otherwise (eg. 103, called by FRINT USR start address).
Also remember that routines 1-76 are to be found in Fart One
(Side A) and 77-132 in Fart Two (Side E).

Note that the table in III contains the actual names of routines
(restricted as they are by maximum filename lengths) - the names
used here are the expanded forms and the two may hence differ.

1 PIXEL UF-SCROLL

2 PIXEL DOWN-SCROLL

These two routines will scroll the screen up or down one pixel,
leaving the attributes unchanged. Use repeated calls to the
address specified in the table to the scroll as far as required.
By combining these routines with numbers 37-40, joint scrolling
of attributes can be done. Define a suitable box, use an
attribute value of &3 and call the attribute scroll routine once
for every 8 calls of this routine.

I CHRE/AGTTR UF~-SCROLL
This routine is in ROM. Also see routine 122,

4 FIXEL LEFT-SCROLL

5 PIXEL RIGHT-SCROLL

Used for scrolling left or right one pixel. Use as routines 1
and 2. FOKE start address + 13, with 55 (scroll-off) or with 632
(wraparound) or with O (inverse scroll).Also see routines 22-23.

& CHR# LEFT-SCROLL
7 CHRE TOF LEFT-SCROLL
8 CHR# MID LEFT-SCROLL
? CHR# LOW LEFT-SCROLL
10 CHR# TOF/MID LEFT-BCROLL
11 CHR# MID/LOW LEFT-SCROLL

RE RIGHT-SCROLL
TOF RIGHT-SCROLL
MID RIGHT-SCROLL
LOW RIGHT-SCROLL

RE TOF/MID RIGHT-SCROLL
17 CHR# MID/LOW RIGHT-SCROLL
These routines will scroll the screen one CHR# sguare in
each direction, leaving the attributes unchanged. Use repeated
calls to the address specified in III to scroll as far as
required. To scroll attributes call first the routine above, and
then one of routines 37-40, after defining an appropriate box
and setting the attribute value to 63. For a wraparound scroll,
first POKE start address + 16 with 119. To scroll-off, FOKE
start address + 16 with 54.

18 RIFFLE LEFT-8CROLL

19 SHUTTER LEFT-SCROLL

20 RIPFLE RIGHT-SCROLL

21 SHUTTER RIGHT-SCROLL

These four routines are all pixel scrolls affecting the screen
but not the attributes. Ripple rotates each CHR$ about its own
axis while Shutter scrolls-off each CHR$¥ square.

22 FIXEL BOXLEFT SCROLL

This non-relocatable routine pixel scrolls a user—defined box on
the screen. The box must, however, be completely within a third
of the screen i.e. within the first eight lines on the screen,
or the middle eight lines, or the bottom eight lines.

POKE start address + 108, TAE position of the top right-hand

-16-

square of the box i.e. the no. of CHR#s from the left-hand edge
of the screen to its top right-hand corner.

FOKE start address + 109, with 64 if the b
located in the upper third of the display,
and 80 for the lower third.

FOKE start address + 110, width of the box in pixels (i.e. 8 %
number of CHR¥s).

FOKE start address + 111, length of the box in CHR¥s.

To scroll attributes as well, refer to routines 37-40. Call the
attribute routine once for every 8 calls of this routine. Please
note that the above 4 FOKEs must be made each time the routine
ig called. An example BASIC program to do this would be:

10 FOR ZI=1 TO 2285

20 FOKE SB&79,29:FOKE 58680,72:FOKE 58681 ,32:FOKE 58682
Z0 RANDOMIZE USR 58571

40 NEXT Z

scrolled is
the mid third

23 PIXEL BOXRIGHT SCROLL

As for 22 except that the scroll is to the right. The increments
to the start address are now 71, 72, 73 and 74 and the First
FOEE relates to the top left-hand corner of the box. HNote the
routine is non-relocatable.

24 SCREEN¥ FILL

Will +ill & box on the screen with any CHR# code.

FOKE start addrese + 1, CHR# code

FOKE start address + 3, box height in CHR$s

FOEE start address + &, box width in CHR#s

FOEE start address +4/+47, FRINT AT coordinates for the top
left-hand corner of the box.

25 SCREEN# STORE

Baves a screen in memory.

26 SCREEN$ QVERFRINT

Erases the existing screen and prints the stored one.

27 SCREENF EXCHANGE

Swops the existing screen with the stored one.

The three related routines (25,26,27) all use a screen stored
above RAMTOF, using 6912 bytes (24%32%8 pixels+24%32 attributes)
It may be necessary to CLEARR a new lower RAMTOF. To store a
screen from X to X + 6911, you must FOKE start address +1/+2,
2-byte equivalent of X.

Incidentally, you can do a SCREEN$ COFY (ie dump) to printer
with RANDOMIZE USR 37356.

28 SCREEN# INVERT

Will invert the colours over the whole screen (ink and paper
colours will change at each FRINT position without disturbing
the screen).

29 SCREEN$ MERGE

A useful addition to routine 25,26,27. These can be used to
simulate animation effects. A screen stored in RAM is merged
with the current display. FPOKE start address +4/+% with the
2-byte equivalent of the RAM screen’'s first byte. Attribute
values remain unaltered.

30 INK CHANGE
Instantly changes the ink colour over the whole screen.
POKE start address + 1, overall ink colour.

31 PAPER CHANGE
As for ink change, but sets paper colour instead.

-17-

32 FLASH ON

33 FLASH OFF

34 BRIGHT ON

35 BRIGHT OFF

These four routines change the specitied attribute settings
instantly over the whole screen. Contrast these with routines
74-75.

36 ATTR FILL

37 ATTR UFP-SCROLL

38 ATTR DOWN-SCROLL

39 ATTR LEFT-SCROLL

40 ATTR RIGHT-SCROLL

For each of these a box can be defined in which the attributes
will scroll.

FOKE start address + 1, new attribute value

FOKE start address +4/+3, PRINT AT coordinates of the top left
hand corner of the box.

FOKE start address +6, box width in CHR¥s

FOKE start address +7, box height in CHR#s

On routine 39 wraparound can be achieved by FOKE start address +
Z6, 26. To cancel, FOKE start address + 36, 0.

On routine 40 wraparound can be achieved by FORE start address +
4%, 26. To cancel, FOKE start address + 43, 0.

ATTR SWOF

This routine will search the display area for all characters
with a given attribute X, and replace these with a new attribute
Y.

FOKE start address + 1, X

FOKE start address + 2, Y

Refer to ATTR in the index of the Spectrum manual for the
explanation of the numbers to use, especially the explanation of
the ATTR function itself.

42 LASER ZAF
This makes a futwristic laser sound.
FOKE start address + 1, duration.

43 UNI-NOTE SOUND-GEN

This produces a programmable whistle.

FOKE start address + 1, frequency

FOKE start address + 2, span

FOKE start address + 4, duration

FOKe start address + 23, 28 (for up) or 29 (for down)

44 DUAL-NOTE SOUND-GEN

This provides two sound channels.

FOKE start address + 7, duration

FOKE start address + 18, frequency of first note
FPOKE start address + 27, frequency of second note

45 UNI BEEP SIMULATOR

Replaces the ROM BEEF routine.

FOKE start address +1/+2, 2-byte equivalent of the frequency
POKE start address +4/+5, 2-byte equivalent of the duration in
units of .02 second

46 MULTI-BEEF SIMULATOR

This can give amazing bell-like effects.

FOKE start address + 1, pitch decrement per step

FOKE start address + 2, number of notes

POKE start address +4/+5, 2-byte equivalent of initial frequency
FPOKE start address +7/+8, 2-byte equivalent of duration in
milliseconds

-18-
47 OBRLIGUE SCROLL-~OFF
The wierdest scroll of all - call it repeatedly to get the
desired effect.

48 CHR#F DOWN SCROLL

For o call of this routine the screen is scrolled down by 8
1 To scroll attributes as well, use routine 3B (after
defining a suitable box) in conjunction with this routine.

49 CHR¥ ROTATE

S0 CHR# T Y-AXIG

§1 CHR# RE =CT X~-AXIS

These three routines operate on any character set stored in RAM.
It could be the UDGs, the ScifFi CHR#¥ set described in routine
79, the original CHR¥ set copied over from the ROM or any other
set devised by you (see the note on the system variable CHARS

in tt Spectrum manual).

FOEE start address +3/+4 (+1/+2 for routine 51) s Z2-byte
equivalent of the address of the CHR¥ to be transformed

HE 24 LINE FRINTING

To FRINT lists or text uwsing all 24 lines of the screen, use
F @ER6H9,0 just before each print instruction and FOEE 23659,2
ter. Use PAUSE n if necessary to stop a scroll? message
from corrupting the display. If BREAK is pressed while 23659 is
set to O the Spectrum will crash. If the lower part of SCREEN#
scrolls when being reprinted/updated/amended, use routine 119 to
clear it fore each print other than the first one.

Alternative NT##!; AT K,03 to print on lines 22 & 23
=0 for 22,

53 SCREENF SEARCH

This routine finds the CHR¥ code (UDGs included) at the position
last FRINTed at. For example, to find what was printed at X,Y
use FRINT AT X,Y¥3:LET L=USR start address. L. now contains the
required value.

54 SCREENF FRINT
This routine FRINTs a CHR# at any position with any attribute
inot necessarily those preset globally).

E: -t address + 4, Ink colour {(default 1)

address

+ 10, Faper colour (default 6)
start address + 16, Flash (default 1)
start address + 22, Bright (default 1)
address + 28, Inverse (default 0)
address + 34, Over (default O)
L address + 46, CHR#¥ value
address + 40/+43%, AT coordinates for print position

55 RND# GENERATOR

Call with LET L=USR start address. The routine places a random
number in the range 0-65535 in the System Variable SEED: it is
accessed by PEEK 23670 + 256%PEEK 23671.

S6 BLOCKE MEMORY INSERT

This routine inserts & given number from 0-255 into a block of
memory .

FOKE start address + 1, no: of bytes to be inserted

FOKE start address +3/+4, 2 byte—equivalent of address of first
byte to be changed

FOKE start address + &, value to be inserted

In the program example, value 200 is inserted into a section of
SCREENS$.

-19-

57 BLOCK LINE ERASE

This routine can erase series of lines from BASIC programs.
Before calling this routine you must:

FOKE 23728/9, 2-byte equivalent of the number of the first line
to be deleted

RANDOMIZE number of last line to be deleted.

S8 CHR#E SWOF

This routine exchanges all occurrences of the CHR¥ with code
X within a program with the CHR# with code Y (for a list of CHR¥
codes see the chapter on the ASBCII character set in the Spectrum
manual) . UDGs,graphic CHR#s and keywords are all coped with.
FOKE start address + 1, X

FOKE start address + 3, Y

59 CHR# SCRAMELE

23606/7 contains the 2-byte equivalent of the address of the
CHR# set in use. By FOKEing these with random numbers, an
apparently corrupted CHR# set is obtained making vyowr program
very hard to read. To normalise FOKE 23606,0:FO0KE 23607,60. It
is necessary to normalise before any screen printing is done.

60 SUFER~RENUMEBER

This routine will renumber all GOTOs, GOSUBs, LISTs, LLISTs,
LIST#s, RESTOREs, SAVE...LINEs etc. A list is displayed of line
and statement numbers of all calculated (ie,X*®#10+70) and
non—-integer (ie,240.6) arguments which need to be manually
altered by inspection (structured programs will not have any of
these and can hence be renumbered fully automatically). I+ the
argument<rany existing LINE no:,the next valid line no: is used.
FPOKE start address + 286, interval between lines (default 10)
FPOKE start address +288/+289, 2-byte eguivalent of the number
of the first new line (default 10)

If the renumbering would result in line numbers greater than
9999, the interval and first line no: are both set to 1.

61 LINE RENUMBER

A short routine for use where available wmemory is scarce. It
will not renumber GOTOs, GOSUBs etc unlike routine &0,
FPOKE start address +5/+6, 2-byte equivalent of line
FOEE start address +8/+9, 2Z-byte equivalent of the number of the
first new line.

HEX CONVERTER

DEC CONVERTER

These two routines auto-repeat. Enter ‘07 to return to BASIC.
Only integers between O and 65535 (HEX O to FFFF) are allowed.

64 REM KILL CONDENSER
Shortens and speeds up your program by deleting all REM
statements in it.Use routine 103 to determine the memory saving.

65 ON ERROR GOTO

Call this at the start of your program, with say 1 RANDOMIZE USR
start address. On running, errors (other than Interface One
errors with the shadow ROM paged in, which cannot be trapped
will not stop the program but will cause a jump to the line
number whose 2-byte equivalent has been FOEEd into start address
+52/+453 (default 9495). This line can contain any error routine
you fancy (note that PEEK 23681 gives the error number). Error
codes 0,8 and 9 are not trapped by ON ERROR GOTO as they are not
really errors but legitimate program stops. Note that after any
error the machine stack is reset, so RETURN will not function.
Compare this routine with no: 66 . Note that Supercode 3.5 is
itself protected using ON ERROR GOTO (hence the & option !).

-20-

66 ON BREAK GOTO

Similar to no. 65, but only covering errors D (Break), H (Stop
in Input), and L (Break into Frogram) with the error code in
23681 a n. (note that codes go from O to 9 & then A to R,
where A=10,EB=11 etc). POKE start address +5Z/+54 with the
2~byte equivalent of the line number to be jumped to when an
error occurs. Compare also with routine 124.

&7 FREE-SCROLLER

Routine in ROM. To scroll a screen greater than 22 lines long
automatically, include the statement FOKE 23692,n where n is the
number of lines to be scrolled. To scroll forever, include FOKE
672,255 within the leoop that generates the screen output.

s

68 NON-DELETABLE LINE

Routine in ROM. In order to make the first line of your program
difficult to delete, enter LET X=FEEK 232635 + R206*FPEEK 23636 @
FOKE X,0:FOKE X+1,0. It is now suitable +or placing copyright
messages in. More difficult to reverse is to make a REM line in
the middle/end of youwr program non-deletable. First find its
address Y using routine 88, then FOKE Y-4,0:FOKE Y-3,0. The
program will work perfectly (despite the lines being out of
sequence) provided you do not GOTO/GOSUB/RESTORE that line.

&Y BORDER EFFECTS

Froduces a colouwful and eyecatching border pattern.
~ address + 6, duration (from 1 to 127)
address + 20, colow (from O to 7)

address + 29, line spacing (from 1 to 255)

7O INITIALISE
Zeroes all numeric variables/arrays, sets all strings to ™"
(empty) and fills all dimensioned string arrays with CHR$ 32s.

71 VARIABLES LIST

To display all variables (numeric, string, numeric array, string
array % FOR...NEXT loop control variables) used in your program,
enter FRIN : RANDOMIZE USK start address. Useful with routines
70,86 & 103, Note that this routine is non-relocatable.

72 STRE LIST

A powerful Find routine which searches the BASIC program and
lists each line containing a specified sequence of characters.
start address +12, number of characters in the string.
start address +9/+10, 2-byte equivalent of the address of
the first CHR#%¥ code in the string poked by you into memory (the
default is 23296, the start of the printer buffer area

Any character obtainable from the Spectrum keyboard may be
searched for, including keywords, variables and arithmetic
operators (+,-,/ etc.). The following BASIC program demonstrates
the routine in operation.

10 INFUT "ENTER STRING TO BE LOCATED:";N$: FOKE 63502, LEN N$

20 FOR Z=1 TO LEN N#:FOKE 23295+Z, CODE N#$(Z):NEXT Z

30 CLS : RANDOMIZE USR 63490 : PRINT '"NO MORE OCCURRENCES"
Note: To enter a keyword (ie,RUN,FOKE,SAVE etc), enter THEN
followed by the keyword. Backspace the cursor & delete THEN.

73 5TR¥ REFLACE

Similar to routine 72, but replaces the string found with
another string of identical length.

POKE start address + 4, number of CHR#¥ to be replaced

FOKE start address +B/+9, 2-byte equivalent of the address of
the string to be replaced.

FOKE start address + 49/+70, 2-byte equivalent of the address of
the new string.

~21-

74 FLASH SWOF
This routine sets every flashing square on the screen to steady
% every steady square to flashing. Contrast with routines 32/33.

75 BRIGHT SWOF
As for no: 74, but with BRIGHT. Contrast with routines 34/33.

76 FAINT-FILL

Draw a closed convex figure (the simplest example of which is a
circle) on the screen. Flot a point within it and FOKE start
address + 157, attribute value to be used for filling (ensure
that the paper colour matches the surrounding paper or there
will be odd boundary conditions).The routine is non-relocatable.

77 RECORD SOUND

78 REFLAY SOUND

These two non-relocatable routines require you to first CLEAR
2767. Call the first routine once you are supplying suitable
nd input (from yowr tape recorder/hifi system) to the EAR
input on your Spectrum. You have 5-10 seconds of recording time.
Replay is achieved by calling the second routine. which will
dir t output both to the Spectrum speaker and to the MIC
ty from where you can amplify the signal. Experiment with
ls, input sources and sound/music types to optimise sound
quality, but vect no miracles. Routine 77 will overwrite
all RAM from 768 to immediately below itself.

7% SCIFI CHR# SET

FOKE 23606/23607, 2-byte equivalent of the start address of the
set (which occupies 96#B=768 bytes) less 256. Since the current
address is 57344, and S7344-256=57088=0+256%223, the required
FOEEs are hence FOKE 23606,0:FOKE 23607,223 .

You will be amazed at the change - FOKE 23606,0:POKE 23607,60 to
normalise.

80 FROTECT FROGRAM
1) Introduce as line 1 a REM statement and then FOKE (PEEK 23635
+ 256%FEEK 23636) ,100. The program will work but it will not
LIST (until you FOKE (FEEK 23635+2356%FEEE 23636),0
2) FOKE 23636, 150 to make the program apparently vanish. FOKE
2X6F6,92 to make it appear again (it was there all the time !).
3) Use INFUT LINE instead of INFUT ~ one cannot then erase
quotes and enter STOF to BREAK into the program. CAFPS SHIFT and
6 will cause a BREAK nonetheless, but this is not well-known.

) ‘Use routines 59,65,66,98,99,115,116,117,123 & 124,
5) Embed colour control characters (see chapter on Colours in
the Spectrum manual) immediately after the line number for the
first line of the program. Set INK and PAFER to the same
colour. Then change the line number to O (see routine 68).
&) Make youwr program avtostart by SAVEing it with BSAVE "name"
LINE Z, where Z is the first line that will be executed when the
program is LOADed. Make the first statements in line Z read:—
LET ERR=25&6%FPEEK 23614 + PEEK 23613:FOKE ERR,0:FPOKE ERR+1,0
The program will now CRASH if you try to BREAK into it (¢ by
using BREAK, generating an error, entering n to a scroll?
request, replying to an INPUT with STOF or an INPUT LINE with
CAFS SHIFT & &6, etc) the computer will reset itself.
7) In the start line of an auto-start program, include POKE
23659,0. The effect will be the same as in &), but be careful
with screen operations within the program - some could be fatal!

81 AFFEND STATEMENT

It is very painful having to move the cursor to the end of long
program lines: this routine does it all for you. Just move the
edit cursor to the desired line as normal,then call the routine.

-22-

You will now be in edit mode, but with the cursor at the end of
the program line, allowing swift appending of statements and
editing of statements near the end of the line.
To speed up cursor movement with long lines, enter POKE b1, 5
FOKE 23562,2: FOKE 23608,0: FOKE 23609,%. The longer the line,
the more pronounced is the speed improvement.

82 CONTRACT FROGRAM

This routine will contract yow program into as few program
lines as possible,by automatically combining statements wherever
this was possible without changing program logic. It allows
BASIC programs to run faster and occupy less memory, as can be
checked with routines 103/104. Contrast this with routine 835.

8% EXPAND FPROGRAM

The opposite of 82 CONTRACT PROGRAM, this routine prompts vyou
for the number of the line you wish to expand into all
constituent statements, enabling easy editing. Al1 such lin
will have line number 0, so it is necessary to use one of
Renumber routines (60 or 61) on the program afterwards.
expand the whole of yowr program, respond to the first prompt
with just Enter.

84 REM FILL

This routine will prompt you to enter the line number of an
empty REM statement you have already created and the number of
bytes to be filled into it. A REM statement of the form REM XXXX
weee. XXX is then created, ideal for storing machine code (upto
9999 bytes) which can be loaded jointly with a BASIC program.
For an example, refer to 2.10 Method in Chapter [I. Also
refer to routine 85.

8% DATA FILL

This routine loads data / machine code programs stored in memory

into an auto-created DATA statement at line 1.

FOKE start address +4/+5, Z2-byte equivalent of address of data/

program in memory

POKE start address +1/+2, 2-byte equivalent of the number of

bytes to be stored

This routine has a purpose similar to that of routine 84 but is

relatively very wasteful of space. For example, if we were to

use each routine to store 1000 bytes (all of which are 77},

memory consumption would be as follows:-—

Routine 84: 2+2+1+1 (Line no:,length,Enter & REM) + 1000 = 1006

Routine 85: 2+2+1+1 (Line no:,length,Enter % DATA) + 999 (commas)
+ 1000%(2 digits + CHR¥(14) + 5 floating pt) = 9005

The difference is very significant, the example not being

untypical.

86 ANALYSE FROGRAM
This routine displays the number of lines and statements there
are in the program. It is useful with routines 71 & 104,

87 TAFE HEADER READER

After calling this routine, start youwr tape as if to load a
program. A full print of header information (name,type,length,
address if code, autostart line if any) will be printed on the
screen for you to analyse.

88 LINE ADDRESS

Move the edit cursor to the desired program line and then call
this routine with PRINT USR start address. You will get the
address of the first character in the line. Refer to the chapter
on the Memory in the Spectrum manual where line structure is
diagrammed and explained in full.

-23-

89 SCREEN# GRID

This routine sets the CHR#¥ squares on the screen alternately
bright % dark (ie, a checkerboard effect). This can be very
useful in designing screen layout, calculating PRINT AT and FLOT
values, etc.

90 MONOCHROME FPROGRAM
This routine removes hidden colow items (other than those
within strings) hence saving memory.

91 ANALYSE MEMORY

This routine prints out the address,contents in decimal,contents
in hexadecimal and CHR¥ value (where printable) of a block of
memory. Fress N to return to BASIC.

FOKE start address +9/+10, 2-byte equivalent of the address from
which you wish memory to be analysed.

92 HEX INFUT

For this routine to work routine 63 HEX->DEC CONVERTER must also
be in memory. You enter data directly in hex and it is stored in
memory where required. To quit, press @. Note that if you enter
*2 hex digits only the last two will be evaluated.

FOKE start address +10/+11, Z2-byte equivalent of the start
address of HEX-*DEC CONVERTER (default 60713, its current
location in RAM)

FOKE 23563%/4, address of the first byte of RAM into which you
wish to input hex

?3 AWAIT KEYFPRESS

Call this program with LET L=USR start address within your own
program. It waits for a key to be pressed and returns with the
CHR# CODE of the key stored in L.

%4 UFFER CASE STR¥

95 LOWER CASE STR¥

These routines will convert all items within string quotes in
the program into upper case and lower case respectively. You
must ensure that program logic has not changed (Different
responses to A & a as INKEY#/INFUT/INFUT LINE input commands,for
example).

76 UFFER CASE FROGRAM

97 LOWER CASE FROGRAM

These routines will convert all items in the program listing
(other than those within string quotes, and keywords (which
always are in upper case)) into upper case and lower case
respectively.

Note that case can be changed from within the program itself
using POKE 23658,8 (to Upper) or 0 (to Lower).

98 CONFUSE LISTING

This routine changes all numbers/digits in the program, other
than those in REM statements or within string quotes, into a
random code to confuse the 1listing. The program will work
perfectly until and unless a line containing a number (made
random) is edited, in which case irreversible corruption will
occur which makes the program unusable. This routine relies on
the Spectrum’'s way of storing numbers,ie both in visible digit
form and ‘invisible’ floating point form. While the digit form
is what you see, the invisible form is what is used for all
calculations. This routine alters only the visible form and
hence does not affect program execution. However,in any edit all
floating point forms are recalculated to make them equal to the
digit forms. Hence the routine’'s effectiveness. Include a
copyright REM statement as the last statement in a line

~2l-

containing many numbers important to your program. Any attempt
to delete or change your copyright message using edit will hence

make the program inoperable. Also see routine 99.

99 UNCONFUSE LISTING
This routine undoes the effect of 98 CONFUSE L.ISTING, except in
cases of lines which have been irreversibly corrupted for which
nothing can be done.

100 COMFRESS NUMBERS

This routine saves memory by storing all numbers as VAL 8
23.7 is stored as VAL"23.7") except © which is stored as NOT
Storage using VAL STR¥ slows the program down but saves a lot of
memory - 3 bytes per number (if the number has x digits, VAL
"number" will occupy 1+1l+x+i=x+3 bytes, while stored normally
it would occcupy x+1+5=x+6 bytes). Supercode Z.5 uses this method
to maximise space—utilisation. It also defines all commonly
occurring numbers (identified with the help of routine 73} as
numeric variables (see 2.9 in Chapter II) and saves these
variables with the program - this frees a lot of memory (it ie
also the reason why trying to RUN Supercode 2.5 is immediately
fatal, as would be CLEARiIng it). Use routines 103/104 to monitor
how much space has been saved.

101 2-BYTE CONVERTER

Refer to 2.6 in Chapter II for a definition of 2-byte
equivalent. This ROM routine permits instant conversion of any
number X from 0 to 63535 into its 2 byte equivalent. Just enter
RANDOMIZE X, then FEEK 23670 & PEEK 234671 will give the less
significant and more significant bytes respectively.

102 FOREIGN ACCENTS

No, this routine does not speak ze French ! All it does is
provide a set of accented CHR#¥s for use as UDGs (suitable for
French,BGerman,Dutch etc).

FOKE 23675/6, Z2-byte equivalent of start address of routine

103 MEMORY AVAILABLE

This routine, called by FRINT USR start address, prints out the
free memory in bytes available to BASIC (ie, the distance from
the top of the variables area to the bottom of the machine stack
growing downwards from RAMTOF).

A way of saving a BASIC program as code is as follows. Find out
the memory available, say M, using this routine. Find RAMTOF by
calculating FEEK 23730 + 205&6#FPEEK 23731: say it is R. Now if you
enter FOKE 23637, FEEK 23635: FOKE 23638, FEEK 23636: SAVE Name®
CODE 23552,R-M-23552 you have saved the program as code. When
loaded back the program will start at its first line.

104 PROGRAM LENGTH

This routine, called by PRINT USR start address, prints out the
length of the BASIC program (ignoring variables).

Incidentally, the fastest way to distinguish 16K & 48k Spectrums
is to PRINT PEEK 23I733. Its 255 for a 48K Spectrum (or Spectrum
Flus) but only 127 for a 16K Spectrum.

105 RESET

This routine simulates a complete power down. It not only does
NEW but also clears RAMTOF to its original value, resets all the
System Variables and UDGs to their default values, etc.

106 BLOCK MEMORY COFY

This routine moves a block of memory from one location to
another. Do not use it to copy BASIC (use routine 107 for that?
or your BASIC program will be corrupted.

-25-

FOKE start address +1/+2, 2-byte equivalent of address of the
first byte of memory to be moved

FOKE start address +4/+5, 2-byte equivalent of no: of bytes to
be moved

POKE start address +7/+8, 2-byte equivalent of the destination
address

107 BLOCK LINE COFY

Call this routine and follow the prompts (for no: of first line
to be copied, no: of last line to be copied and position the
block is to be copied to, in that order) to copy a block of
lines from one part of a BASIC program to another. The original
lines are not deleted (if they were, the routine would be Move
and not Copy) but you can delete them using routine 57. The new
lines will all be given line number O (but they will be in the
right place) so it is necessary to use one of the Renumber
routines (60 or 61) immediately afterwards. Note that GOTOs,
G0SUBs, RESTOREs, SAVE....LINEs etc within the block of lines
will retain their original values, so they may have to be
manually adjusted. Any attempt to copy & block to within itself
or to have overlapping blocks or to have a line number > 9999
will all result in Error B, Integer out of range.

108 STAR/RING DRAW

FPlot a point (stick to the middle of the screen at the start)
and enter DRAW X,Y,Z where X,Y are in the range —-60 to +60 and Z
is »>200 — try Z=189%FI . You will be amazed at what you see (a
nice ROM bug)!

109 FAST LOAD MICRODRIVE

The ZX Microdrive spends most of its time trying to locate files
- actual loading is very rapid. Two ways of saving files to cut
down on access/locating times are as follows:—

1) Save *1 copy of the file/program onto the same micro—
cartridge, using FOKE 23791,X before the SAVE instruction (X
being the number of copies wanted). Before using ERASE on such
multiply SAVEd files, try the same POKE. Due to unpredictable
sector-ordering on the Microdrive, however, only one copy may be
erased instead of all, so it is best to check using CAT.

2) When SAVEing a multi-part program (like Supercode 3.5, which,
as you know, has 4 parts) VERIFY each part immediately before
SAVEing the next part in sequence. The head-positioning this
causes ensures that there will be minimal delay between loading
the different parts.

Incidentally, it is best not to format ZX Microcartridges just
once — five times is much more advisable. Not only does this
improve tape mobility/reliability/conditioning but it probably
allocates more sectors as being ‘good’, giving greater storage.
One other matter: if you BREAK or reset in the middle of a
FORMAT (whether or not the cartridge had been formatted before}
you must FORMAT again. Do not use the cartridge without doing
this, even it appears to work.

110 SURE SAVE MICRODRIVE

Before attempting a save to microdrive, the Spectrum / Interface
One does not check that sufficient memory is free for it to be
able to open the necessary channels/maps. If free memory is
scarce because of long programs or low RAMTOFs, the computer
would crash (with loss of all data) when a SAVE¥* was attempted.
Call this routine before saving long programs to check whether
there is sufficient space for a save to microdrive to be safe.
If the routine returns with any message other than 0 OK, the
SAVE# must NOT be attempted. Instead the program should be
shortened and/or RAMTOP raised using CLEAR.

~26-

111 MICRODRIVE DIAGNOSIS

1) To check whether or not a functional ZIX Interface One is
attached, see if an error is produced when an instruction using
the shadow ROM (like CLS##) is executed/attempted. This could be
used in conjunction with 465 ON ERROR GOTO to trap the error in
the instance when no Interface One was attached. If the
Interface One is present, this will also page in its shadow ROM.
2) To check whether an Interface One that is connected is also
paged in, enter PRINT FPEEK 23635 + 256#FPEEK 23636. If the answer
is 23795, then the shadow ROM has not yet been paged in; if not,
it has.

3) To check whether a program just loaded came from tape or from
microdrive, enter PRINT FEEK 23787 + 256%#FEEK 23788. If the load
was from a microdrive, the result printed should be the same as
that obtained using routine 104,

112 ADAFT PROGRAM

As was discussed in 2.10 in Chapter II, programs with machine
code stored in REM statements written before the release of the
Interface One probably will not work when loaded into a Spectrum
with the shadow ROM paged in. This is because the program, and
hence the machine code in it, will load to a different address
due to the extra system variables,channels etc. To correct, run
this routine before loading from cassette. 1t resets system
variables tp pre-paging values, pages out the shadow ROM and
ensures that programs from cassette load to 23755.

Incidentally, to check whether your Spectrum is an Issue 3I/3B
version or not, FRINT IN 57342. If the result is 191, it is
Issue 3/3B. If it is 255, the issue is 1 or 2. If it is neither,
then Sinclair have produced a new issue Spectrum.

To make all programs for Issue X Spectrums work on Issue Y
Spectrums, precede all IN commands with:

ouT 57342, 191 if X = 1 or 2 and Y = 3 or 3B

OuUT 57342, 255 if X = T or 3B and Y = 1 or 2

113 SURE CLOSE

Due to a shadow ROM bug CLOSE 1# does not always succeed in
closing all streams. This routine, however, does.

Incidentally, to disable LLIST and LFRINT include the statement
DPEN;¥3;"5“ at the start of your program.

Also, another way of performing OFEN #N (3<N<16) is to use POKE
2I754 + 2%N, 19 + 2%N .

114 STOF FPROGRAM

Here are ways of breaking into autostart programs:

1) If in BASIC, use MERBE instead of LOAD.

2) If in machine code, use routine B7 to find it's length and
start address. Then load it to a different address, typically
high in RAM.

3) If a headerless file, disassemble its LOAD routine and find
the number, say X, that it loads into DE (LD DE,X). Then use
routine 115 with a higher start address and Number of bytes = X.
The file should now load and then stop.

115 HEADERLESS FILES

This routine will load a headerless file from tape to any
specified address. It will execute the code once loaded, if that
is required.

FOKE start address +2/+3, 2-byte equivalent of the number of
bytes to be loaded

POKE start address +6/+7, 2-byte equivalent of the address to
which the first byte is to be loaded

POKE start address +15, 195 if the machine code is to be
executed on loading. If yes, POKE start address +16/+17, 2-byte
equivalent of the address from which the machine code is to be

-27-

executed. If no, you will be returned to BASIC at the end.
Save this routine within the first part of your program (in a

REM statement, say) and execute it from within the program.

116 AUTO RUN CODE

To make a machine code program autostart, locate it as low in
memory as possible,storing it under RAMTOF (this is because
saving a region of memory including the stack can be very tricky
and is best avoided). Enter 1 RANDOMIZE USR start address , and
then FOKE 23637,FEER 2363%5: FPOKE 23638, FEEK 23636: SAVE Names$
CODE 23552,7-23551 where Z is the address of the last byte of
code. When LOADed, the BASIC program will autorun and start the
code. Note that this method cannot be used for saving to
microdrive.

If & functional Interface One is connected to your Spectrum, you
can call a machine code program by having as the first program
line 1 REM call address 2 FOKE 23582, 27 . Now FRINT £4 will be
able to call the machine code.

117 ANTI-COFY FROGRAM

Save all the parts of your program other than the first with the
header of other programs (to do this just involves manipulation
of your tape recorder). To make the system work, call this
routine from within part ! of your program. Immediately after
call routine 115 which should contain all the relevant details
about the part to be leoaded (both this routine and no: 115 are
best FOKEd into REM statements in part 1). What this routine
does is read the irrelevant header (and promptly forgets it) -
routine 1135 then reads youwr program part as a headerless file.If
it sounds like hard work, it is - but then it will be harder
work for the person trying to copy/break in to your program, as
a load other than with part 1 will cause a crash.

Combine this method with some of the other protection routines
scheduled in 2.11 of Chapter I1I, and you will be wusing
techniques as advanced or more advanced than those employed by
the largest software houses !

118 ATTRIBUTE RESET

The CLSE command, which works only with an Interface One
attached, is not scheduled anywhere in the Spectrum manuals but
performs in one stroke: PAPER 7:INK O: BORDER 7: BRIGHT O: FLASH
0: QVER O: INVERSE 0: CLS (resetting all attributes to defaults)
Note that if X=INK + B*FPAFER + 64*BRIGHT + 128#FLASH then:—

POKE 23693,X sets the global ATTR value

POKE 23624,X sets the ATTR value for the lower two lines of the
sCreen.

Note that the changes by the FOKEs will become effective only
when the screen is cleared.

119 LOWER SCREEN$ CLS

This routine does a CLS to the bottom part of the display only.
Incidentally, to INPUT at any position X,Y on the upper screen
(INFUTs are usually only in the lower screen) use INFPUT AT 22,03
AT X,Y;"Optional Message"jVariable. This method works with INFUT
LINE as well.

120 TRACE VARI-SPEED

When called, this non-relocatable routine will print
continuously on the lower left-hand corner of the screen the
line and statement number currently being executed by BASIC.
FOKE 56777, Speed of execution (1=Fast through to 255=81ow)

Slow speeds are useful to make the line + statement number
display readable, and also allow a fascinating insight into the
ROM routines (see the example for this interrupt-driven
routine). Trace remains on until you enter RANDOMIZE USR 56814 .

-28~

121 PARTIAL CLS

This routine does a CLS to the lower X lines of the upper screen
(also refer to routines 119 and 122).

POKE start address + 1, X

122 LOWER UF-SCROLL

This routine scrolls up the bottom X lines of the screen a CHR#
square at a time, together with the attributes. Compare this
routine with routines 3 & 121.

FOKE start address + 1, X

123 ANTI-MERGE FROGRAM

Using MERGE instead of LOAD is a way of stopping most autostart
programs. However programs »7E in length can be made MERGE-proof
by making the first line a REM message, then entering LET
X = PEEK 23635 + 256%PEEK 23636 : POKE X,60: FOKE X+1,0

124 DISABLE BREAK
Use FOKE 23613 ,FPEEK 23730-8 in the autostart LINE.

125 SUFER-CATALOGUE

Call the routine with this program :-—

1 CLS £: INFUT "Enter Microdrive";A: FOKE 55993,A: CLS : FRINT
AT 0,03: RANDOMIZE USR 55648: LET NO=FEEK 56072 + R2E&*FEEE 56073
- &6 1 FOR @=56086 TO NO STEF 11: IF PEEK G<>13Z THEN NEXT @

2 FOR N=@0+1 TO NO: PRINT CHR$ FEEK Nj: MEXT N

Format is Name, Type (B=Bytes, F=Frog), Length in bytes, and
then either start address (if Type B) or auto line number (if
Type F: 63535=> program has no auto line number).

126 REACTION TIME
LET Z=7997-USR 7997: FRINT Z/50 gives the time taken, in
seconds, to hit the last key.

127 FSEUDO LOAD

To call this ROM routine, use LET L=USR 1278 (or 1248/1276/1301
/1488). A fake LOAD pattern which can be interrupted by BREAK
is then displayed.

128 SEND R8232 BYTE

POKE start address + 1,Byte(followed by 2 stop bits) to be sent.
If this routine is run on a just reset Spectrum, use routine 133
first.

129 RECEIVE RS232 BYTE

This routine places the byte received in location 23681. If
timed out, 0 is inserted instead.

If this routine is run on a just reset Spectrum, use routine 135
first.

130 DESELECT DRIVE

This routine switches off all drives.

If this routine is run on a just reset Spectrum, use routine 135
first.

131 SELECT DRIVE

FOKE start address + 1, No: (1-8) of drive to be switched on.

If this routine is run on a just reset Spectrum, use routine 135
first.

132 KEYBOARD INPUT

This routine waits for a key to be pressed, then puts its ASCII
CODE into 23681.

If this routine is run on a just reset Spectrum, use routine 135
first.

-29-

133 SCREEN$ OUTFUT

POKE start address + 1, CHR#% to be sent to Stream 2 attached to
Channel s (Screen$)

If this routine is used on a just reset Spectrum, use routine
135 first.

134 PRINTER OUTFUT

POKE start address + 1, CHR%¥ to be sent to Stream 3 attached to
Channel p (ZX Printer).

If this routine is run on a just reset Spectum, use routine 135
first.

135 INTERFACE 1 INITIALISE
This routine pages in the extra 58 Interface 1 System Variables
if they have not yet been created.

136 OFEN g#DATA FILE

FOKE 23766, Drive number (1-8)

FOKE 23770, Length of Filename (1-10 characters)

FOKE 23772/3, 2-byte equivalent of address of first byte of
Filename

To find the address of the related Channel Area, FRINT FEEK
23670 + 256%FEEK 23671 .

Note that if the file already exists then this routine opens it
for reading: if it does not already exist it is created and then
opened for writing.

137 CLOSE # DATA FILE

POKE start address +2/+3, 2-byte equivalent of the channel
address

Note that if the data file had been opened for writing, the
current record is written to the first available microdrive
sectpr before the file is closed.

138 ERASE MICRODRIVE FILE

FOKE 23766, Drive number (1-8)

FOKE 23770, Length of Filename (1-10 characters)

POKE 23772/3, 2-byte equivalent of address of first byte of
Filename

139 READ NEXT DATA RECORD

FOKE start address +2/+3, 2-byte equivalent of the channel
address X

FOKE X+235, Drive number (1-8)

FOKE X+14 to X+23, CHR# CODEs of filename with trailing CHR#0s
to bring the length to 10

X+13 contains the record number which is auto-incremented. Note
that it is necessary to first switch the drive motor on with
routine 131.

140 SAVE NEXT DATA RECORD

POKE start address +2/+3, 2-byte equivalent of the channel
address X

FPOKE X+25, Drive number (1-8)

FOKE X+14 to X+23, CHR$ CODEs of filename with trailing CHR$Os
to bring the length to 10

X+13 contains the record number which is not incremented.

POKE X+11/X+12, next data byte

Note that it is necessary to first-switch the drive motor on
with routine 131.

141 READ RANDOM DATA RECORD

POKE start address +2/+3, 2-byte equivalent of the channel
address X

POKE X+25, Drive number (1-8)

-30-

POKE X+14 to X+23, CHR# CODEs of filename with trailing CHR#0s
to bring the length to 10

FOKE X+13, Relative record number

Note that it is necessary to first switch the drive wmotor on
with routine 131.

2 READ RANDOM DATA SECTOR
> start address +2/+3, 2-byte eguivalent of the channel

Drive number (1-8)

X+1 Sector number

Note that it is necessary to first switch the drive motor on
with routine 131.

143 READ NEXT DATA SECTOR

FOKE start address +2/+3%, 2-byte equivalent of the channel
address X

Fi *+25, Drive number (1-8)

Fi X+14 to X+23, CHR# CODEs of filename with trailing CHR#$0s
to bring the length to 10

Note that it is necessary to first switch the drive motor on
with routine 131.

144 SAVE NEXT DATA SECTOR

FOKE start address +2/+3%, 2-byte equivalent of the channel
address X

FORE X y Drive number (1-8)

FOEE X+13, Sector number

Note that it is necessary to first switch the drive motor on
with routine 131.

145 ERASE CHANNEL

This routine deallocates channel area.

FOEE start address +2/+3%, 2-byte eguivalent of the channel
address

146 CREATE CHANNEL

This routine allocates channel area.

POKE 23766, Drive number (1-8)

FOEE 23770, Length of Filename (1-10 characters)

FOKE 2/%, Z-byte equivalent of address of first byte of
Filename

To find the address of this Channel Area, FRINT FEEK 23670 +
2B6H*FPEEK 23671 .

147 SCREEN# COMFRESS

This routine compresses and stores screens without attributes .
To have a compressed screen stored at X, enter RANDOMIZE X %
then call this routine. Afterwards, 23728/%9 contains the 2-byte
equivalent of the length of the compressed screen (enabling you
to compute the memory saving).

Other pre-call options available are to:-

FOKE start address + 21, Y FOKE start address + 47, Y

FOKE start address + 22, 7 FOKE start address + 48, Z

where to compress/save just the top 1/3 of the screen Y = 254
Z = 71, for the top 2/3 of the screen Y = 252 : Z = 79 and for
the whole screen but with attributes too, Y =0 : Z = 91 .

Note that there is no loss of screen detail at all. To LOAD back
a compressed screen from memory use routine 148.

148 SCREEN#% RETRIEVE

This routine retrieves any compressed screen created with
routine 147. To retrieve a screen stored starting at X, Just
enter RANDOMIZE X and then call this routine.

The pre-call options are:-

<31~

POKE start address + 18, Y : POKE start address + 19, Z
where the values of Y and Z are as defined for routine 147.

149 OPEN #NET CHANNEL.

FOKE 23749, Your station number

FOKE 23766, Other station number

After calling the routine the address of the net channel can be
found by entering PRINT FEEK 23728 + 206%FEEK 23729 .

150 SEND HE NET PACKET

POKE start address +2/+3, 2-byte equivalent of the net channel
address X

FOKE start address +5/+6, Z-byte equivalent of X+195

FOKE X+16, number of bytes to be sent

POKE 23758, © for the packet to be a broadcast.

151 GET # NET PACKET

POKE start address +2/+3, 2-byte equivalent of the net channel
address X

PEEK (X+13) + 256#PEEK (X+14) gives the block number of the
packet requested: this is auto-incremented after each receive.

152 CLOSE 3 NET CHANNEL

FOKE start address +2/+3, 2Z-byte equivalent of the net channel
address X

I+ PEEK (X+16) » O at the time of calling this routine then
there is still send data in the net channel - this is sent
before the channel area is deallocated.

OTHER OREAT PROGRAMS FROM CP SOFTWARE

TOOLKITS/UTIUTIES (all at £9.95 for 48k Spectrum)
Any two for £17.95 or ALL THREE for only £23.95

FLOATINO POINT NORTH...with editor, comprehensive manual and sample game.
Forth 79 structures including recursion* Either Integer or FP Arithmetic* Trig,cos,logs RND, square roots all supported* HiRes
gaphics, beeper, dirde, plot, draw, point and print all supported* /O direct accessing® Machine Code indude-able in
commrends and defns* Up to 300 stack itens and 117 user-defnd characters plus 23 name variables. 16 bit logic operations.

EXTKNDBD BASIC...strengthen your programs and ease de-bugging with 10 additional
BASIC commands using less than 5k of memory with own syntax checking. Loads above Ram Top

and immediately ready for use.
AUTO (line number interval)"CLOCK *DELETE (line/block)*EXAMINE (reads headers)*FIND (strings)MEMORY (status)*
RENUMBER (lines with Gosubs and Gotos) *SCROLL *TRACE (Current line being executed)* VARIABLES (names and contets)

SNAIL LOGO (Turtle graphics)...Simplified input system for this implementation of the

universal Logo principle makes it even suitable for children. Explore logic, programming,
systems design.

Full operating systemwith ediitor*Run-time checks and error messages* User guide with sample programs* Multi-level heirarchic
procedures* Recursive and parametered procedurest Nestable repeat loops*Variables* Calculation* Conditional End of
Procedures* Colour control, wall bouncing, SNAIL symbol* 25 Language Instructions and 20 error messages plus 15 control
functions.

(in the strongest versions available)

SIfPERCHESS 3.5 £9.95 Uniquely powerful and instructive chess champion
with clock for Itournament realism and hundreds of levels. Very fast response time indeed.

BRIDGE PLAYER 2 £9.95 powerful Bridge Player with ACOL bidding and play
routines that give you a great game, just as you would at the table. Plays as defender or
declarer.

ASTRONOMER £9.95 complete home planetarium with facility for serious study and

displays of the planets in motion and 1000 stars from any time or place on earth.

RBYBRSI (OTHELLO) £6.95 DRAUGHTS £5.95
BACKGAMMON £5.59

BUY ANY TWO CLASSIC GAMES TOGETHER AND
GET £1.50 OFF!

SEND YOUR ORDER with cheque or postal order to: CP Software (lll), 2 Glebe Road,
Uxbridge, Middlesex, England UB8 2RD. Post free in UK. Overseas add £1 per program.

