MIRA SOFTWARE /

FORTRAN

COMFILER

Imnstructionmn

Marmnwual

/

/

/
r

The MIRA SOFTWARE Fortran Compiler for the Sinclair Spectrim
is based on FORTRAN 775, which is a subset of Standard FORTRAN
77. It compiles programs written in FORTRAN intoc machine code,
which can then be run independently of the compiler itself.

This instruction manual is in two parts. The first concerns

the loading and use of the compiler and the second gives details
of the Fortran language commands as implemented on this
compiler.

To begin programming you should start the tape at the
beginning of side | and enter LOAD"", This will lpad a Basic
LOADER program which will then load the first part of the
compiler called FORTRANL., When this is loaded the message 'Press
required key' will appear at the bottom of the screen. You
should then stop the tape. The line editor of the compiler will
then allow you to enter a program. The editor will be in control
key mode when pressing various keys will allow manipulation of
the program.

ENTERING LINES

Pressing ENTER will put the editor into line entry mode
allowing you to enter the lines of your Fortran program in
sequence. The Fortran language specifies a certain layout for
lines of a program, The line may not be more than 80 characters
in length. The first character may be a C or a # specifying that
the line is a comment line to be ignored by the compiler, or a D
specifying a Debug line, which may either be a comment line or a
program line. If the first character is none of these then the
first five characters must either be left blank or be a
statement label, that is a 1 to 5 digit number. The sixth
character should be blank for a normal program line. The
characters in positions 7 to 80 are used for the FORTRAN
statement. Note that Fortran statements only use capital
letters, lower case ones are not allowed. Only one statement is
allowed on each line. If a statement is too long to fit into one
line then you may continue it by putting a + character in the
sixth character position of the next line and continuing the
statement from there.

When a line is entered the compiler does an elementary
syntax check before entering it into the program. If an error is
detected then the line remains at the bottaom of the screen with
a '?’ markng the probable position of the error, ready for you
to correct the error. As each line is entered it will be added
to the program listing, and the program cursor will mark its

-2 -

position. In the listing each line has a line number to indic;te
its position in the program. These are not to be confused with
statement labels which may occupy the +first five character

_positions of a line.

In order to leave line entry mode and return to control key
mode you should press SHIFTED 6. The messages 'STOP in INPUT’
and '‘Press required key’ will then appear at the bottom of the
screen,

CONTROL KEYS

When the program is listed on the screen a cursor (flashing
‘>') marks the position of the current line. This cursor may be
moved up and down a line by pressing the 7 and & keys. If
shifted 7 or shifted 6 are pressed then the cursor will move up
or down eight lines at a time, The current line may be edited by
pressing 1 or EDIT. Pressing E allows entry of a single line
before the current line. If line entry mode is selected by
pressing ENTER then the lines added will be positioned after the
current line, Pressing V will list the program on a printer
{i.e. on stream 3). Pressing H puts a list of the control keys
and their functions on the screen.

Saving and Loading programs

Pressing 5 allows the Fortran Program to be saved to tape.
You should enter the name of the program when this is requested,
and then the program is saved on the tape in the normal way.
Then the compiler will require the program to be verified. It is
recommended that programs should always be saved before they are
compiled as the compilation process erases the Fortran oprogram
from memory.

To load a program from tape you should press J and enter the
name of the program required (pressing ENTER will load the next
program on tape as usual). If this is done with a progran
already on the screen then the new program will be merged into
the old at the position of the cursor.

Moving Blocks of lines

It is possible to move a block of program lines within the
program. To do this the B key should be pressed to mark the
start of the block at the current position of the cursor, then
the cursor should be moved to the line following the end of the
block. The block may then be stored by pressing K. It may later
be retrieved by pressing R, when it will be put at the position
of the cursor. A block may be deleted by pressing SHIFTED 0O
(DELETE),

Compiling programs

When a program has been entered it may be coapiled by pressing
the X key., The compiler will then do further syntax checks on
the program, and if an error is detected then it will indicate
it by moving the cursor to the line in which it occurs, and
indicating the probable position with a question mark, ready for
the line to be edited and the error corrected. An error message
may be printed at the bottom of the screen indicating the nature
of the error.

While the compilation is in progress, the table of variable
names etc. will be positioned in the screen memory. This will
result in a random pattern appearing in the screen. If no errors
are detected then a buzz will sound and the second part of the
compiler needs to be loaded by starting the tape from where it
was stopped on side {. The second part is called ‘CODER' but
this will not appear on the screen as if it did it would corrupt
the symbol table. If there are any errors during the loading of
this then the buzz will sound again and it should be reloaded.

When the second part has been loaded it will proceed with
the compilation. Occasionally an error will be detected at this

-stage, when the buzz will sound again, and an error number will
appear on the screen. It is then necessary to rewind the tape
and reload the first part of the compiler together with the
Fortran program,

When the compilation is successfully completed some
informnation will be printed on the screen and printer. The first
number is the maximum address for RAMTOP when the compiled
program is in use, Then come the start and length of the
compiled program, and finally (after REM) the address of the
blank common storage of the program. If you do not have a
printer connected then you should make a note of these nuambers.
Then pressing any key will reset the computer, leaving the
compiled program stored above RAMTOP. It may then be saved for
future use as a block of code wusing the start and length
specified. When you want to reload this code you should first
set RAMTOP to the required address using CLEAR followed by the
specified number.

The compiled code is run using RANDOMISE USR 63500. This may
be used within a BASIC program if desired. 1f an error occurs
during the running of a FORTRAN program then an error message
will be displayed, with the line number of the BASIC program
which called the Fortran code.

FORTRAN COMMANDS
The following section gives details of the Fortran commands,
together with information on which aspects are different +fronm
the Fortran standard. It does not attempt to teach you Fortran
it you are a novice programmer, since if this is the case then
it is best for you to select a Fortran teaching quide which is
to your personal taste.

Data types
The data types permitted by this compiler are INTEBER, REAL,
LOGICAL and CHARACTER. The data types COMPLEX and DOUBLE
PRECISION occuring in full Fortran77 are not permitted. Integer
values must lie within the range -32767 to +32747. Real values

are dealt with in the same way as in Spectrum Basic, A real

. constant must contain either a decimal point or an exponent or

both. Thus 3000 is an integer constant, 3000., 3E3 are “real
constants, and 3000000 would be taken to be an integer constant
and so an error., The +two 1logical constants are .TRUE. and

.FALSE. (The full stops at each end of such words must be
remembered.) Character constants are written with a single quote
(") at each end, quotes occuring within the constants are
represented by two consecutive quotes.

Variables and type declarations

The names of variables and other identifiers in Fortran
must not be longer than & characters, of which the first must be
a letter and the rest letters or digits. Each variable has a
type which is determined either by a declaration statement or by
the implicit type conventions., The type declaration statements
consist of the name of the data type (INTEGER, REAL, LOGICAL, or
CHARACTER), followed by the names of the variables. In the case
of CHARACTER variables the length may also be specified, e.qg.

CHARACTER#4 A,B%3,C
would give length 6 to A and C and length 3 to B. In this
implementation character variables may have a maximum length of
255 characters.

If a variable does not occur in a type declaration stateament
then if the name begins with I,J,K,L,M,N then it is of type
INTEGER, otherwise it is of type REAL. This convention amay be
altered by an IMPLICIT statement, which specifies a type

 followed by the range of letters which will assume that type by

default, e.g.
IMPLICIT CHARACTER#5 (A-D),LOBICAL{(L), INTEGER(X-1)

Expressions and assignment
An assignment statement in Fortran has the forn
variable=expression

where the type of the expression must be the same as that of the
variable, or else one must be integer and the other real. An
arithmetic (i.e. REAL or INTEBER) expression is composed of
terms combined together with parentheses (and }, and the wusual
operators +,-,%,/ and ¥% where A##B represents A raised to the
power B. The terms must be constants, variables or the result of
tunction calls (intrinsic or wuser defined functions). 1f an
integer value occurs where a real value is required or vice
versa then it will be automatically converted to the appropriate
type. The following is a list of intrinsic functions availiable.
In this list X and Y represent real values and I and J represent
integer values,

NAME Definition

SART(X) Square root

EXP(X) exp

ALOGLO(X) logarithm to base 10

ARLOG(X) logarithm to base e

SIN(X) sine

COs(x) cosine

TAN(X) tangent

ASIN(X) arcsine

ACOS(X) arccosine

ATAN(X) arctangent

ATAN2(X,Y) ATANC(Y/X) in correct quadrant

SINH(X) Hyperbolic sine

COSH(X) Hyperbolic cosine

TANH(X) Hyperbolic tangent

AINT(X) Truncates down to integer, but result
is of REAL type

ANINT (X) Rounds to nearest integer, REAL result

ABS (X) Absolute value of X

AMOD (X, Y) Remainder from X/Y

SIBN(X,Y) ABS(X) with sign of Y

DIMIX,Y) K=Y if X>Y otherwise 0

INT(X) Truncates to integer type

FIX{X) Same as INT

NINT(X) Rounds to nearest integer

REAL(I) Converts to real type

FLOAT(I) Same as REAL

..6_

IABS(1) Absolute value of I
MOD(I,Jd) Remainder from 1[/J
ISIGN(I,d) IABS(I) with sign of J

IDIM(I,J) I-d if 1 > J, otherwise 0
AMAX1(X1,X2,...,Xn) Takes maximum value
MAX1(X1,X2,...,Xn) Takes integer part of maximum value
AMINL(X1,X2,...,Xn) Takes minimum value

MINLAXY (%2400 ,%0) Integer part of minimum value
AMAXO(I1,12,...,In) Max value converted to real type
MAXO0(I1,I2,0.04,41n) Maximum value

AMINO(I1,12,...,1In) Minimum value converted to real type
MINO{EL 12y, ln) Minimum value

Logical expressions consist of logical terms combined
together with parentheses and the logical operators .NOT.,
.AND., .OR., .EQV., JNEGV. Logical terms may be logical
variables, functions or constants, and may also be relational
expressions, that 1is comparisons of two arithmetical or
character expressions using the relational operators .LT., .LE

.EQ., .NE., .GT., .BE. (The usual symbols ¢,<{=,=,{>,>,>= are
not used in Fortran),
Character expressions may be character constants or
variables. Character functions, substrings and concatenation
are not permitted in this version of Fortran.

Program Structure and control statements

A Fortran program consists of a number of program units, one
of which will be the main program, any others being user written
subroutines and functions. The main program may optionally start
with a PROGRAM statement, that is the keyword PROGRAM followed
by a name. The last statement of each program unit must be an
END statement, which will return to the calling program if in a
subroutine, and return to Basic if in the main program. The STQOP
statment will return directly to Basic. The STOP keyword may be
followed by a character string, or a sequence of digits to be
printed out when it is executed. The PAUSE statement will halt
the execution of the Fortran program until a key 1is pressed.
This may also be followed by a string or digit sequence to be
printed.

There are three different kinds of IF statement in Fartran,
these are the block IF, the logical IF and the arithmetic IF.
The block IF statement consists of the keyword IF followed by a
logical expression in brackets followed by the keyword THEN. For
each block IF statement there must be a corresponding END IF
statement. ELSE and ELSE IF statements are also permitted.

The logical IF statement is a single statement consisting of
IF followed by a logical expression in brackets, followed by the

statement whose execution is conditional on the logical
expression. The arithmetic IF statement consists of IF followed
by an arithmetic expression in brackets, followed by three
statment labels. If the expression is negative then control

jumps to the first statement, if zero to the second and if it is
positive then to the third.

Looping in Fortran is implemented using the DO loop. The DO
statenent has the form
DO lab IVAR = IE1,IE2,IE3
where lab represents a statement label determining the last

statement of the loop, IVAR represents an integer variable, and
IE1, IE2, IE3 are integer expressions determining the initial
value of IVAR, the final value, and the step. The loop 1is thus
executed INT{(E2-E1+E3)/E3) times, and not at all 1if this |is
less than or equal to zero.

The statement CONTINUE 1is a dummy statement which does
nothing. This is often used as the last statement of DO loops.

There are three types of G070 statements in Fortran. The
unconditional GOTO statement is simply the keyword GOTO followed
by a statement label, where the execution of the program is to
jump to. The computed 60T0 statement is the keyword GOTO
followed by a sequence of statement labels in brackets, followed
by an integer expression. Control of the program jumps to the
label whose number in the sequence is equal to the expression.
An assigned GOTO statement consists of GOTO followed by an
integer variable, followed by a sequence of labels in brackets.

The variable must have been given a label wvalue by an ASSIGN
statement, which has the form

ASSIGN 1label TO IVAR
Then at the assigned G0OTO statement, if the variable has been

assigned the value of one of the labels following it, then
control will jump to the statement which that label marks.
Storage of variables
As well as the type declaration statements described above,
Fortran has a number of statements controlling the storage of
variables, These are not executable statements, and occur in
the program before any executable statements.
Arrays of any of the four types may be declared in Fortran
by means of a DIMENSION statement. This has the form
DIMENSION AR(20,10),NAME(30)
which would make AR a two dimensional 20 by 10 array, and
NAME a one dimensional array with 30 elements. An array
-B-

l
l

_equivalence entities of different types you will

element is accessed in an expression by specifying the position
in the array e.g. AR(2,3). Note that this implementation checks
that the element lies within the total bounds of the array, but
not the indiviual bounds for each dimension, so that a reference
to AR(25,3) would be taken to refer to AR(5,4) rather than
signalling an error. The declaration of an array may also be
placed in a type declaration statement or a COMMON statement.

The values of variables and arrays may be initialised by
means of DATA statements, which have the form:

DATA varl,var2,.../valuel,value2,.../
where varl, etc. represent variable names, array names, Or array
elements, and valuel etc. are the values assigned to them. An
array occuring in a data statement will have the corresponding
values assigned to 1its elements in sequence. The notation
number#value may be used in the list of values to represent a
value repeated a number of times. Implied-DO0 lists in data
statements are not permitted in this implementation. A

The PARAMETER statement is not implemented by this
compiler.

COMMON blocks are a way of indicating that variable storage
is not only used by one subprogram. The COMMON statement

typically has the form
COMMON /NAME/ VAR1,VAR2,...

indicating that the variables VARLl, VAR2, etc are to be stored
in the common block called NAME, and so can be accessed by any
other program unit containing a similar statement., If the name
of the common block is omitted then storage in blank common
occur. VYaribles which are initialised in a DATA statement may
not be stored in a common block.

Two or more variables may be made to share the same storage
location by an EQUIVALENCE statement. This has the form

EQUIVALENCE (A,B,C(4)),...
indicating that the variables (or arrays) A and B are to
in the same position as the array element C(4).

Note that the Fortran language allows the same variable to
occur in more than one ERQUIVALENCE statement, as well as a
COMMON statement. The compiler will then do its best to sort out
the storage of the variables and arrays. Obviously this sort of
mixing up of storage is not recommended. However, if you want to
need to know

variable. In

start

the amount of memory space taken by each type of
this implementation real values take up 5 bytes, integer values
take up two bytes, character values take up ! byte and logical
values take up 1 byte for a simple variable, while for a logical
array, B values are stored per byte. This differs from the

- 9 -

Standard which specifies that REAL, INTEGER and LOBICAL values
should each take up the same amount of storage.
The start of blank common in memory is given by the number

following REM printed out after the compilation, allowing you to
access Fortran variables from BASIC.

Functions and Subroutines

Apart from the main program, a Fortran program may contain
other program units, known as subprograms. These may either be
functions or subroutines. The first statement of a subprogran

must be either a SUBROUTINE or a FUNCTION statement, with the
keyword followed by its name, and then the list of arguments in
brackets. (For a function the brackets must be included, even if
there are no arguments). A function has a type, declared either
by the word INTEGER, REAL, or LOGICAL preceeding the FUNCTION
keyword, or within the function unit, or by the implicit type
rules. It is not necessary in this implentation to declare the
type of a function in each program unit in which it is called. A
function unit must contain an assignment statement assigning a
value to be returned by the function. A subroutine is called
from another program unit by a CALL statement e.g.
CALL GRAPH(A,B,X+1)

A function unit is called by including its name and arguments to
be passed to it in an expression, where it will be agiven the
required value.

Note that if the argument passed is a

variable, array, or

array element then it will be passed by reference i.e. its value
may be changed by the subroutine or function, whereas if the
arqument is an expression then it will be evaluated and its

value passed. The type of the actual arguments passed must agree
with that of the dummy arguments in the argument list of the
subprogram, If one is integer and the other real then the
required conversion will occur, but the argument will be passed
by value not by reference. Note that it is possible to pass an
array when a single variable is required, when the first element
of the array will be taken. It is also possible to pass a single
variable or an array element when an array is required. In the
case of a single variable, it will be taken to be an array of
size 1. In the case of an array element, the array passed will
be the remainder of the array following the specified element.
When an array is one of the arguments of a subprogram it
must be declared as an array in the subprogram. The dimensions
of the array may be different to those of that passed as an
argument, as long as the total size is no greater, It 1is also
possible to have variable dimensions for the array (adjustable

- 10 -

arrays), and to specify the last dimension of the
asterisk, when the array will take the size of the
ijs passed (assumed size arrays).

Subprograms may also be passed as arguments. In this case
the actual argument must occur in an EXTERNAL statement (for
user defined subprograms) or INTRINSIC statement (for intrinsic
subroutines and functions) in the calling program, and the dummy
argument it corresponds to must occur in an EXTERNAL statement
in the subprogram in which it occurs. Note that there the types
of the arguments of an actual subprogram passed as an argument
and the types of the arguments occuring with the dummy
subprogram must be exactly the same, 1i.e. INTEGER and REAL
interconversion will not take place.

The following is a list of intrinsic subroutines
be used on this compiler

CIRCLE(X,Y,R) DRAW(X,Y)

BEEP(X,Y) ARC(X,Y,R)
These all have REAL arguments, and they have the same effect as
the commands with the same names in BASIC. CALL ARC(X,Y,R) has
the effect of the BASIC statement DRAW X,Y,R .

Variables in subprograms are preserved between calls so that
the Fortran statement ©SAVE is unnecessary.

array as an
array which

which may

PLOT (X,Y) .

Input and Output in Fortran
The area of input and output 1is acknowledged to be the
strong point of Fortran, This is because Fortran has a large
number of ways of controlling input and output. Unfaortunately
this means that this is the area where differences between
compilers are greatest, especially in this case, as the input
and output devices for the Spectrum are totally different to
those on a mainframe computer. The subset of Fortran defined in
the standard (Fortran77S) is more suited to microcomputers, but
this compiler still differs in some places from Fortran778S.
An output statement in Fortran might have the form
WRITE (2,10) X,Y,(IR(I),1=3,30,3)
Here the 2 is the unit number. This corresponds to a
number in BASIC, so that { would normally refer to
the keyboard and output to the lower screen, 2 to the wmain
screen, 3 to the printer and other numbers to other channels
which would have to be opened by a Basic command before calling
the compiled Fortran program. The unit number may be replaced
by an asterisk, specifying a default value of | for input and 2
for output. The replacement of a unit number by a character
array is not permitted in this implemtation,
The 10 is the format identifier and refers to the label of a

stream
input from

- 11 -

FORMAT statement such as
10 FORMAT ('Values are ',2FB8.2/3X,10I4)
The format identifier may be an integer variable given the value
of a label in an ASSIGN statement.
The format may be included in the WRITE statement e.g.
WRITE (2,°(''8ize ="",2X,Fb.2)") SIIE
Also the format identifier may be an asterisk, implying 1list
directed format, which for this compiler means that each value
is printed out on 2 new line. If the format identifier 1is
omitted then the output will be unformatted, that is it will be
in the form in which the values are stored in memory.
The following format codes are allowed in a
specification
In,A,Aw,Fw.dEw.d,Lw,kPynH.0.y'vus ' ynX,/,comma
The following occur in full Fortran but not on this compiler:
In.m,Fw.dEe,Ew.dEe,Dw.d,6w.d,6Gw.dEe,Tc,TLc,TRCc,5,5P,558,: ,BN,BI
(Here w,e,n,c,d,m,k stand for integers)

This implementation also allows a format code C which 1is
followed by an integer between 0 and 255 causing that ASCII code
to be output. The format control CS will clear the screen {(the
unit number must be 2). Note that printer control codes at the
start of format specifications are not implemented by this
compiler.

The actual

farmat

follows the control
information list, This may contain variables, arrays, array
elements, and i/o implied do 1lists, as above, but this
implementation does not allow the occurence of expressions in
the input/output list. (Thus character strings must not occur in
the i/o list, they must either be assigned to variables, or be
dealt with in the format specification)

input/output list

An alternative output statement is the PRINT statement.
Here the control information list is replaced by a format
identifier (frequently an asterisk) and the unit is the default

one e.g.

PRINT *,A,B,C

The input statement in Fortran is READ. This may have the
form of either the PRINT statement, or the WRITE statement with
the full control infomation list. In the second case an END
specifier may be placed after the unit identifier, allowing a
jump to another part of the program to occur if the end of file
is detected for input from a microdrive or network channel.
Note (a) This is not the position for the END specifier given
in standard Fortran (b) The jump will only be made if the end
of file condition occurs after an end of 1line character (CHRS$
13), otherwise the error End of File will be given in the normal

way. The other control specifiers (REC, ERR, IOSTAT) are not
implemented.

List directed formatting is recommended for input from the
keyboard, as formatted input will require exactly the number of
characters given in the FORMAT specification,

The nature of input and output for the Spectrum means that
all files are treated as sequential access files, so that
random access files do not occur and the statements
CLOSE, OPEN, INQUIRE, BACKSPACE, ENDFILE and REWIND are not

inplemented.

Debugging your program
When you have written a program it may contain errors, ,Land
these may be detected at different stages of the process of
compiling and running a program. Simple syntax errors such as
misspelling a keyword or missing out a parenthesis will normally
be detected either when you enter the 1line or when the
compilation is started., This sort of error is usually simple to

spot and correct. More complex errors will not be detected
until slightly later in the compilation. When these are
indicated they will have an error message printed. There

follows a list of these error messages, and the possible
they relate to:

errors

27, Undefined Identifier

An identifier (variable or function name) appears in an
expression when there is nowhere in the program where it could
have been given a value,

28, Wrong data type

The type of an expression or variable is not that required, or
else a subroutine or array name is used where a simple variable
is required or vice versa.

29, Wrong statement order

The usual errors of this type are mixing up the
statements and actual commands, and omitting
statements such as the END statement.
30, Array syntax error

Typically this is due to an array being
variable or vice versa.

31, Identifier declared twice

The same identifier occurs in more than one declaration
statement, or occurs twice in the dummy argument list.

declaration
necessary

treated as a simple

32, Invalid item in list

Typically this would be due to the name of a subprogram or a

dummy argument occuring in the list of variables in a COMMON,
EQUIVALENCE or DATA statement.

33, Invalid equivalencing

This means that the EQUIVALENCE and COMMON statements would

require the same variable to be stored in two different places.
34, Argument Mismatch

The actual arguments passed to a subprogram do not
number or in type with the dummy arguments required.
35, Undeclared label

agree in

A statement label is refered to which does not occur in the
program unit.

34, Array element out of bounds

The subscript of an array element lies outside the range

specified in the dimensioning of the array

37, Label used twice

Two statements in the same program unit have the same label
38, Invalid nesting

The IF blocks and DO loops in a program unit are not nested
properly

39, Syntax error

The syntax of the program is in error in some way not listed
above.

The errors 4, Out of memory and 11, Integer out of range
may also be reported.

The above all refer to errors detected at the time of

compilation. The errors which may occur when the program is run
are as follows.
27, Wrong code in Format statement

The type of an item to be input or output does not match that
required by the corresponding FORMAT code

28, Invalid input

29, Insufficient space to write

The item to be output would take up more space than the amount

specified in the FORMAT statement.

30, Dummy procedure errar

The type of a duumy proceeduere or one of its arguments does not
match that of the actual proceedure or actual arguments.

31, Dummy Variable length error

A dummy array or character variable has been declared to be
longer than the corresponding actual array or variable.

- t4 =

The normal error messages
evaluating expressions.

will be printed for errors in
If the subscript of an array element is

put of bounds in the running of & program, then the error
message ‘Integer out of range’ will be given.

It is particularly important to make sure that a character
expression used as a format identifier is correct, as errors
will not be detected at compile time, and may cause a progranm
crash when the program is run.

If you have a problem with a Fortran program then Mira

Software may be able to help on an informal basis . Please write

with precise details of the problem and enclose a stamped,
addressed envelope for the reply. We shall try to help if
possible, If the problem is due to a bug in the compiler that

needs correcting then we shall send you a corrected version when
the correction has been made., Likewise if the tape seems td be
faulty then please write with details of the problem so that we

can send a replacement copy. Do not return the tape unless
requested.

The aims of Mira Software is to widen the application
of home computers by providing Educational/Utility programs

which are not otherwise availiable, at an affordable price. We
would be interested to hear your ideas on what programs vyou
would like for your home computer which are not at present
availible. The address of Mira Software is given below.

MIRA SOFTWARE,
24, Home Close,
Kibworth,
Leicestershire.
LES8 0JT.

