
 WHITE LIGHTNING

 CHEAT SHEET
 &
 MICRODRIVE MANUAL

Copyright Notice

Copyright © 1984 by Oasis Software. No part of this manual may be
reproduced on any media without prior written permission from Oasis
Software.

Piracy has reached epidemic proportions and it is with regret that we are
forced to reproduce this manual in a form which cannot be photocopied. Our
apologies for the inconvenience this may cause to our genuine customers. A
reward will be paid for information leading to the successful prosecution
of parties infringing this Copyright Notice.

 Do not lose this manual as separate manuals cannot be
 supplied under any circumstances

 Copyright © by Oasis Software

 CONTENTS

 Page

Creating Large Sprites 1
Moving Sprites 2
Screen Scrolling 2
Simple Putting 2
More Advanced Techniques 4
Collision Detection 7
Sample Source Listings 8
The Lunar Lander Program 9
Table 1 (Lunar Sprites) 20

APPENDIX A - THE MICRODRIVE VERSION 26
Introduction 26
Implementing on Microdrive 26
Preparing a Cartridge for Source Code 26
Editing Forth Screens 27
The Edit Buffers 27
Transferring Old Source 27
Bad Sectors 28
Additional Error Messages 28
The Microdrive Sprite Generator 29
Implementing on Microdrive 29
Saving and Loading Sprites 29
Creating Large Sprites 30
Merging Sprites 30

 WHITE LIGHTNING
 CHEAT SHEET

This sheet is intended as a supplement to the User Manual and is provided only to
"get you started". The best way to use it is to type in the source code at the
end of this section and execute the appropriate section as you go. You will need
the demonstration sprites in memory but sprites 25 to 255 should be deleted to
make enough memory available. A word to do this is:

: CLRS 256 25 DO I SPN ! TEST IF DSPRITE ENDIF LOOP ; <CR>
Type this in then type CLRS <CR>

It is also worth deleting the large sprites 9, 12, 13 and 14 using:

 9 SPN ! DSPRITE <CR>
12 SPN ! DSPRITE <CR>
13 SPN ! DSPRITE <CR>
14 SPN ! DSPRITE <CR>

where <CR> means press ENTER. After execution CLRS should be FORGOTTEN using
FORGET CLRS <CR>

Following the example source there is a listing of a complete game. You won't be
able to run it without the sprites but we can provide a tape with the source and
sprites for one pound seventy five pence if you think it would to helpful.

Creating Large Sprites

Quite often in games writing large sprites are required which may extend across
several screens. The sprite development software can produce sprites with
dimensions of up to 15 by 15 characters. Larger sprites need to be constructed in
the White Lightning itself.

The sample listing for the Lunar Lander contains a routine which we can use as an
example. The Sprite Development Program was used to produce 16 sprites, each was
3 high by 8 wide, having sprite numbers 10 to 25. The following routine sets up
sprite 128 which is 3 high by 128 wide, and then fills it with the 16 small
sprites before deleting them to save memory.

SCR#8
0 : MAKE 128 SPN ! 3 HGT ! 128 LEN ! 0 SROW ! 128 SP2 ! ISPRITE
1 16 0 DO I 10 + DUP SPN ! SP1 ! I 8 * SCOL ! GWBLM GWATTM DSPRITE
2 LOOP ;

Line 0 just defines the big sprite in memory and sets SROW to 0.

Line 1 loops round 16 times with I taking the values 0 to 15. I 10 + calculates
the sprite number of the smaller sprite and I 8 * calculates the column in the big
sprite that this smaller sprite is to be put into. GWBLM GWATTM moves the pixel
data, then the attributes, from the individual small sprites into the big sprite.
You won't be able to execute this example without the 16 3 by 8 sprites but it
illustrates how big sprites are achieved.

 1

Moving Sprites

The chief problem facing the programmer who wants to move sprites around the
screen is choosing from the numerous schemes available. We now consider some of
these methods, each with its own merits for speed, simplicity, smoothness and
storage. We'll begin with the easiest to implement and then work up to some of the
more elaborate techniques.

Screen Scrolling

Where an object is to be moved within a screen window that does not contain any
other objects the screen itself can be scrolled. This is particularly applicable
where movement is either horizontal or vertical. Diagonal movement is also
possible however. In some cases the object is constrained to move on the screen
because parts of the object scrolled off the screen without wrap are lost.

To begin with let's consider a very simple example - moving an invader (demo
sprite 24) 2 characters high and 2 characters wide left and right under keyboard
control.

The routine is in three sections: the first sets up the base and initial
parameters, the second moves left or right and the third polls the keyboard and
controls the movement.

: SETUP 0 COL ! 6 ROW ! 24 SPN ! CLS SETAM PUTBLS 2 HGT ! 32 LEN ! ;
: LEFT WRL1V ; : RIGHT WRR1V ;
: KEYS 1 1 KB IF LEFT ENDIF 8 1 KB IF RIGHT ENDIF ;

This will move the base by 1 pixel left or right but by changing the words LEFT
and RIGHT to be WRR4V and WRL4V or WRR8V and WRL8V movement of 4 or 8 pixels can
be achieved.

To try these routines we'll need a small test routine.

: TESTA ATTOFF SETUP BEGIN KEYS 8 2 KB UNTIL ;

TESTA will loop around until SYMBOL SHIFT is pressed. Pressing CAPS SHIFT will
move the base left, pressing space will move the base right and pressing SYMBOL
SHIFT will exit the loop.

This routine can also be executed in background using:

: TESTB EXX SETUP EXX ' KEYS INT-ON ;

To halt, just type INT-OFF.

If you've typed in the source at the end of this section type 6 LOAD to compile
and then TESTA or TESTB to execute.

Simple Putting

Another fairly simple means of moving sprites around the screen is to simply PUT
sprites with a blank border around them. Suppose the sprite you want to move is 2
characters high and 2 characters wide. You will need to construct a 4 by 4 sprite
so that the 2 by 2 sprite can be contained with a border around the outside. Make
sure background is off by typing INT-OFF.

Suppose for example, sprite 24 is a 2 by 2 sprite (you can use demo sprite 24 for
the purposes of this example). We'll use sprite 62 for the sprite to be moved.
To set up sprite 62 use:

2

: MAKE 62 SPN ! 4 HGT ! 4 LEN ! TEST 0= IF ISPRITE CLSM ENDIF ;

This will create and clear sprite 62. Now use:

1 SCOL ! 1 SROW ! 62 SP2 ! 24 SP1 ! GWBLM

Sprite 62 is now set up ready for use. We now need four words to move the sprite
UP, DOWN, LEFT and RIGHT.

: UP 7 1 KB IF ROW @ 0 > MINUS ROW +! ENDIF ;
: DOWN 8 1 KB IF ROW @ 20 < ROW +! ENDIF ;
: LEFT 1 1 KB IF COL @ 0 > MINUS COL +! ENDIF ;
: RIGHT 1 2 KB IF COL @ 28 < COL +! ENDIF ;

The ENTER and SPACE keys will move the sprite up and down and CAPS SHIFT and Z
will move the sprite left and right respectively.

The full word to animate the sprite becomes:

: TESTC 62 SPN ! 10 COL ! 10 ROW ! BEGIN UP DOWN LEFT RIGHT ADJM PWBLS 6 1 KB
UNTIL ;

To exit TEST we press the key at 6 1, this is the "P" key.

If you're using the source at the end of this section type 7 LOAD MAKE TESTC. The
great limitation of this routine, however, is that data already on the screen will
be replaced by the sprite being PUT and subsequently lost. Before considering the
more sophisticated methods available to us which overcome this limitation let's
just consider some simpler methods of circumventing this problem, which will work
for similar situations.

Supposing the screen holds half a dozen or so fixed objects and we wish to move
the invader in the last example through these objects.

First of all let's set up a screen with these objects scattered throughout.

: SETUP 4 SPN ! 3 2 4 5 6 3 5 12 10 9 12 14 6 0 DO ROW ! COL ! PUTRS LOOP ;

Notice that we use the PUTORS word to OR data to the screen; the reason for this
will become clear.

We'll now redefine UP, DOWN, LEFT and RIGHT so that sprite 62 is only 'PUT' if it
is moved, the new code becomes:

: KCHK KB DUP ROT OR SWAP ;
: UP 7 1 KCHK IF ROW @ 0 > MINUS ROW +! ENDIF ;
: DOWN 8 1 KCHK IF ROW @ 20 < ROW +! ENDIF ;
: LEFT 1 1 KCHK IF COL @ 0 > MINUS COL +! ENDIF ;
: RIGHT 1 2 KCHK IF COL @ 28 < COL +! ENDIF ;

The complete word becomes:

: TESTD CLS BEGIN COL @ ROW @ SETUP ROW ! COL ! 62 SPN ! @ UP DOWN LEFT RIGHT IF
ADJM PWBLS ENDIF 6 1 KB UNTIL ;

What is happening is that as soon as the moving sprite is PUT to the screen all
screen data is immediately "OR"ed so that if any was blotted out, it is
immediately replaced. Type "P" to exit.

To use the source code listings type 8 LOAD TESTD

 3

More Advanced Techniques

Often it is not practical to repeatedly PUT the screen data which accompanies the
moving sprite and more frequently movement is required with a higher resolution
than one character.

To begin with, let's consider the problem of improving the resolution of the
movement. Let's work again with a 2x2 sprite (sprite 24 of the demo sprites will
do). Type COLD to clear previous examples.

Suppose we wish to move the sprite around the screen with 2 pixel resolution.
This means that between 2 successive columns there are 4 intermediate
orientations, each successive orientation being 2 pixels right shifted. This
means we need 4 sprites in all before the cycle is repeated at the next column
position.

To begin with let's set up the 4 sprites and number them 100, 101, 102 and 103.
To create these 4 sprites, type:

: MAKE 2 HGT ! 3 LEN ! 104 100 DO I SPN ! ISPRITE CLSM LOOP ;

This will define and clear the 4 sprites and we can now put the character in its
various orientations, into these sprites. There are two stages to this operation.
Firstly sprite 24 needs to be put into sprite 100, then sprites 100 to 103 need to
be scrolled and PUT successively to build up the four orientations.

: SET1 0 SROW ! 0 SCOL ! 24 SP1 ! 100 SP2 ! GWBLM ;

This sets up sprite 100 and the remaining 3 orientations are set up from this
sprite using:

: SET2 103 100 DO I SP1 ! I 1+ DUP SP2 ! SPN ! COPYM WRR1M WRR1M LOOP ;

It's worth putting these sprites on the screen to see what they look like.
Assuming you've executed the words MAKE, SET1 and SET2 use:

: TESTE CLS 0 COL ! 4 0 DO I 100 + SPN ! I DUP + ROW ! PUTBLS LOOP 8 0 AT ;

This will place the 4 orientations, one above the other, so that the resolution of
the movement can be seen.

To use the source version type 9 LOAD MAKE SET1 SET2 TESTE

This now gives us 2 pixel horizontal resolution so that we now have 128 horizontal
plotting positions in the range 0 to 127. We need a simple formula which will
calculate the sprite number and the column from the horizontal plotting position.
This turns out to be very simple:

: HPLOT 4 /MOD COL ! 100 + SPN ! PUTBLS ;

So to PUT at X-position 27 (54 pixels from the left hand column) just use:

27 HPLOT

The previous example is useful in that it indicates a way of producing high
resolution PUTting but as it stands cannot be used for animation because it does
not enable the removal of previously placed orientations. Before looking at a
scheme for animating these orientations let's generalise this example to cover
high resolution vertical movement as well as horizontal movement.

4

If we're going to give the same resolution of movement (2 pixels) in the vertical
plane, we're going to need 4 vertically shifted orientations for each of the
horizontally offset orientations - 16 sprites in all. This time they will need to
be 3x3 as opposed to the previously defined 2x3. If you've typed in the last
example you'll need to delete the old sprites numbered 100 to 103. If so, type:

100 SPN ! DSPRITE <CR>
101 SPN ! DSPRITE <CR>
102 SPN ! DSPRITE <CR>
103 SPN ! DSPRITE <CR>

Now type COLD to clear the dictionary.

To create the 16 new sprites use:

: MAKE 3 HGT ! 3 LEN ! 116 100 DO I SPN ! ISPRITE CLSM SETAM LOOP ;

SET1 and SET2 are now used in exactly the same form as in the previous example to
set up the first 4 sprites 100 to 103. Each of the horizontally offset
orientations needs to be vertically offset by 2 pixels into 4 further
orientations. 100 will be offset into 104, 108 and 112; 101 will be offset into
105, 109 and 113 and so on. We'll need a third word SET3 to do this.

: SET3 -2 NPX ! 104 100 DO I DUP 12 + SWAP DO I DUP 4 + DUP SP2 ! SPN ! SP1 !
GWBLM SCRM 4 +LOOP LOOP ;

Once SET1, SET2 and SET3 have been entered, compiled and executed, the definitions
can be forgotten. Since we now have 2 pixel resolution in the vertical and
horizontal directions we have 128 horizontal positions and 96 vertical positions.
We need a word which can calculate sprite number, column and row from the 2 pixel
resolution co-ords X and Y. The following word assumes the vertical then
horizontal co-ords have been placed on the stack.

: XYPUT 4 /MOD COL ! SWAP 4 /MOD ROW ! DUP + DUP + + 100 + SPN ! ;

So to PUT at X-position 30 (pixel 60)
 Y-position 17 (pixel 34)

use 17 30 XYPUT PUTBLS

Note that the 100 + SPN ! at the end of the definition of XYPUT should be amended
so that the number is the sprite number of the first of your 16 sprites.

To use the source type 9 LOAD 10 LOAD MAKE SET1 SET2 SET3 (Ignore MSG# 4's)

Let's now deal with the animation of the sprite itself.

Perhaps the most powerful method of sprite animation is via the XOR operation.
The usefulness of this operation stems from the fact that when an object is XOR'ed
with the screen, the screen can be restored simply by repeating the operation.
The area of screen is restored to the same state as it was before the first
operation (see page 22 of the White Lightning manual).

We can now write a routine which moves a sprite around the screen under keyboard
control using a slightly amended form of the word XYPUT. The routine below
assumes the 10 sprites in the range 100 to 115, which each have dimensions 3x3,
have been set up in the last example.

The following variables will be used:

 5

TSPN Temporary Value for SPN
TCOL Temporary Value for COL
TROW Temporary Value for ROW
XC X co-ordinate
YC Y co-ordinate
FLAG Collision Flag

We'll also use a constant FSPN which holds the number of the first sprite in the
series of 16. To adapt these routines for your own use just change FSPN.

: PLOAD COL ! ROW ! SPN ! PUTXRS ;
: PSET TSPN @ TROW @ TCOL @ ;
: PCAL 4 /MOD TCOL ! SWAP 4 /MOD TROW ! DUP + DUP + FSPN + + TSPN ! ;
: MOVE YC @ XC @ PCAL PSET PUTXRS PLOAD ;
: PLACE YC @ XC @ PCAL PSET PLOAD ;

We now need to poll the keyboard:

We use the KCHK word again so that the character is not re-PUT unless a key has
been pressed.

: KCHK KB DUP ROT OR SWAP ;
: UP 7 1 KCHK IF YC @ 4 > MINUS YC +! ENDIF ;
: DOWN 8 1 KCHK IF YC @ 83 < YC +! ENDIF ;
: LEFT 1 1 KCHK IF XC @ 4 > MINUS XC +! ENDIF ;
: RIGHT 1 2 KCHK IF XC @ 115 < XC +! ENDIF ;
: KREAD 0 UP DOWN LEFT RIGHT ;

KREAD will leave 0 on the stack if no key was pressed or 1 if a key was pressed.

The complete word becomes:

: TESTF 10 XC ! 10 YC ! PLACE BEGIN KREAD IF MOVE ENDIF 6 1 KB UNTIL ;

Note that this loop assumes no interference with the values of COL, ROW or SPN
between cycles, if you are executing another Forth word, for example a word called
TRY, then make sure you temporarily stack COL, ROW and SPN, e.g.

... BEGIN KREAD IF MOVE ENDIF COL @ ROW @ SPN @ TRY SPN ! ROW ! COL ! 0 1 KB UNTIL
...

This word can be easily executed under interrupt using

: TESTG KREAD IF MOVE ENDIF ;
: TESTH 10 XC ! 10 YC ! EXX PLACE EXX ' TESTG INT-ON BEGIN 6 1 KB UNTIL INT-OFF
;

You will notice, however, that if you do execute this routine under interrupt then
the sprite may flicker in passage through certain areas of the screen. This is
due to the finite time taken for the dot to scan the screen and can be very
annoying.

To execute from source type 11 LOAD 12 LOAD then TESTF or TESTH

Let's look now at some more powerful techniques which not only help with the
flickering but also include collision detection facilities.

6

Collision Detection

To produce the smoothest movement of all, and include collision detection, a six
stage operation is used. The technique utilises two dummy sprites, and all
intermediate stages of the operation are carried out in memory. For this example
let's number the dummy sprites 116 and 117. To set up the sprites use:

: MAKED 3 HGT ! 3 LEN ! 116 SPN ! ISPRITE 5 HGT ! 5 LEN ! 117 SPN ! ISPRITE ;

This needs to be typed in and executed before executing the Source Code or error
MSG# 10 will be produced.

The six stage procedure is as follows:

1. The last orientation PUT, together with a one character surround, are GOT into
the 5x5 dummy sprite.

2. The last orientation is GWXRM'ed out of the 5x5, restoring the original screen
data.

3. The new orientation is COPYM'ed into the 3x3 dummy.

4. The screen data in the 5x5 is PWNDM'ed into the 3x3 and SCANM performed on the
3x3 to detect any collision. A flag is set.

5. The new orientation is GWXRM'ed into the 5x5 dummy.

6. The 5x5 is PUTBLS'ed onto the screen.

The code for this algorithm is the same as the previous example except that the
word MOVE needs to be modified.

Define Sprites as for previous example and execute MAKED then use:

: STEP1 -1 COL +! -1 ROW +! SPN @ 117 SPN ! GETBLS ;
: STEP2 1 SCOL ! 1 SROW ! 117 SP2 ! SP1 ! GWXRM ;
: STEP3 116 SP2 ! TSPN @ SP1 ! COPYM ;
: STEP4 COL @ - SCOL ! ROW @ - SROW ! 117 SP2 ! 116 SP1 ! PWNDM 116 SPN ! SCANM
FLAG +! ;
: STEP5 SP1 ! GWXRM 117 SPN ! PUTBLS PSET COL ! ROW ! SPN ! FLAG @ IF 100 100
BLEEP 0 FLAG ! ENDIF ;
: MOVE YC @ XC @ PCAL PSET STEP1 STEP2 STEP3 STEP4 STEP5 ;

To use the source code type COLD to clear all previous examples then:

11 LOAD FORGET MOVE 14 LOAD 12 LOAD 13 LOAD

to compile the words TESTF and TESTH.

The Bleep will sound when the sprite collides with any other screen data.

 7

SCR # 6 2 : SET2 103 100 DO I SP1 ! I
 0 : SETUP 0 COL ! 6 ROW ! 24 S 1+ DUP SP2 ! SPN ! COPYM WRR1M
PN ! CLS PUTBLS 2 HGT ! 32 LOW ! ; 3 WRR1M LOOP ;
 1 : LEFT WRL1V ; : RIGHT WRR1V 4 : TESTE CLS 0 COL ! 4 0 DO I
 ; 100 + SPN ! I DUP + ROW ! PUTBL
 2 : KEYS 1 1 KB IF LEFT ENDIF S
8 1 KB IF RIGHT ENDIF ; 5 LOOP 8 0 AT ;
 3 : TESTA ATTOFF SETUP BEGIN K 6 : HPLOT 4 /MOD COL ! 100 + S
EYS 8 2 KB UNTIL ; PN ! PUTBLS ;
 4 : TESTB ATTOFF EXX SETUP EXX 7
 ' KEYS INT-ON ;
 5 SCR # 10
 6 0 : MAKE 3 HGT ! 3 LEN ! 116 1
 7 00 DO I SPN ! ISPRITE CLSM SETAM
 1 LOOP ;
SCR # 7 2 : SET3 -2 NPX ! 104 100 DO I
 0 : MAKE 62 SPN ! 4 HGT ! 4 LE DUP 12 + SWAP DO I DUP 4 + DUP
N ! TEST 0= IF ISPRITE CLSM ENDI SP2
F 3 ! SPN ! SP1 ! GWBLM SCRM 4
 1 1 SCOL ! 1 SROW ! 62 SP2 ! 2 +LOOP LOOP ;
4 SP1 ! GWBLM ; 4 : XYPUT 4 /MOD COL ! SWAP 4
 2 : UP 7 1 KB IF ROW @ 0 > MIN /MOD ROW ! DUP + DUP + + 100 + S
US ROW +! ENDIF ; PN
 3 : DOWN 8 1 KB IF ROW @ 20 < 5 ! ;
ROW +! ENDIF ; 6
 4 : LEFT 1 1 KB IF COL @ 0 > M 7
INUS COL +! ENDIF ;
 5 : RIGHT 1 2 KB IF COL @ 28 < SCR # 11
 COL +! ENDIF ; 0 0 VARIABLE TSPN 0 VARIABLE T
 6 : TESTC 62 SPN ! 10 COL ! 10 COL 0 VARIABLE TROW 0 VARIABLE
 ROW ! CLS BEGIN UP DOWN LEFT RI XC
GHT 1 0 VARIABLE YC 100 CONSTANT F
 7 : ADJM PWBLS 6 1 KB UNTIL ; SPN 0 VARIABLE FLAG
 2 : PLOAD COL ! ROW ! SPN ! PU
SCR # 8 TXRS ;
 0 : SETUP 4 SPN ! 3 2 4 5 6 3 3 : PSET TSPN @ TROW @ TCOL @
5 12 10 9 12 4 6 0 DO ROW ! COL ;
! 4 : PCAL 4 /MOD TCOL ! SWAP 4
 1 : PUTORS LOOP ; : KCHK KB DUP /MOD TROW ! DUP + DUP + FSPN + +
ROT OR SWAP ; 5 TSPN ! ;
 2 : UP 7 1 KCHK IF ROW @ 0 > M 6 : PLACE YC @ XC @ PCAL PSET
INUS ROW +! ENDIF ; PLOAD ;
 3 : DOWN 8 1 KCHK IF ROW @ 20 7 : MOVE YC @ XC @ PCAL PSET P
< ROW +! ENDIF ; UTXRS PLOAD ;
 4 : LEFT 1 1 KCHK IF COL @ 0 >
 MINUS COL +! ENDIF ; SCR # 12
 5 : RIGHT 1 2 KCHK IF COL @ 28 0 : KCHK KB DUP ROT OR SWAP ;
 < COL +! ENDIF ; 1 : UP 7 1 KCHK IF YC @ 4 > MI
 6 : TESTD CLS BEGIN COL @ ROW NUS YC +! ENDIF ;
@ SETUP ROW ! COL ! 62 SPN ! 2 : DOWN 8 1 KCHK IF YC @ 83 <
 7 0 UP DOWN LEFT RIGHT IF ADJM YC +! ENDIF ;
 PWBLS ENDIF 6 1 KB UNTIL ; 3 : LEFT 1 1 KCHK IF XC @ 4 >
 MINUS XC +! ENDIF ;
SCR # 9 4 : RIGHT 1 2 KCHK IF XC @ 115
 0 : MAKE 2 HGT ! 3 LEN ! 104 1 < XC +! ENDIF ;
00 DO I SPN ! ISPRITE CLSM LOOP 5 : KREAD 0 UP DOWN LEFT RIGHT
; ;
 1 : SET1 0 SROW ! 0 SCOL ! 24 6 : TESTF 10 XC ! 10 YC ! PLAC
SP1 ! 100 SP2 ! GWBLM ; E BEGIN KREAD IF MOVE ENDIF 6 1
 KB
 7 UNTIL ;

8

SCR #13 1 : STEP2 1 SCOL ! 1 SROW ! 11
 0 : TESTG KREAD IF MOVE ENDIF 7 SP2 ! SP1 ! GWXRM ;
; 2 : STEP3 116 SP2 ! TSPN SP1
 1 : TESTH 10 XC ! 10 YC ! EXX ! COPYM ;
PLACE EXX ' TESTG INT-ON BEGIN 6 3 : STEP4 COL @ - SCOL ! ROW @
 1 - SROW ! 117 SP2 ! 116
 2 KB UNTIL INT-OFF ; 4 SP1 ! PWNDM 116 SPN ! SCANM
 3 FLAG +! ;
 4 5 : STEP5 SP1 ! GWXRM 117 SPN
 5 ! PUTBLS PSET COL ! ROW ! SPN !
 6 6 FLAG @ IF 100 100 BLEEP 0 FL
 7 AG ! ENDIF ;
 7 : MOVE YC @ XC @ PCAL PSET S
SCR # 14 TEP1 STEP2 STEP3 STEP4 STEP5 ;
0 : STEP1 -1 COL +! -1 ROW +!
SPN @ 117 SPN ! GETBLS ;

NOTE

Make sure that you delete the unwanted sprites 25 to 255, 9, 12, 13 and 14 BEFORE
loading source code from tape or the source code will over-run the sprites.

LUNAR LANDER

Variables

PH Horizontal Phase of scrolling landscape
SPD Horizontal Velocity of strolling landscape
DOWN Set to 1 if Lander crashes
FU Remaining fuel
XP Vertical Position of Lander
VEL Vertical Velocity of Lander
SX Phase of X-Velocity dial
SY Phase of Y-Velocity dial
SFU Phase of Fuel Gauge
IX Phase of Horizontal Position Dial

Sprites

NUMBERS HEIGHT LENGTH DESCRIPTION

 1 1 2 POINTER
 3 1 5 LANDING PAD
 4-9 1 1 BLOCKS FOR LANDSCAPE SPRITES
 10-25 3 8 LANDSCAPE SECTIONS
26,28,29,31 1 1 PANEL SPRITES
 32,33 1 8 MINI LANDSCAPE
 43 3 3 EXPLOSION
 44 4 5 LANDED LUNAR LANDER
 45 3 3 CRASHED LUNAR LANDER
 100 6 3 LUNAR LANDER

101-107 6 3 LUNAR LANDER ORIENTATIONS
 (CONSTRUCTED)
 128 3 128 COMPLETE LANDSCAPE
 (CONSTRUCTED)

 9

Sprites 1 to 100 are produced using the sprite generator program. Sprites 101 to
107 are created in the main program using the word SET. Sprite 128 is constructed
from sprites 10 to 25 in the main program using the word MAKE.

The Lunar Lander

This listing is provided as an example of White Lightning programming. In order
to run the game you will need to enter the sprites as described in the next
section. This is a fairly laborious task so we can offer the fainthearted,
sprites and demo on tape for one pound seventy five pence. We recommend, however,
that you take the time to build up the sprites yourself as an exercise in self
discipline if nothing else!

The program executes one word in foreground and one word in background. The
program can be roughly sub-divided the following way:

Screens 6,7,8

These set up the screen display, dials etc.

Screens 9,10,11

These three screens form the routine which scrolls the landscape at one of three
speeds. This routine is executed in background to give smoother movement.

Screens 11,12,13,14,15,16,17

These control the flight of the lander, manipulate the dials, execute the crashes
and so on.

Screen 18

This executes all the previous definitions in the right order to produce the final
game.

Let's now look at the program in more detail.

SCR # 6 2 44 SPN ! 17 ROW ! 6 COL ! PU
 0 : COLOUR 0 ROW ! 16 COL ! 16 TXRS ;
 LEN ! 23 HGT ! 7 INK 1 BRIGHT 3 : PTST SPN ! COL ! ROW ! PUT
 1 SETAV ATTON ; BLS ;
 2 : VTSC COL ! 10 2 DO I ROW ! 4 : BARST 14 23 31 PTST MIRM 1
 PUTBLS LOOP ; 4 24 31 PTST MIRM 6 28 28 PTST
 3 : SCLE 26 SPN ! 18 VTSC 26 V 5 19 16 32 PTST 19 24 33 PTST
TSC MIRM 21 VTSC 29 VTSC MIRM ; ;
 4 : VTCL ROW ! COL ! LEN ! HGT 6 : LETR 7 INK 0 PAPER 1 18 AT
 ! PAPER SETAV ; ." FUEL" 0 26 AT ." VERT" 1 26
 5 : BARS 4 6 1 20 2 VTCL 2 2 1 AT
 20 8 VTCL 5 4 1 28 2 VTCL 7 ." VEL" 11 20 AT ." HORZ VEL
 6 2 3 1 28 7 VTCL 5 1 16 16 14 " ; -->
 VTCL ;
 7 --> SCR # 8
 0 : HRSC 32 16 DO 12 I 29 PTST
SCR # 7 17 I 29 PTST LOOP 16 16 1 PTST
 0 : LND 6 COL ! 17 ROW ! 44 SP ;
N ! PUTBLS BEGIN 7 1 KB UNTIL 1 : MARK 152 159 PLOT 7 0 DRAW
 1 20 ROW ! 43 SPN ! 7 COL ! 20 216 127 PLOT 7 0 DRAW 128 71 PL
 0 DO PUTXRS 100 100 BLEEP LOOP OT

10

 2 0 -7 DRAW ; 4 : UL SS -200 < IF SL8 ELSE S
 3 : PANEL 0 PAPER COLOUR SCLE L4 ENDIF ;
BARS BARST HRSC LETR MARK ; 5 : LL SS -7 < IF SL1 ELSE SO
 4 : MAKE 128 SPN ! 3 HGT ! 128 ENDIF ;
 LEN ! 0 SROW ! 128 SP2 ! ISPRIT 6 : LF SS -100 < IF UL ELSE LL
E ENDIF ;
 5 16 0 DO I 10 + DUP SPN ! SP1 7 : DEC SS 0< IF LF ELSE RT EN
 ! I 8 * SCOL ! GWBLM GWATIM DSP DIF ;
RITE
 6 LOOP ; SCR # 12
 0 VARIABLE PH 0 : SET -1 NPX ! 3 LEN ! 6 HGT
 7 256 VARIABLE SPD 0 VARIABLE ! 107 100 DO I SP1 ! I 1+ DUP S
DOWN 1008 VARIABLE FU --> P2 !
 1 SPN ! ISPRITE COPYM WCRM LO
SCR # 9 OP ;
 0 : S1 1023 AND 8 / SCOL ! 1 L 2 40 VARIABLE XP 8 VARIABLE V
EN ! PUTBLS 16 LEN ! ; EL
 1 : NBR PH @ S1 ; 3 : PREP 7 COL ! 0 DOWN ! 40 X
 : NBL PH @ 128 + S1 ; P ! ;
 2 : OPEN 0 PAPER 5 INK CLS 0 P 4 : TICK VEL @ 255 > IF ELSE 1
H ! EXX 128 SPN ! 16 LEN ! 0 COL VEL +! ENDIF ;
 ! 5 : THRUST FU @ IF 7 1 KB IF V
 3 3 HGT ! 21 ROW ! 0 SCOL ! 0 EL @ -252 > IF -4 VEL +! FUEL
SROW ! PWBLS PWATTS 2 HGT ! EXX 6 ENDIF ENDIF ENDIF ;
 4 0 PAPER 1008 FU ! 0 BORDER ; 7 -->
 : SH8 PH @ DUP 7 AND 0= ;
 5 : FUEL -1 FU +! ; SCR # 13
 : SR SH8 IF NBR ENDIF ; 0 : MV VEL @ XP @ + DUP 5631 >
 6 : SL SH8 IF NBL ENDIF ; IF DROP 5631 1 DOWN ! ENDIF DUP
 : SH4 PH @ DUP 3 AND 0= ; 1 XP ! 32 / 8 /MOD 5 - ROW ! 7
 7 : SP SPD +! ; AND 100 + SPN ! ROW @ 0< IF ADJ
 : SS SPD @ ; --> M
 2 PWBLS ELSE VEL @ 0< IF 1 SRO
SCR # 10 W ! ROW @ 15 > IF 4 HGT ! ELSE
 0 : POLL FU @ IF 8 1 KB IF SS 3 5 HGT ! ENDIF ELSE 0 SROW !
-252 > MINUS SF FUEL ENDIF 5 HGT ! ENDIF ROW @ DUP SROW @ +
 1 1 1 KB IF SS 256 < SF FUEL E 4 ROW ! PWBLS ROW ! ENDIF ;
NDIF ENDIF ; 5
 2 : -P - PH ! POLL ; 6
 : +P + PH ! POLL ; 7 -->
 3 : SR1 SR WRR1V 1 -P ;
 : SL1 SL WRL1V 1 +P ; SCR # 14
 4 : SR4 SH4 IF SR WRR4V 4 -P E 0 : BANG DOWN @ DUP IF 19 ROW
LSE SR1 ENDIF DROP ; ! 43 SPN ! -5 NPX ! 7 HGT ! 3 LE
 5 : SL4 SH4 IF SL WRL4V 4 +P E N !
LSE SL1 ENDIF DROP ; 1 40 10 DO PUTXRS I 20 + I DO
 6 : SO DOWN @ IF ELSE SS ABS 2 J I BLEEP LOOP PUTXRS 17 ROW !
56 < IF POLL ENDIF ENDIF ; 2 SCRV 19 ROW ! 5 +LOOP SS ABS
 7 : SR8 SH8 IF NBR WRR8V 8 -P 8 < IF 21 ROW ! 45 SPN ! PUTBLS
ELSE SR4 ENDIF DROP ; --> 3 ENDIF ENDIF XP @ 5631 = IF D
 OWN @ 0= IF 7 COL ! LND 7 COL !
SCR # 11 4 MV 0 VEL ! ENDIF INT-OFF BEG
 0 : SL8 SH8 IF NBL WRL8V 8 +P IN 7 1 KB UNTIL
ELSE SL4 ENDIF ; 5 ' DEC INT-ON ENDIF ;
 1 : UR SS 200 > IF SR8 ELSE SR 6 : OK 0 DOWN ! ;
4 ENDIF ; 7 -->
 2 : LR SS 7 > IF SR1 ELSE SO E
NDIF ; SCR # 15
 3 : RT SS 100 > IF UR ELSE LR 0 : LAND SS ABS 8 < IF VEL @ 3
ENDIF ; 2 < IF PH @ 1023 AND 8 / CASE 12
 OF

 11

 1 OK ENDOF 13 OF OK ENDOF 30 O SCR # 17
F OK ENDOF 31 OF OK ENDOF 58 OF 0 : FVEL FU @ 16 / SFU @ - 0<
OK IF 19 COL ! 2 ROW ! 8 HGT ! 1 LE
 2 ENDOF 59 OF OK ENDOF 91 OF O N !
K ENDOF 92 OF OK ENDOF ENDCASE 1 -1 NPX ! -1 SFU +! WCRV RSE
 3 ENDIF ENDIF BANG ; T1 ENDIF ;
 4 128 VARIABLE SX 32 VARIABLE 2 0 VARIABLE LX
SY 63 VARIABEL SFU 3 : MXG 18 ROW ! 16 COL ! 16 L
 5 : XG SX +! 16 COL ! 13 ROW ! EN ! 1 HGT ! ;
 1 HGT ! 16 LEN ! ; 4 : MLEFT MXG WRL1V -1 LX +! ;
 6 : RSET1 7 COL ! 3 LEN ! ; : MRIGHT MXG WRR1V 1 LX +! ;
 : WLEFT -1 XG WRR1V RSET1 ; 5 : MON PH @ 8 / LX @ - DUP 0
 7 : WRIGHT 1 XG WRL1V RSET1 ; > IF DROP MRIGHT ELSE
 --> 6 0< IF MLEFT ENDIF ENDIF RSET
 1 ;
SCR # 16 7 -->
 0 : XVEL SPD @ 256 + 4 / SX @
 - DUP 0< IF WLEFT DROP ELSE 0 > SCR # 18
IF 0 : OFF PANEL PREP ' DEC INT-O
 1 WRIGHT ENDIF ENDIF ; N BEGIN TICK THRUST MV MON XVEL
 2 : YG DUP MINUS NPX ! SY +! 2 1 YVEL FVEL MON LAND MON UNTIL
7 COL ! 2 ROW ! 8 HGT ! 1 LEN ! INT-OFF ;
 3 WCRV RSET1 ; 2 : TST 256 SPD ! 0 PH ! 1008
 4 : WUP -1 YG ; FU ! 40 XP ! 8 VEL ! 128 SX !
 : WDOWN 1 YG ; 3 32 SY ! 63 SFU ! 0 LX ! OPEN
 5 : YVEL VEL @ 256 + 8 / SY @ OFF ;
- DUP 0< IF WUP DROP ELSE 0 > IF 4
 6 WDOWN ENDIF ENDIF ; 5
 7 --> 6
 7

 WORD DESCRIPTIONS

COLOUR

Sets the attributes in the right hand half of the screen.

VTSC

Produces a row of sprites with the current sprite number at the column on the
stack. Used to build up the gauges.

SCLE

Uses VTSC to build up the gauges.

VTCL

Sets up a specified window with specified attributes.

BARS

Uses VTCL to set the attributes for the gauges.

12

LAND

This word controls the landing sequence. The landed sprite is placed on the pad
and sits until ENTER is pressed. The explosion is then produced beneath the
lander to simulate take off and the landed lander is then exclusively OR'ed off of
the pad.

PTST

General purpose word which sets ROW, COL and SPN from the stack and then performs
a PUTBLS.

BARST

Adds the finishing touches to the gauges by putting sprites 28,31,32 and 33 in the
appropriate positions. Uses PTST.

LETR

Places the gauge titles above the gauges.

HRSC

Puts the horizontal scale on the screen.

MARK

Draws the indicators used in the gauges.

PANEL

Execution word to set up the whole right hand side of the screen ie. all previous
words.

MAKE

See 'Creating Large Sprites'.

S1

Used to calculate the next column in the large landscape sprite, to be put to the
screen. LEN is set back to 16 for the next operation.

NBR

Gets the appropriate column (calculated by S1) when the landscape is moving
right.

NBL

Gets the appropriate column when the landscape is moving left.

OPEN

Builds up the initial picture for the left of the screen. Notice the use of EXX
to set up background variables for execution under interrupt.

SH8

PH describes the phase of the landscape with pixel resolution. SH8 checks to see
if this phase is a multiple of 8 and if so sets a flag to indicate that a fresh
column should be GOT from the landscape sprite. PH is also left on the stack.

 13

FUEL

Decrements the amount of fuel left.

SR

Checks to see if a character boundary is crossed (see SH8) and if so executes NBR.

SL

As SR but checks when movement is left.

SH4

Checks to see if phase is crossing a half character boundary, scrolling can only
increase from one pixel to four pixel movements on such a boundary or scrolling
will go out of phase.

SF

Accelerates horizontal speed (decelerates if negative) by the amount on the
stack.

SS

Puts the current horizontal speed on the stack.

POLL

Checks to see if there's any Fuel left (a non zero value of FU will act as a true
flag) then first checks SPACE to accelerate right if not travelling too fast then
check CAPS SHIFT to accelerate left if not travelling too fast. If a key is
pressed fuel is decremented.

-P

Updates phase and does a POLL when moving right.

+P

Updates phase and does a POLL when moving left.

SR1

Moves landscape 1 pixel right and adjusts pointers.

SR4

Moves landscape 4 pixels right and adjusts pointers provided a half character
boundary has been reached. If not, a further 1 pixel movement must be made.

SL4

As SR4 when moving left.

SO

When speed is less than 7, keyboard is polled but no scrolling of the screen is
executed. The lander is treated as horizontally stationary.

14

SR8

Moves landscapes 8 pixels (1 character) right and adjusts pointers provided a full
character boundary has been reached. If not a further 4 pixel scroll is
executed.

SL8

As SR8 when movement is to the left.

UR

If speed is greater than 200, try and scroll right 8 pixels right, if not, try and
scroll by 4 pixels right.

LR

If speed is greater than 7 then scroll 1 pixel right else no scroll.

RT

If speed is greater than 100 then do a UR if not do an LR.

UL

As UR when speed is negative.

LL

As LR when speed is negative.

LF

As RF when speed is negative.

DEC

The execution word which does all the scrolling logic. The words UR to LF are
effectively the nodes of a tree which produce one of 7 possible scrolls from -8
pixels to +8 pixels. A detailed understanding of the workings are not necessary
as long as you can adapt the routine to serve your needs.

SET

Creates 7 new orientations of the lander from the original in sprite 100, making 8
in all, each lander being 1 pixel shifted vertically from the one before. This
enables single pixel resolution in the lander movement.

PREP

Used to set up initial values.

TICK

Increments vertical velocity (acts like gravity) unless terminal velocity has been
reached. If you want to make the game more difficult change 1 VEL +! to 2 VEL +!
and thus double the planet's gravity.

 15

THRUST

If the lander still has fuel and hasn't reached terminal upward velocity then
increase upward velocity.

MV

A fairly complicated word which moves the lander vertically. The velocity is
added to the position (physicists note that unit time has elapsed etc). If the
lander goes under the base its position is put equal to the base and DOWN is SET
to 1. The row and orientation are then calculated.

BANG

Another fairly involved word which executes a crash if DOWN=1. It checks to see
if a safe landing was made and if not decides what sort of crash is required.

OK

A short word which sets DOWN to 0, indicating a safe landing.

LAND

If the lander has zero sideways velocity then vertical velocity and horizontal
position are checked for a safe landing or a crash. DOWN is set accordingly.

XG

Updates X-VEL PHASE and sets window for scroll.

RSET1

Sets COL and LEN back after XG.

XVEL

Controlling routine for XVEL gauge.

YG

Used to adjust Y-VEL gauge.

WUP

Move up Y-VEL gauge.

WDOWN

Move down Y-VEL gauge.

YVEL

Controlling routine for Y-VEL gauge.

FVEL

Controlling routine for fuel gauge.

MXG

Used to set up window for small screen movement.

16

MLEFT

Move pointer left on small screen.

MRIGHT

Move pointer right on small screen.

MON

Control routine for scroll screen.

OFF

Main program loop.

TST

Final execution word. Initialises parameters and then executes main program
loop.

THE GAME ITSELF

CREATION OF SPRITES

Load up the sprite development package and create all the sprites listed in table
1.

Once the sprite development package has loaded execute a cold start by pressing
the C key and hit Y for yes and then N for the change buffer size prompt.

Set the attribute switch to 1 by pressing the A key and then 1.

With reference to table 1 set the sprite number to the required value by pressing
the S key and then inputting the required value. Input the dimensions (Height and
Length) of the sprite by pressing the H or C keys and then inputting the
appropriate values. Set the respective ink, paper, flash and bright values using
the X, C, V and B keys.

Position the sprite screen X and Y pos cursors to their settings using the symbol
shift 5, 6, 7 or 8 keys.

Using the direct data input function, key D, input the 8 bytes of data. Move the
X and Y pos cursors to the next position and input the data until the sprite is
complete on the screen. Set both the X and Y position cursors to 1 and then GET
the sprite into memory by pressing the G key. Clear the sprite screen by pressing
symbol shift Q and then create the next sprite.

CREATION OF THE 64x3 CHARACTER LANDSCAPE SPRITE

This sprite will be made up of 8 8x3 character sprites, which will be joined
together into one large sprite in the White Lightning program itself.

Set the ink to 7, the paper to 0, the flash to 0 and the bright to 1. Clear the
CHR$ square by pressing the Q key. Using the sprites 4,5,6,7,8,9 and the CHR$
square (referred to as 0) build up sprites 10 to 25 as laid out in diagram 1.

 17

Position the X and Y Pos cursors to the appropriate co-ordinates. Input
the relevant sprite number and put the sprite to the screen by pressing the
D key and then 1. In the case of 0 press J to DUMP the empty CHR$ square
to the sprite screen.

The landing pad, sprite 3, is also placed in these sprites.

Once the 8 by 3 sprites have been created on the screen, position the X and
Y pos cursors to the top left corner of the sprite. Set the sprite number
to the appropriate value, set the length to 8 and the height to 3 then
press G to get the sprite.

Note that the left hand column of sprite 10 must have a 0 ink value as well
as the right hand column of sprite 11.

Once all the sprites have been created save them off to tape using the
symbol SHIFT S key.

Load in White Lightning, load in the lunar sprites. Carefully type in the
Lunar Lander program as listed and check your program against the original.
It is now best to save your source off to tape.

Exit to BASIC using: PROG <CR>

then save to tape using: SAVE"LUNAR" CODE 52224,6656

Go back into White Lightning using: PRINT USR 24836

Now type 6 LOAD <CR>
 MAKE <CR> to create the landscape
 SET <CR> to create the landers

To run the program type TST <CR>

Please note that if there is an error in your source the last few screens
can no longer be listed or compiled, since the creation of extra sprites
has overwritten the end screens, thus the source would have to be reloaded
for editing purposes.

PLAYING THE GAME

The game itself is more of a simulation than a game. The idea is to land
on all four bases without running out of fuel or crashing. The gauges are
self explanatory.

The controls are: CAPS SHIFT Thrust to the left
 BREAK SPACE Thrust to the right
 ENTER Vertical thrust

Once the game is over, hit the ENTER key to escape and then TST <CR> for a
new game.

FUEL

If fuel runs out the controls will no longer function.

YVEL

A safe landing is only made if the VEL gauge registers a velocity in the
"safe" region of the centre of the gauge.

18

XVEL

The horizontal velocity is represented by one of 3 scroll speeds but safe landings
can only be made if the pointer is in the "safe" region in the centre of the
gauge.

THE SMALL SCREEN

This gives a macroscopic view of the 8 screens. The bases are marked. The gauge
sometimes cannot keep up with the lander movement but at scroll speeds of a pixel
it will soon "catch up" with the real positions. This is not a "feature" we must
admit, keeping up with the gauge slows the foreground program down a lot.

 19

TABLE 1

 SPRITE H L INK PAPER FLASH BRIGHT XPOS YPOS 1 2 3 4 5 6 7 8
------ - - --- ----- ----- ------ ---- ---- - - - - - - - -
 1 1 2 7 0 0 1 1 1 29 29 28 15 7 3 0 0
 1 1 2 7 0 0 1 2 1 92 92 28 120 112 96 128 128
 3 1 6 7 0 0 1 1 1 255 227 127 0 60 24 60 126
 3 1 6 7 0 0 1 2 1 255 142 255 63 31 63 31 63
 3 1 6 7 0 0 1 3 1 255 28 255 255 255 255 255 255
 3 1 6 7 0 0 1 4 1 255 28 255 255 255 255 255 255
 3 1 6 7 0 0 1 5 1 255 113 255 254 252 254 252 254
 3 1 6 7 0 0 1 6 1 255 199 254 0 60 24 60 126
 4 1 1 7 0 0 1 1 1 128 64 160 80 168 84 170 85
 5 1 1 7 0 0 1 1 1 0 1 2 5 10 21 42 85
 6 1 1 7 0 0 1 1 1 170 85 170 85 170 85 170 85
 7 1 1 7 0 0 1 1 1 128 65 162 85 170 85 170 85
 8 1 1 7 0 0 1 1 1 0 0 0 0 8 20 42 85
 9 1 1 7 0 0 1 1 1 0 0 0 0 0 16 40 85
 26 1 1 6 0 0 1 1 1 254 2 2 2 30 2 2 2
 28 1 1 2 4 0 1 1 1 0 0 0 0 255 255 255 255
 29 1 1 6 0 0 1 1 1 128 128 128 136 136 136 255 0
 31 1 1 5 1 0 1 1 1 254 254 254 254 254 254 254 254
 32 1 8 3 0 0 1 1 1 0 1 155 155 255 255 255 255
 32 1 8 3 0 0 1 2 1 0 0 226 230 255 255 255 255
 32 1 8 3 0 0 1 3 1 63 33 127 127 255 255 255 255
 32 1 8 3 0 0 1 4 1 0 0 59 251 255 255 255 255
 32 1 8 3 0 0 1 5 1 3 2 223 223 255 255 255 255
 32 1 8 3 0 0 1 6 1 240 16 254 254 255 255 255 255
 32 1 8 3 0 0 1 7 1 0 24 127 127 255 255 255 255
 32 1 8 3 0 0 1 8 1 0 0 231 231 255 255 255 255
 33 1 8 3 0 0 1 1 1 126 66 254 255 255 255 255 255
 33 1 8 3 0 0 1 2 1 0 16 126 126 255 255 255 255
 33 1 8 3 0 0 1 3 1 0 0 143 143 255 255 255 255
 33 1 8 3 0 0 1 4 1 0 0 254 254 255 255 255 255
 33 1 8 3 0 0 1 5 1 126 66 127 255 255 255 255 255
 33 1 8 3 0 0 1 6 1 18 18 255 255 255 255 255 255
 33 1 8 3 0 0 1 7 1 0 0 255 255 255 255 255 255
 33 1 8 3 0 0 1 8 1 0 0 167 167 255 255 255 255
 20

 T
AB

LE
 1
 (
Co
nt

in
ue
d)

 -
--

--
--

 S
PR

IT
E

H

 L

IN
K

 P
AP
ER

FL
AS
H

 B
RI

GH
T

 X
PO

S

 Y

PO
S

 1

 2

 3

 4

 5

 6

 7

 8

 -
--

--
-

-

 -

--
-

 -
--
--

--
--
-

 -
--

--
-

 -
--

-

 -

--
-

 -

 -

 -

 -

 -

 -

 -

 -

 4

3

3

 3

 6

 0

0

1

 1

 1

96

 1
14

88

46

 1
81

26

21

90

 4

3

3

 3

 6

 0

0

1

 2

 1

16

41

88

 1
04

 2
12

 1

74

85

 1

70

 4

3

3

 3

 6

 0

0

1

 3

 1

 1
28

 2

14

20

40

 2

08

98

 2

24

 4

3

3

 3

 6

 0

0

1

 1

 2

13

10

53

 2
34

61

10

21

42

 4

3

3

 3

 6

 0

0

1

 2

 2

85

 1
70

85

 1
70

85

 1

70

85

 1

70

 4

3

3

 3

 6

 0

0

1

 3

 2

64

 1
60

80

 1
74

 1
20

 1

92

64

 2

26

 4

3

3

 3

 6

 0

0

1

 1

 3

85

 1
70

 2
55

 2

70

13

42

12

 4

3

3

 3

 6

 0

0

1

 2

 3

85

 1
70

89

 1
68

 2
08

49

16

 0

 4

3

3

 3

 6

 0

0

1

 3

 3

96

 1
80

 1
68

 2
16

40

20

74

 7

 4

4

4

 5

 5

 0

0

1

 1

 1

 0

 0

 0

 0

 0

 0

 0

 0

 4

4

4

 5

 5

 0

0

1

 2

 1

 0

 0

 0

 0

 0

 0

 0

 0

 4

4

4

 5

 5

 0

0

1

 3

 1

 0

 0

 0

 0

 0

 0

 0

 0

 4

4

4

 5

 5

 0

0

1

 4

 1

 0

 0

 0

 0

 0

 0

 0

 0

 4

4

4

 5

 5

 0

0

1

 5

 1

 0

 0

 0

 0

 0

 0

 0

 0

 4

4

4

 5

 5

 0

0

1

 1

 2

 0

 0

 0

 0

 0

 0

 0

 0

 4

4

4

 5

 5

 0

0

1

 2

 2

 0

 0

 0

 0

 1

 1

 7

 6

 4

4

4

 5

 5

 0

0

1

 3

 2

 0

 0

 0

 0

 1
65

 2

55

66

36

 4

4

4

 5

 5

 0

0

1

 4

 2

 0

 0

 0

 0

 1
28

 1

28

 2

24

96

 4

4

4

 5

 5

 0

0

1

 5

 2

 0

 0

 0

 0

 0

 0

 0

 0

 4

4

4

 5

 5

 0

0

1

 1

 3

 0

 0

 0

 0

 0

 0

 0

 0

 4

4

4

 5

 5

 0

0

1

 2

 3

12

15

 5

 0

 7

13

 2

13

47

 4

4

4

 5

 5

 0

0

1

 3

 3

24

 2
55

90

 0

 2
55

90

90

 2

55

 4

4

4

 5

 5

 0

0

1

 4

 3

48

 2
40

 1
60

 0

 2
24

 1

76

 1

71

 2

44

 4

4

4

 5

 5

 0

0

1

 5

 3

 0

 0

 0

 0

 0

 0

 0

 0

 4

4

4

 5

 5

 0

0

1

 1

 4

 0

 0

 1

 6

 9

22

72

48

 4

4

4

 5

 5

 0

0

1

 2

 4

 2
37

 2
21

 1
27

 1
40

48

 1

92

 0

 0

 4

4

4

 5

 5

 0

0

1

 3

 4

36

 1
65

 2
55

 1
29

44

94

 1

91

 1

91

 4

4

4

 5

 5

 0

0

1

 4

 4

 1
83

 1
87

 2
54

49

12

 3

 0

 0

 4

4

4

 5

 5

 0

0

1

 5

 4

 0

 0

 1
28

96

 1
44

 1

04

18

12

 4

5

3

 3

 7

 0

0

1

 1

 1

 0

 0

18

 9

 9

55

33

65

 4

5

3

 3

 7

 0

0

1

 2

 1

 0

 0

12

24

56

 1

12

 2

31

 2

07

 4

5

3

 3

 7

 0

0

1

 3

 1

 0

32

80

 8

 4

58

 1

96

 2

01

 21

TABLE 1 (Continued)

 SPRITE H L INK PAPER FLASH BRIGHT XPOS YPOS 1 2 3 4 5 6 7 8
------ - - --- ----- ----- ------ ---- ---- - - - - - - - -
 45 3 3 7 0 0 1 1 2 67 71 46 60 56 17 131 64
 45 3 3 7 0 0 1 2 2 191 44 78 187 119 46 25 123
 45 3 3 7 0 0 1 3 2 18 37 194 5 138 197 138 5
 45 3 3 7 0 0 1 1 3 160 81 162 82 170 84 170 85
 45 3 3 7 0 0 1 2 3 6 230 248 248 244 163 82 85
 45 3 3 7 0 0 1 3 3 42 21 42 85 170 85 170 85
 100 6 3 5 0 0 1 1 1 0 0 0 0 0 0 0 0
 100 6 3 5 0 0 1 2 1 0 0 0 0 0 0 0 0
 100 6 3 5 0 0 1 3 1 0 0 0 0 0 0 0 0
 100 6 3 5 0 0 1 1 2 1 1 7 6 12 15 5 0
 100 6 3 5 0 0 1 2 2 165 255 66 36 24 255 90 0
 100 6 3 5 0 0 1 3 2 128 128 224 96 48 240 160 0
 100 6 3 5 0 0 1 1 3 7 13 213 47 237 221 11 21
 100 6 3 5 0 0 1 2 3 255 90 90 255 36 165 255 129
 100 6 3 5 0 0 1 3 3 224 176 171 244 183 187 208 168
 100 6 3 5 0 0 1 1 4 34 68 248 144 160 64 144 96
 100 6 3 5 0 0 1 2 4 44 94 191 191 0 0 0 0
 100 6 3 5 0 0 1 3 4 68 34 31 9 5 2 9 6
 100 6 3 5 0 0 1 1 5 0 0 0 0 0 0 0 0
 100 6 3 5 0 0 1 2 5 0 0 0 0 0 0 0 0
 100 6 3 5 0 0 1 3 5 0 0 0 0 0 0 0 0
 100 6 3 5 0 0 1 1 6 0 0 0 0 0 0 0 0
 100 6 3 5 0 0 1 2 6 0 0 0 0 0 0 0 0
 100 6 3 5 0 0 1 3 6 0 0 0 0 0 0 0 0
 22

DIAGRAM 1

 0 INK
 ↓
 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┐
 6 │ 4 │ 0 │ 0 │ 8 │ 9 │ 0 │ 5 │ 6 │
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 7 │ 6 │ 4 │ 5 │ 6 │ 6 │ 7 │ 6 │ 6 │ SPRITE 10
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘
 ↓ 0 INK
 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┐
 6 │ 4 │ 8 │ 9 │ 0 │ 0 │ 9 │ 8 │ 0 │
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 7 │ 6 │ 6 │ 6 │ 4 │ 5 │ 6 │ 6 │ 7 │ SPRITE 11
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘

 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┐
 6 │ 0 │ 9 │░░░░░░░SPRITE 3░░░░░░░░│
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 7 │ 7 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ SPRITE 12
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘

 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┐
 6 │ 9 │ 0 │ 5 │ 4 │ 8 │ 0 │ 8 │ 8 │
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 7 │ 6 │ 6 │ 6 │ 6 │ 6 │ 7 │ 6 │ 6 │ SPRITE 13
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘

 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
 6 │ 5 │ 4 │ 0 │ 9 │ 5 │ 4 │░░░░░░░SPRITE 3░░░░░░░░│
 ├───┼───┼───┼───┼───┼───┼───┼───┼───┴───┴───┴───┘
 7 │ 6 │ 6 │ 7 │ 6 │ 6 │ 6 │ 6 │ 6 │ SPRITE 14
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘

 2 3 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
6 │░░░░░░░SPRITE 3░░░░░░░░│ 8 │ 5 │ 4 │ 0 │
 └───┴───┼───┼───┼───┼───┼───┼───┼───┼───┤
 7 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 4 │ SPRITE 15
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘

 23

DIAGRAM 1 CONTINUED

 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┐
 6 │ 0 │ 9 │ 5 │ 6 │ 6 │ 4 │ 8 │ 9 │
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 7 │ 5 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ SPRITE 16
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘

 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┐
 6 │ 5 │ 4 │ 8 │ 0 │ 0 │ 5 │ 7 │ 4 │
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 7 │ 6 │ 6 │ 6 │ 7 │ 7 │ 6 │ 6 │ 6 │ SPRITE 17
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘

 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┐
 6 │ 9 │░░░░░░░SPRITE 3░░░░░░░░│ 0 │
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 7 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 4 │ SPRITE 18
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘

 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┐
 6 │ 0 │ 8 │ 5 │ 6 │ 4 │ 8 │ 9 │ 0 │
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 7 │ 5 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 7 │ SPRITE 19
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘

 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┐
 6 │ 8 │ 0 │ 0 │ 0 │ 5 │ 7 │ 7 │ 4 │
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 7 │ 6 │ 7 │ 4 │ 5 │ 6 │ 6 │ 6 │ 6 │ SPRITE 20
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘

 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┐
 6 │ 8 │ 5 │ 4 │ 5 │ 4 │ 8 │ 9 │ 0 │
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 7 │ 5 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 4 │ SPRITE 21
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘

24

DIAGRAM 1 CONTINUED

 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┐
 6 │ 0 │░░░░░░░SPRITE 3░░░░░░░░│ 9 │
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 7 │ 5 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ SPRITE 22
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘

 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┐
 6 │ 8 │ 9 │ 5 │ 6 │ 7 │ 7 │ 6 │ 4 │
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 7 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ SPRITE 23
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘

 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┐
 6 │ 9 │ 5 │ 4 │ 8 │ 9 │ 9 │ 5 │ 7 │
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 7 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ SPRITE 24
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘

 4 5 6 7 8 9 A B
 ┌───┬───┬───┬───┬───┬───┬───┬───┐
 6 │ 4 │ 0 │ 8 │ 0 │ 0 │ 8 │ 5 │ 7 │
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 7 │ 6 │ 7 │ 6 │ 4 │ 5 │ 6 │ 6 │ 6 │ SPRITE 25
 ├───┼───┼───┼───┼───┼───┼───┼───┤
 8 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │ 6 │
 └───┴───┴───┴───┴───┴───┴───┴───┘

 25

 MICRODRIVE WHITE LIGHTNING

INTRODUCTION

In order to make maximum use of the Spectrum's 48k of memory the tape based White
Lightning was located at 24832 decimal. This leaves room for a small BASIC loader
program. If, however, Interface 1 is fitted, the execution of any of the shadow
ROM commands will cause BASIC to be relocated upwards and result in insufficient
memory for the tape based loader program.

It was therefore decided, on completion of the tape based program, to develop
another version which would not only be microdrive compatible but would also
utilise the drives to compile source code. Unfortunately, because of the way that
the shadow ROM operates, the BASIC interface part of the software is no longer
practical and therefore Microdrive White Lightning no longer has this feature.

The editing buffers have now been moved up to occupy the old screens 6, 7 and 8,
and an extra 1k of dictionary space is now available. Source code is now compiled
directly from microdrives and so sprites can be stored from 53760 onwards.
Microdrive screens 1 to 19 are utilised by the system but you can edit any of the
screens 20 to 150. This means that Microdrive White Lightning can handle six
times as much source code without any troublesome reloading from tape.

IMPLEMENTING ON MICRODRIVE

1. Insert Tape 1 in your cassette and rewind to Side A.

2. Type LOAD"" and when "MWL" has loaded it will auto-run, format your
 microdrive and save the BASIC loader and the machine code.

3. To run the microdrive version just type LOAD *"M";1;"MWL" and it will
 load and execute.

PREPARING A CARTRIDGE FOR SOURCE CODE

Before using the microdrive version it is necessary to set up a separate cartridge
for storing and loading source code. This version has been designed to work
exclusively with microdrive number 1.

To set up the cartridge, insert it in microdrive 1 and execute the following:

 FORMAT"M";1;"name":OPEN#4;"M";1;"a":
 FOR I=1 TO 100000: PRINT#4;CHR$ 32 ; : NEXT I

Note the lower case "a" used in the filename.

After several minutes, the error message "MICRODRIVE FULL" will be printed. You
should now key in:

 CLOSE#4

to close this file. To check that you have a correctly prepared cartridge, type:

 CAT 1

"a" should be printed on the screen to indicate a single file called "a" and 0 to
indicate zero bytes free.

26

Please note that this cartridge should be clearly labelled and used exclusively
for SAVEing and LOADing Forth source code while you are editing Forth screens.
Sprites, BASIC and blocks of machine code should be SAVEd on a separate cartridge
or cartridges. There are no commands within White Lightning to manipulate
microdrives, therefore all such commands (e.g. FORMAT, ERASE, OPEN#) are executed
from BASIC after exiting via the PROG command.

EDITING FORTH SCREENS

Forth source code is still EDITed in exactly the same way as the tape version
(using EDIT,P,S,D etc.) except that EDIT will not automatically execute a FLUSH.
This means that your EDITs will not be updated on microdrive until you type FLUSH,
so be sure to remember to do this before moving on to another screen.

THE EDIT BUFFERS

To give some idea of how White Lightning uses the microdrive for Forth source,
the following brief description may be helpful.

There exists in RAM an area of 1024 bytes called the edit buffer, which can hold
two 512 byte Forth screens. If you issue a command which requires the use of a
screen (LIST, CLEAR or INDEX) then this screen will be read from the microdrive
into the edit buffer. If the edit buffer already contains two screens and they
have been altered in any way since they were last loaded, then they must first be
saved (using FLUSH) back to the drive in order to allow the currently required
screen to be loaded in.

Note that before a screen is first edited it will need to be cleared using the
CLEAR command as it will probably contain garbage. For example, before using
screen 20 for the first time, type:

 20 CLEAR 20 LIST

TRANSFERRING OLD SOURCE

If you have already written a sizeable program with the tape based White
Lightning, then you will want to transfer it to your microdrive-based White
Lightning without having to completely re-type it. To do this, use the
following:

1. Type OLD <CR>.

2. Type PROG <CR> and load your old source code from the tape in the normal way.
 Then re-enter Forth as normal.

3. Transfer each screen from its old number in memory to its new number on
 the microdrive using:

 OLDSCREEN NEWSCREEN TRANS <CR>

 So, for example, to transfer the old screen 6 to microdrive screen
 25, use:

 6 25 TRANS <CR>

 If a bad sector is encountered you will get error message 8. Skip
 over this sector and try the next one (see next section on BAD SECTORS).

 27

4. Finally type NEW <CR> to restore the editing buffers to their
 microdrive addresses.

BAD SECTORS

Regrettably, at the time of writing, whilst the microdrive cartridge costs about
twice as much as a standard 5 1/4 inch floppy, the number of bad sectors is still
extremely high. Forth screens map directly to microdrive sectors, so screen 25
uses sector 25 and so on. So as we shall see, some screens may be unusable.

A bad sector will be identified by White Lightning the first time a read or write
operation is carried out, and error 8 generated. Note that executing CLEAR will
mean that you can find bad sectors before editing into them. If you do find a bad
sector, keep a note of it and don't use that screen. There is a simple way around
this problem as we shall see in the following example. Assume we want to edit
into screens 25 to 28 and that we did the following:

1. Type 25 CLEAR 0 EDIT

2. Key in text for lines 0 to 6.

3. Type 7 EDIT then key in --> to indicate continue with next screen when
 LOADing.

4. Type 26 CLEAR 0 EDIT.

5. Key in text for lines 0 to 6.

6. Type 7 EDIT and key in --> .

Now suppose when we typed in 27 CLEAR, that we got error 8, indicating drive
error.
This would mean that sector 27 was a bad sector and therefore that screen 27 was
unusable.

Remember that in screen 26 the last line was:

 7 -->

which tells Forth to continue LOADing on the next screen. The next screen is
screen 27 which is unusable, so we have to change the last line of screen 26 to
become:

 7 28 LOAD

which tells Forth to continue LOADing at screen 28. This will then skip over the
bad sector.

ADDITIONAL ERROR MESSAGES

3 - Incorrect Addressing Mode

7 - Stack Overflow

8 - Microdrive read/write error (bad sector).

28

SUMMARY OF MICRODRIVE WHITE LIGHTNING

1. Only use specially prepared cartridges for EDITing and use them
 exclusively for storing screens.

2. CLEAR a screen before using it for the first time and change the
 previous screen to skip over it if it is a bad sector. Do not use
 this screen again.

3. Microdrive commands such as ERASE, VERIFY etc. can be executed after
 entering BASIC using PROG.

4. Do NOT break into the program (SHIFT and SPACE) while the microdrive
 is running.

5. RESERVE no longer executes.

6. There are some additional error messages (listed above).

7. Always execute a FLUSH after editing of a screen is complete.

THE MICRODRIVE SPRITE GENERATOR

INTRODUCTION

The microdrive Sprite Generator Program is upwardly compatible with the current
tape based version and tape LOADing and SAVEing is still supported. An extra
command has been added to make the creation of large sprites easier and the arcade
character set has been re-organised to give extra sprite space.

IMPLEMENTING ON MICRODRIVE

The first thing to do is to transfer the program onto a microdrive cartridge.

1. Insert Tape 1 in your cassette and rewind to Side A.

2. Type LOAD"":LOAD""CODE

3. Place a formatted cartridge in microdrive 1.

4. Type GOTO 9998.

This will save and verify the generator onto the microdrive. Now type PRINT USR 0
to clear memory.

The microdrive version can now be LOADed and RUN by typing:

 LOAD *"M";1;"S"

SAVING AND LOADING SPRITES

The microdrive version of the Sprite Development Program still allows sprites to
be loaded and saved from and to tape as described in the manual.

A separate cartridge is required to store sprites. The program will allow you to
save five files of sprites per cartridge, these being numbered 1 to 5.

 29

Before a cartridge can be used to store sprites, it has to be specially formatted.
This is done using the Sprite Generator Program by typing SYMBOL SHIFT F (TO).
This will format the cartridge and set up five dummy files, numbered 1 to 5. From
now on, whenever you save a file of sprites, the old file of that number will be
erased to conserve cartridge storage space.

For example, if you wished to save a file of sprites currently in memory, to file
1, use:

1. Type SYMBOL SHIFT S (save sprites).

2. Type N (we don't want tape).

3. Type Y (save to drive).

4. Insert the formatted cartridge.

5. Press any key.

6. Type 1 (save to file 1).

To load sprites just press SYMBOL SHIFT J and then follow the same sequence as
that used to save.

AVAILABLE MEMORY

You have 13595 bytes available for sprites. Please note that the bottom 2816
bytes, locations 51685 to 54501 are used to store the arcade character library
accesses by the 'Z' key. If, by creating lots of sprites, you overwrite this area
of memory, you should not try to access any of these characters.

CREATION OF LARGE SPRITES

The microdrive version of the Sprite Development Package allows the creation of
large sprites (larger than the 15x15 screen) in memory. These sprites can be said
to be empty when created and have to be filled by placing smaller sprites into
them using the 'place sprite into sprite window' function (BREAK SPACE key).

To create a large sprite hit CAPS SHIFT C and enter the dimensions as instructed.

MERGING SPRITES FROM MICRODRIVE

The actual microdrive file that contains the sprite data has the capital letter B
after it (CHR$ 66) such that, for example, the sprite data for sprite file '5' is
file '5B'.

So with reference to line 5 on page 81 of the White Lightning manual: to merge
from microdrive the sprites of sprite file 5 in White Lightning, exit to BASIC and
then type:

 LOAD *"M";1;"5B"CODE

30

TRANSCRIBER'S NOTE

While OCRing and proofreading the scans of the White Lightning manuals, I have
tried to preserve, as best as I was able, the original pagination, layout,
spacing and formatting of the originals - while still incorporating all errata
noted and published in previous versions, and with a few (small) edits and
corrections of my own.

This transcription is still a work in progress. If you discover any further
mistakes, please create a pull request (or otherwise report the errors) against
the manuals' source repository at:

 https://github.com/richmilne/white-lightning-manuals

https://github.com/richmilne/white-lightning-manuals

	Creating Large Sprites
	Moving Sprites
	Screen Scrolling
	Simple Putting
	More Advanced Techniques
	Collision Detection
	Sample Source Listings
	The Lunar Lander Program
	Table 1 (Lunar Sprites)
	APPENDIX A - THE MICRODRIVE VERSION
	Introduction
	Implementing on Microdrive
	Preparing a Cartridge for Source Code
	Editing Forth Screens
	The Edit Buffers
	Transferring Old Source
	Bad Sectors
	Additional Error Messages
	The Microdrive Sprite Generator
	Implementing on Microdrive
	Saving and Loading Sprites
	Creating Large Sprites
	Merging Sprites

