
48
K

12

8K

S
p

ec
tr

u
m

+2

+3

Internationally Convertible
and Compatible Software

Spectrum
Complete

Machine Code
Package

ROYBOT

ROYBDT CONVERTIBLE AND COMPATIBLE MACHINE CODE PACKAGE

by Roy Longbottom C.Eng.. M.I.E.R.E., M.B.C.S.

CONTENTS

Page Page

ASSEMBLER SUMMARY 1 TEACH YOURSELF MACHINE CODE 15
TESTING SUMMARY 2 Register loading
LOADING THE SOFTWARE
COPYING THE SOFTWARE

A Loading memory contents
Indirect addressing

CONVERSION Indexed addressing 16
THE PROCESSOR 5 Stack push and pop
TESTING FACILITIES 6 Exchange registers
Hexadecimal and binary
Direct instruction input
Backtrack

I and R registers
Block transfer and search
Characters, hex and binary

17

Start address
Step

7 8 bit arithmetic and logic
Flags

18

Run slow
Run fast

General purpose operation
Sixteen bit arithmetic

19

Run CLS
Breakpoint

Jump, call and return
Rotates and shifts

20

End
Memory display

Binary coded decimal
Bit manipulation

21

Enter program in test mode
Relative addressing
Loading code to test
Large machine code programs

8 Restart group
Input and output
Miscellaneous CPU control
Summary of flags

22

Step calls
Errors
Printing

9 Timing
EXAMPLE PROGRAMS

Instruction timing

23

DISASSEMBLY Character design 2A
Other ROMs
Games programs

ASSEMBLER FACILITIES

10 Screen design
Moving object
Screen mapping 25

Assembly
Label addresses

12 Keyboard
Joystick

Relative addressing
Large programs
Input lines
Merge and delete
Save and load
Utilities
128K systems
Errors

AUTOLOADER PROGRAM

13

1A

Sound
Reading tapes
Games headers
Code in variables
Headerless tapes
Non standard loaders
Loading long codes
12SK RAH bank switching
Alternative screen

26
27

28

Copyright ROYBDT 1988

ROYBDT) AS Hullbridge Road. Rayleigh) Essex) SS6 9NL

RDYBOT INTERNATIONALLY CONVERTIBLE AND COMPATIBLE MACHINE CODE SYSTEM

The following four programs are supplied:

Assembler BASIC driver Assembler machine code
Test BASIC driver Test machine code

The drivers are written in BASIC to provide the internationally
convertible and compatible features) whereby any information appearing on
the screen can be easily converted to a different language and any output
can be directed to any channel that can be driven via BASIC. Special
characters can be constructed by user defined graphics) as shown in the
Spectrum manual) or by using the assembler: a range of French) German and
Scandanavian characters are predefined in the software and can be entered
in the program by using Graph Shift a to s. Machine code is used where
speed is required) such as on assembly) disassembly) testing and output
formatting. The software is driven by simple menu selections and prompted
input) making it very easy to use.

The microdrive and disk versions have an additional auto-run program which
has facilities for user defined character design.

ASSEMBLER SUMMARY

The assembler has been written particularly to suit beginners but it is
also suitable for professional software) sucn as that produced by RDYBOT.
Assembler input is in the lower case format given in Spectrum manuals and
is entered in BASIC REM lines) with multiple instructions per line) if
required: this means that there are no new complex editing procedures to
be learnt) input files can be prepared on a Spectrum without needing to
load special software and summary printed listings can easily be produced.
An example of the similarity to BASIC) using line number labels, is:

IB LET a=10:GDSUB 20:GQTO 30 = 10 REM Id a,10:call L20;ir L30
20 LET a=a+100:RETURN 20 REM add a,100;ret

Alternatively) named labels can be used and comments added: this allows
easier line renumbering and built in documentation:

1 REM NUMBER 1;defb 10
2 REM NUMBER 2;defb 100

10 REM START;Id afONUMBER 1);Id b,a;ld a,(3NUMBER 2);call SADDEN;jr 3NEIT
20 REM ADDEM-add a,b;ret
30 REM NEITjComments can be added as this

Various menu controlled utility procedures are provided for merging and
deleting input linesf saving assembled code, erasing and cataloguing files
for tape> disks) microdrives or RAM disks.

-1-

The asseable aenu allows all or selected lines to be asseabled. asseably
with or without listing and listing or label addresses to screen or
printer. The code is always asseabled to address 53000 onwards, but this
is only used for relative addressing purposes, the final address being
selected as a aenu option. Long asseably input codes can be split into two
or acre sections and asseabled as one through the process of aerge lines,
asseable. save code, delete lines, aerge new lines, continue asseably.
save new code and so on. The various sections of code can then be loaded
to the real addresses and saved as one code file.

Lines 1 to £000 are used for asseabler input lines. An exaaple of size is
400 input lines, with an average of 6 instructions per line, could occupy
E0.000 bytes and generate 4000 bytes of code. This would be asseabled m
about 75 seconds. Tne aeaory is used as follows:

Below 53000
53000 - 57E49
57E50 - 61E51
61E5E - 65367
6536B - 65535

BASIC driver and input lines
Asseabled aachine code
E000 label addresses
Asseabler variables and aachine code
User defined characters

TEST SUMMARY

When the TEST prograa is loaded, a display appears, showing the coaputer’s
register contents, stack, flags, selected aeaory. last and next
instructions with addresses. Underneath the aenu options are shown. In
this aode. the prograa is ready to accept asseabler instructions, typed in
one at a tiae for the beginner to learn all about aachine code, in
conjunction with the aanual supplied. The aenu options are:

1 Exit - this goes to a second aenu. allowing code to be loaded froa tape,
disks, aicrodnves or RAM disks and also to disasseable it.

E Step - this allows the code to be stepped and executed one instruction
at a tiae. showing what effect it has on the registers, flags, stack etc.
Also, at any tiae. new asseabler instructions can be typed in to change
the values.

3 Run slow - this steps through the code autoaatically at about 5
instructions per second, showing changes in register contents etc.
dynaaically.

4 Run fast - this steps at about 30 instructions per second but only
displays instruction addresses until a stop is reached or the space bar
pressed, when the full display is given.

5 Run CLS - this is the saae as 4. without address display, and is
provided to test prograas producing screen output.

-E-

6 Backtrack - this allows the last 5 instructions and their effects to be
replayed.

7 Dec/Hex - this switches all the displays between deciaal and hexadecimal
foraat.

8 Binary - this allows the contents of one selected register/pair to be
displayed as binary.

9 Start address - allows selection of a new start address for the next
instruction to be executed. It can also be used to step one instruction at
a tiae without execution and showing disasseabled instructions.

10 End address - slow or fast trace will stop when the selected end
address is passed.

11 Breakpoint - tracing will stop when an instruction exactly at the
breakpoint address coaes up next for execution.

IS Heaory display address - this can be for any 8 bytes of aeaorv.
Initially; it displays a buffer area showing the code produced by
instructions typed in directly.

13 Real address - initially; the prograa can be used for testing or
disasseabling code at a real address e.q. the 4BK Spectrua ROM. Selecting
13 will switch to virtual node; so that code loaded can be regarded as
being at a different address e.g. code asseabled to start at address
30000; 40000 or whatever; can be tested as though it was loaded to the
real address.

14 Step calls - nornally subroutines are stepped at the slow rates; but
selecting 14 can cause subroutine calls to be executed at the full rate of
up to nearly 1 Bullion instructions per second. Using real addresses; any
depth of calls will be executed correctly. Using virtual addresses; only
the first call can be executed correctly as address conversion cannot be
carried out for subsequent ones.

15 Print - this sends the output to the printer and shows register
contents; instruction address and aneaonic code as programs are stepped or
when a trace stops.

The memory is used as follows:

Below 32800 BASIC driver and variables
32B00 - 40949 test and disassembler machine code
40950 - 44999 assembler for direct input
45000 - 65367 machine code to be tested
65368 - 65535 user defined characters if required

Code to be tested can be loaded below 45000; as low as 40950 but; if this
is selected; direct instruction input is disabled.

-3-

LOADING THE SOFTWARE

The tape version has the test software (test.has & test.bin) on one side
and assembler (ass.bas L ass.bin) on the other. To load and start? reset
the computer and use the usual LOAD Program test.bas can be loaded via
an assembler menu but to load the assembler always reset or type CLEAR
52999 first.

The microdrive and disk versions have auto-load programs "run" and "disk*.
For the former, enter NEW (select BASIC on 12BK) and enter RUN. On the +3,
select “Loader" to load “disk". The main software can the be loaded by
selecting menu options 1 or 2.

COPYING THE SOFTWARE

On receiving the software, a copy should be made for normal use and the
original stored in a safe place. In line with the design objectives of
putting the user’s requirements first and easy conversion for other disks
etc., the software provides facilities for making the copies. Please do
not abuse this user friendly facility for making illegal copies for
others: as the purchaser, you are only licensed to make extra copies for
your own use.

To copy the TEST Basic and code, on loading, select menu option 1 EXIT
(press ENTER), then 9 SAVE ROYBDT from the second menu. Tape, RAM disk or
drive can the be selected, as appropriate, the drive number or letter
being requested for the latter.

To copy the assembler Basic and code, on loading, select menu option 9
SAVE, then 2 ROYBDT code/BASIC, followed by tape etc., as above.

The microdrive loader can be saved by selecting menu option 3. On the disk
version this option copies all the software tD another disk.

CONVERSION

All variables that are displayed are declared at the start of the BASIC
drivers (TEST lines 20-950, ASSEMBLER lines 2020 to 2560, LDADER lines 20
to 250). These can be changed by the user to terms that he understands
better or to a different language. To assist in the latter, Graph Shift
characters a to s have been defined to represent special French, German
and Scandanavian characters at the end of the assembler code: these can be
changed as shown in the example in the assembler section or via the drive
auto-load program. The code <65368 to 65535) can be saved and loading
arranged for use in the TEST program (automatic with auto-load) but care
must be taken that the area is not overwritten by machine code that is
being tested. The length of the words displayed is limited by the
dimensioned arrays, which cannot be changed (see TEST line 1600• ASSEMBLER
9380, LOADER 990).

If it is necessary to initialise a channel, send special characters to a
printer etc., it can be arranged by selecting INITIALISE from the
secondary TEST menu or the main ASSEMBLER menu: these GO TO 960 and 2580
respectively, where additional BASIC statements can be included.

All accesses to tapes, disks etc. follow the variables, at the start of
the programs, and can be changed for other devices. The BASIC lines are:

TEST loading code
saving ROYBOT software
start line to load test code

ASSEMBLER loading BASIC program
merging input lines
saving assembled code
saving ROYBOT BASIC and code
saving all BASIC
start’line to load code

CATALOG
ERASE file

Tape Drive RAM 1
A90 500 510
5A0 550 560
580 590 600
26A0 2620 2630
2670 2650 2660
2700 2680 2690
27A0 2720 2730
2760 2770 2750
2790 2800 2780

2830 2BA0
2860 2870

For drive identification, nt is used for a letter or VAL n$ for a number.

For the drive autoloader, lines 270 to 300 and 350 to 390 can be changed.

Printing is carried out using LPRINT at lines 620 to 630 for TEST and 2900
to 3030 for ASSEMBLER. These can be changed to print statements peculiar
to certain interfaces.

THE PROCESSOR

The heart of the Spectrum is a microprocessor chip known as a Z80. This
has its own internal fast memory elements, known as registers. Registers
a,b,c,d,e,h,l can store one 3 bit byte of value up to 255 (see Spectrum
manual Binary and Hexadecimal). Some of these can be combined to give 16
bit words of value up to 65535: they are be, de and hi. Other registers,
ix, iy and sp, can only be used for words. The size of the words limits
the amount of main memory that can be accessed by the processor to 65536
(0 to 65535) bytes. 128K systems work by switching this range of accessing
connections to different blocks of memory.

The ZB0 has over 700 different machine code instructions. Most of these
are quite simple, loading bytes or words between registers or registers
and memory, manipulating individual bits, GOSUB and GOTO type instructions
and simple arithmetic operations.

The 8 bits of a special register (f), which can also be combined with a to
give af, are used as flags. These give an indication of the effect of
certain operations, such as result of zero produced.

The processor requires an area of memory to be set aside as a stack, the
address being contained in the sp register. Words are inserted at the top
of the stack by using push instructions and the last entry removed by pop.
The stack is also used automatically to provide the return address on
calling subroutines.

-5-

TESTING FACILITIES

Lead "test.bas" and follow the following examples, which demonstrate how
to use the facilities. On loading, all the registers, except IV. are set
to zero and displayed at the top left of the screen. IY is given the value
normally used by' the Spectrum ROM of 23610 or the address of svstem
variable ERR NR (see Spectrum aanual!. The be. de and hi register contents
are shown for the register pairs and b,c,d,e,h,l separately, fit the top
right, the stack contents are shown for the last 3 entries, where the
whole word and each of the two bytes are shown. The stack pointer (SP)
value is the one used by the ROYBOT software.

The status of the flags is shown underneath the registers. Under these
"was° shows the address and assembly input code for the last instruction
executed and “next" the one to be executed next. Finally, across the
middle of the screen, 4 words !B bytes) of memory are displayed.

The following demonstrate use of the software. Follow the instructions
carefully until you are used to using the software as it is so easy to
cause the system to crash or NEW itself when using machine code.

HEXADECIMAL

Pressing 7 and ENTER switches the displays between decimal and hexadecimal
format (see Spectrum manual for explanation).

BINARY

Initially, the binary values of the af register pair are displayed at the
bottom right of the screen. Entering 8 provides a prompt for a different
pair of registers: type iy and ENTER, noting the changes then repeat to
reselect af.

DIRECT INSTRUCTION INPUT

Except when in the middle of one of the menu option procedures, the
software will accept and execute instructions typed in directly. On
loading, the memory display shows a buffer area where the machine code
numbers are inserted for instructions entered from the keyboard. Typing in
the following, one at a time with ENTER, demonstrates the displays. The
beginner should go to the section "TEACH YOURSELF MACHINE CODE ON-LINE"
after trying these.

Instruction Code Result

dec hi 93
push hi 229
pop de 209
add hl.de 25
Id a.65 62 65

BACKTRACK

Enter 6 to playbai

hi becomes 65535, h and 1 each 255
the hi values appear on the stack, No. on stack = 1
de becomes the same as hi, stack is empty
hi becomes 65534 and the carry flag is set
a becomes 65, the flags are not changed

for the next instruction.

-6-

START ADDRESS

Enter 9. then 16 in response to the request for the start address. Note
that the next instruction to be executed is at address 16. This is a
restart routine (rst 16) in the Spectrua 48K RON which displays the
character in the a register.

STEP

Enter 2 and observe that the instruction has executed and becoaes "Was".
Next press ENTER A or 5 tiaes and note the effects of further executions.

RUN SLOW

Enter 3 to trace through the code slowly. After about 45 seconds the
letter A will be foraed in the bottoa left hand corner of the screen. The
prograa will stop with an "INVALID OP." aessage, aeaning there was no
return address on the stack to go to. Enter 3 new instructions - Id a,65
Id be?16 push be -. Select 9 and enter start address 16 again, then 3
Slow trace. This tiae the A is displayed, followed by another character as
the return picks up address 16 for a second pass. If soae other value had
been left on the stack, it is possible that tne systea would crash.

RUN FAST

Select 9 and enter address 16 again, then 4 to run fast. Repeat but press
the space bar when execution has started, noting that the full display is
given on stopping. Enter 4 again to coaplete the routine.

RUN CLS

Select 9 but for the address input H10 (hexadeciaal for 16). Then select 5
to run through the code with the screen blank.

BREAKPOINT

Select 11 and enter address 2000. Select 9 and address 16 again, then 4
for fast trace. Enter 4 again (or 2,3 or 5) and the prograa executes until
the breakpoint is reached again: then 4 again to go to the end.

END

Change the breakpoint address back to 0, 10 End to 5676, start address to
16 and 4 to run fast. The execution stops with an end aessage. This tiae
selecting 2,3,4 or 5 does not lead to any further instructions being
executed. Change the end address to 65535, then enter 4 to continue.

HENDRY DISPLAY

Select 12 and enter 23635. This is the address of the systea variable
PROG, the display showing the start address of the BASIC prograa. The
fourth word shows the end of variables E-LINE.

STDP AND CLEAR

In order to restore the aeaory display to its original value or to reset
all displays, select 1 Exit then 0 Stop. Type RUN to restart.

-7-

ENTERING ft PROGRAM IN TEST NODE

If you know aachine code you can type in a short prograa in the TEST
routine. Type in Id ix>45000 Id (ix),2i)j Id (is+1), 100 Id (ix+2),23ft and
note that the "Next" instruction gives call 6000ft. Then type Id (ix+3!,201
(return) Id (ix+ft),ft3 (dec hi) Id (ix+5)j201 Id a,201 Id (6000ft)ia (puts
return at 6000ft). Next select 2 and step through the prograa, noting chat
it calls 6000ft and returns.

RELATIVE ADDRESSING

Following entering the above prograa, select 9 and enter address 60000
then option 13 to change the real address froa “YES" to "NO": this resets
all displays and the next instruction will show call 6000ft at address
60000. Select 2 and step through the prograa, noting that it executes the
dec hi instruction that was inserted at address 4500ft.

The above deaonstrates the relative addressing capability where code can
be loaded to address ft5000 onwards and tested as though it was at another
address. One exception is where prograas being tested refer to an address
below 1638ft, in the RON, where no adiustaent is Bade and the real address
used.

The address offset calculation is carried out when real address "NO" is
selected, assuaing that whatever is at the selected start address is
really at address 45000. Once the offset is calculated, the start address
can be changed for testing to start anywhere within the code.

LOADING CODE TO TEST (AND CRASHING)

To load code, select 1 Exit, 3 Load code and aenu selections according to
whether the code is on tape, drive or RAM disk. As an experiaent, load the
asseabler aachine code "ass.bin", selecting address 45000 when proapted.
This code is noraally loaded to address 61300 so select this as the start
address, then 13 for real address “NO" (or to "YES" and back to “NO").
Then select 2 and step through the subroutine call. If it is wished to
deaonstrate a systea crash, continue stepping, noting that the be register
is loaded witli a value greater than 60000. This is used as the length of
the ldir copy instruction and executing this will aove aost aeaory
contents up one location. If this is done, the systea will have to be
reset and software reloaded.

LARGER MACHINE CODE PROGRAMS

Code for testing can be loaded below A5000, down to 40950, that is about
2ft000 bytes. However, this disables the direct instruction input
capability.

To use the relative addressing facility, it is necessary to calculate the
offset froa 45000. If code is loaded to 40950, the offset is 45000 - 40950
or A050. As an exaaple, if the real code address was 30000, select start
address and input 34050 (real address + offset), then 13 for real address
"NO". Selecting a new start address of 30000 will display "Next" as the
first instruction loaded. For larger prograas see DISASSEMBLING GAMES
PROGRAMS.

-8-

STEP CALLS

Normally, when a subroutine is called) it is stepped Dr traced as the nain
code. Hhen testing code is loaded to real addresses, subroutines can be
executed at full processor speed. To demonstrate, select 1A to change step
calls to "NO" then, as for the earlier demonstration, input start address
16 and 2 to step through the code: this time the end will be reached after
12 steps, without stepping through the call. Similarly, instructions typed
in directly will execute at the full rate: try call 16. Select 1A to
change to step calls "YES". If relative addressing is used, any subroutine
called must not call others as the address cannot be calculated.

ERRORS

The error display appears in the middle of the screen under the,memory
display. Besides giving an indication when breakpoint or end address is
reached, the main message on testing is "INVALID OF". Assembler errors are
covered later. Certain instructions will not be executed e.g. halt, Id
sp.NN, reti, im N or ret and pop, if the stack is empty. The software will
not execute a conditional return if the stack is empty, even though the
return is not appropriate. To overcome this, the address of a return
instruction can be put on the stack (e.g. type in instructions Id hl,B2
and push hi). An example to demonstrate this is a ROM routine which finds
the start address of any BASIC line - select start address H196E then type
in Id hi,20 (the line number), then select "Run slow". The program will
stop with both hi and de registers pointing to the start address of the
first line. Reselect the start address, put 82 onto the stack and 20 into
hi, then repeat the trace. This time, de points to the start of line 10
and hi to the start of line 20.

PRINTING

If a printer is available, select 15 to change print to "YES" and repeat
the step address 16 procedure with step calls "NO". The state of the
registers etc. should be printed after each step. Repeat with run fast and
printing should occur when the trace stops.

If the printing does not work see CONVERSION as it may need initialising
or different print statements.

DISASSEMBLY

To disassemble from the test screen select the start address (e.g. 0 for
the start of ROM), then enter 9 again for start address and keep pressing
ENTER to display sequential addresses and instructions as bNext" and
"Has". To end this, enter an appropriate start address.

For a listing type disassembly, select the start and end addresses (e.g. 0
and 20), then 1 Exit and 2 Disassemble. If an end address is not selected,
following the scroll indication, rather than pressing ENTER for the next
screen, press BREAK or the space bar and type RUN.

To print the disassembly, select 15 Print before exit to the second menu.
If hexadecimal format is preferred, select 7 Dec/Hex also.

-9-

DISASSEMBLING OTHER ROMs

Other ROMs can be disasseabled by using the save routines provided in the
RONs. For example, on the Spectrua +2, exit froa the test and select STOP.
Then type save ! °roa" code 0,16384 then RUN. Select 1 Exit, 3 Load code,
3 RAM disk, naae "ron", address 45000. Siailarly, the nicrodrive Interface
1 ROM can be saved by save : 1;‘roa11 code 0,B192 (or one of the +3 ROMs
by save "a:roa" code 0,1638h) and loaded to 45000. The RDM can then be
disasseabled froa address 45000 but note that relative addressing cannot
be used to display the real addresses, as they are below 163B4.

DISASSEMBLING GAMES PROGRAMS

Breaking into gaaes prograas is a science in its own right and the author
of this software is not an expert on the subject. However, soae
experiaents have been carried out to provide a starting point. Anyone
atteapting this will at least need to absorb the detail given in the
Spectrua aanuals on aeaorv, systea variables and using aachine code.
Following the detail of the deaonstration of finding BASIC line nuabers
(see ERRORS) will also help.

The gaaes start by loading a BASIC prograa, usually quite short. These
usually set RAMTOP (using CLEAR address), load code above this address,
often preceded by loading a screen by load SCREENS or load code to 16384.
This aay then be followed by a USR address stateaent to start running the
aachine code. The first steps for disasseably are to find the RAMTOP and
USR addresses and to load the code without executing the USR stateaent.
Soaetiaes it aay be possible to load the BASIC prograa and stop the tape
before the following load is started and delete the USR stateaent so that
the systea will stop after loading the code. In aany cases the BASIC
loaders are written to prevent thea froa being listed, aachine code aay be
eabedded to control non-standard tape loading, systea variables poked to
aake the systea crash and so on. Exaaple prograas, which will allow these
BASIC loaders to be cracked are given later.

Once the code is loaded, it can be saved in two or aore parts for
disasseably later. The code (or data) usually starts at around address
24000, so' two parts could be, say, 24000 to 48004 and 48000 (leave soae
overlap) to 65535. These can then be loaded in turn by the TEST prograa.

ASSEMBLER FACILITIES

Asseabler input codes are entered in BASIC lines 1 to 2000, with a REM
stateaent at the start, using the noraal Spectrua editing facilities. The
codes are entered in lower case foraat as given in Spectrua aanuals.
Multiple instructions can be entered in a line with seai-colons between
thea. The codes aust be exactly the correct foraat without'extra spaces,
or an error aessage will be given and the codes not asseabled. The lines
can be typed in with or without the asseabler being loaded.

One byte variables, N or DIS, and 2 byte variables, NN, can be positive
(no sign) deciaal or hexadeciaal nuabers or characters. The offset, D, in
certain ix or iy instructions can be deciaal or hexadeciaal, in the range
-128 to +127. Hexadeciaal nuabers have the prefix H and letters aust be
capitals. Characters have a prefix C.

-10-

Lead the assembler, select 0 to stop and enter the following lines:

10 REM Id b<E54:Id a.CX; 1 d h 1 • Cab: 1 d de.0;Id i>:,20^80
20 REM Id b,HFE:ld a,88;ld hl,H6162:ld de,H0:ld ix.H5000
30 REH Id a,(ix-128);ld (ix+127),H2A;ld <ry-H10),Cn

Rather than using real addresses for call and jump instructions or a one
byte variable for ir D1S and djm DIS (e.g. call 5̂ tE00; ip 55123; jr
z,3A:djnz 250), a BASIC line number can be used as a label witn a prefix
L. The assembler detereines the address Dr, in the case of DIS, the
displacement values (-126 to +129 from the instruction start address).
Similarly, a line number can be used as a NN variable. Add the following
to the lines typed in:

A0 REM call L10;jp n:,L20;jr nc,L30;djnz LA0;ld hl,L10;jp (hi)

The latter give the same effect as jp L10.

Besides standard Z80 instructions, a number of additional ones are
provided to preset variables in memory. These are defb to define a byte,
def1 to define a byte in binary, defw to define a word, defc to define a
string of up to 255 characters and defs to define a number of bytes of
memory, initially zeroised. Note defb, 1 and w can be typed in during TEST
to display the value for conversion purposes. Enter:

50 REM defb 65:defb Ca:defw 123A:defw HFFFF;defc "String"
60 REM defs 100;defl 10101010

A further function, defL. is available for defining memory addresses to be
referenced by a machine code program. These can be used for various
purposes and have a format as shown in the following examples. The first
example gives an unused line number label the same address as an existing
line to enable successful assembly or to allow the code to be tested
before code for the new line is written. The second two examples can be
used to define frequently used addresses which may be changed, for example
when a long program is assembled as a number of parts.

70 REM defL100 L10;defLl A5328;defL2 HA6FE

It is usual to include the defL statements at the start of program,
defining lines which are otherwise unused.

The advantage of using line number labels is that it is easy to find the
code referred to. The disadvantage is that lines cannot be renumbered
without checking whether there is a reference to them. Named labels can be
used instead of or as well as line number labels, the advantages being
that line renumbering is easier and, along with comments, they provide
built in documentation.

Named labels and comments must start with a capital letter and can be up
to 9 and 15 characters respectively. If they are greater than this, only
the first 15 will be displayed. Labels must be placed as the first entry
on a line, otherwise they will be treated as comments. They can be on a
line with no other instructions, otherwise separated by a semi-colon.

-11-

B0 REM Memory;defs 250;Output area
90 REM Count ljdefw 250
100 REM START '
110 REM Id hl.JMenoryild bc,!3Count 1)
120 REM Loop;1d ihl),0;inc hl;dec be;Id a,b;or c;jr nz,3Loop;Zeroise
130 REM This is a valid line for documentation purposes.

ASSEMBLY

Assuming the assembler is loaded for the example lines to be typed in.
enter RUN then select 1 Assemble from the main menu. To check that the
typing is correct, select 6 Start assembly. The address 53000 will flash
at right of the chosen entry. Press ENTER to continue or the space bar and
ENTER to cancel the request. If all are correct, two passes of the
asseabler will be executed with the addresses and line nuabers being
displayed. If an error is found, an automatic listing is given froa that
point. For a full listing, before assembly, select 3 List on assembly,
then 1 to cancel, 2 to display or 3 to print.

A selection of lines can be assembled by changing the first and last line
numbers (options 1 and 2). The program will not allow a second line number
to be selected which is less than the first.

LABEL ADDRESSES

Following assembly, label and line number addresses can be displayed or
printed via assemble option b. The label information stored is the start
address of each line used. Named labels are not stored but are picked up
from the input code lines as the display is given. The addresses are
stored until a new start assembly option is chosen but, if the input
program has been deleted, the label names will not be displayed.

ASSEMBLER RELATIVE ADDRESSING

The code is always assembled to address 53000 onwards but the start
address can be selected according to where the code is finally to be
loaded. The assembler calculates label addresses, used by calls and' jumps,
and code addresses for listing as the final ones. This can be demonstrated
by selecting different start addresses, assembling with listing and
displaying label addresses.

ASSEMBLING LARGE PROGRAMS

Programs, where the input lines are in two or more parts, can be assembled
and combined with tne second or subsequent parts calling or jumping to
code in earlier parts, providing different line numbers are used for each
part or, at least, those referenced are unique.

After the first part has been assembled, the continue address is
calculated as the starting point for the next code: this can be changed,
if required, by selecting option 7 and entering the new address. Selecting
B continue assembly will assemble the next part, calculate the new label
addresses and pick up references to lines already assembled. Uhere only
line number labels are used for the cross references, the procedure is
automatic.

References to named labels must be preceded by a 3 synbol. Examples are:

-12-

As named labels are net stored forward, they can be redefined at the start
of subsequent parts: for example, a routine called FIND at line 1E00 in
part 1 can be referred to as 10 REM FIND;defL10 L1200. If 1200 REM FIND
were used again, the address would be redefined with a wrong value.

The RDYBOT assembler is assembled in two parts and has 6 named label
references from part 2 to part 1. The following demonstrate how it was
assembled, as an indication of how to deal with large programs:

1) Merge "assll", select assemble, start address 61300, select start
assembly, print label addresses (for reference by BASIC), select save
code, save as codel then delete lines 1 to 2000.

2) Merge "assl2", select assemble, note continue address, select continue
assembly, print labels for second part, save code as code2.

3) Select stop, manually load "codel" 61300 and load "code2" to continue
address then save "ass.bin" 61300,4236.

INPUT LINES

Lines 1 to 2000 are reserved for the REM input lines and 2001 to 5000 for
the BASIC driver. Lines greater than 5000 can be used for other purposes,
such as a short BASIC program for testing machine code just assembled.

MERGE LINES AND DELETE

The input lines can be entered without the assembler being loaded and
incorporated later by selecting option 3 merge lines. After assembly, some
or all of these can be deleted by selecting 5 delete, then 3 delete
selected lines. If it has been necessary to modify the input lines,
different options are available for saving them.

If it is decided to keep the input lines as separate independent programs,
select 5 delete then 4 ROYBOT lines. The RDYBOT BASIC will be deleted and
the system will stop with a "Nonsense in BASIC" message. Insert a new line
05000) to save and verify the lines and, initially, to erase the
original, if necessary. Then type RUN to save the program. The new line
will be included in the save and on merging, loaded for future use. DO NOT
SAVE WITHOUT ENTERING RUN OR CLEAR OR THE SYSTEM HILL CRASH ON MERGING.

SAVE AND LOAD

One of the save options is to save all BASIC lines. This can be used as an
alternative approach, saving the assembler BASIC and input lines together.
If a long input program is produced, it will be observed that merging is
very slow. Unen the save all BASIC option is used, the save will
incorporate a restart line of 2010, the start of the assembler. To reload
and automatically run the software, after the assembler and machine code
has been loaded initially, select 2 load new and input the name of the
combined assembly BASIC and input lines. This method is much faster than
using merge if microdrives, disks or silicon disks are available.

The other save options are to save the assembled code from address 53000
and the ROYBOT code and BASIC (see COPYING THE SOFTWARE). Load new can
also be used to load the TEST software "test.bas".

-13-

UTILITIES

Options 6 and 7 froa the assembler aain aenu are provided for producing
catalogs and erasing files froa disks, aicrodrives or RAH disks as it has
been found that these functions are used frequently when new aachine code
prograas are being developed. For details of option 8 initialise) see
CONVERSION.

128K SYSTEMS

Uhen using 128K systeas, particularly those relying upon tape input) the
software and input lines can be loaded and saved teaporarily in the RAH
disk.

ASSEHBLER ERRORS

The following errors are detected and indicated on asseably:

1 Syntax error - wrong characters typed) extra spaces etc.
2 Nuaber out of range e.g. >255 for a 1 byte variable
3 Distance for jr instructions too far or invalid (jump to itself)
A Line nuaber or naned label not found
5 D value in ix or iy+D too large
6 Label nane used previously

Certain Spectrua systeas will hang if adding BASIC prooraa lines atteapts
to cause the available aeaory space to be exceeded. The software checks
for this and issue a warning aessage 'too aany input lines". If this
occurs, the prograa should be split into two. On asseably) the software
also checks that the aachine code will not be asseabled to a real address
greater than 57249: if this is atteapted) the systea will stop indicating
'Out of aeaory". Asseabling defs 4250 will deaonstrate this.

If a printer does not work) refer to the section CONVERSION.

AUTO-LOADER PROGRAM

The auto-loader prograa) supplied for disk and aicrodrive versions,
provides aenu selection for loading the asseabler or test software,
copying the software and designing user defined characters.

On loading, the asseabler code) containing predefined special characters,
is also loaded. These will be in aeaorv when TEST is selected. Uhen
character design is selected) the special characters are displayed along
with a to s. which are used for selection purposes. Entering a letter
displays a large version of the character and a aenu with 0 Exit and:

1 Design - a cursor can be aoved around and dots aade white or black.

2 a noraal or graph shift character can be displayed for coaparison.

3 transfers the character (even blank) in place of the selected one.

If anything is changed another aenu is displayed) where 0 Cancel rereads
the original code. 1 allows another character to be selected and 2 resaves
"assibin" with the changes included.

-14-

TEACH YOURSELF MACHINE CODE ON-LINE

Load TEST as described earlier and read sections "THE PROCESSOR" and
"TESTING FACILITIES" before starting the following exercises.

REGISTER LOADING

The first group of instructions to consider are those which load registers
with a constant. These are of the general foraat Id r,N where N is between
0 and 255, and Id rr.NN where NN is between 0 and 65535. Type in the
following instructions in turn, pressing ENTER to cause then to execute.
Note that, as the instructions are'entered, the code appears in the aeaory
display e.g. 62 1 for the first one:

Id a,l Id b,2 Id c,3 Id d,100 Id e,75 Id h,259 Id 1,255

Note that the value in the be register pair is 256*b+c or 515 and
sisilarly for de and hi. To confirm this enter the following. It can be
observed that the NN value in the aachine code is the opposite way round
to that in the registers, also that the ix and ry loads are the saae as
hi, except being preceded by 221 or 253:

Id be,515 id de,25675 Id hi,65279 id ix,65279 Id iy,65279

The next group of 99 instructions copy the values of any one of the single
letter registers a,b,c,d,e,h,l to any others and itself. Try:

Id a,a Id a,b Id a,c Id a,d Id a,e Id a,h Id a,l Id b,a Id c,d Id h,l etc.

There is no direct equivalent for copying 2 letter registers but, for be,
de and hi, this can be achieved by two loads e.g. Id h,d and Id l,e. For
another aethod, particularly for ix and iy, see STACK PUSH AND POP.

LOADING MEMDRY CONTENTS

All double length registers can be interchanged with 2 adjacent aeaory
bytes. Note that the neaory display starts at address 35923 and, with
instructions being 1 to 9 bytes long, addresses 35927 to 35930 can be used
to deaonstrate aeaory transfers. In the following exaaples note that the
nuabers in aeaory are again in the reverse order:

Id hi,1239 Id (35927),hi Id de,(35927) Id ix,(35927) Id (35929),iy

WARNING - these instructions can easily overwrite iaportant aeaory
addresses, such as Systea Variables, and cause a crash.

The only single byte register that can be used in this way is a:

Id a,255 Id (35927),a Id a,(3592G)

INDIRECT ADDRESSING

Rather than using a nuaber for loading peaory contents, the address can be
loaded into registers which are used for indirect loading. The hi register
can be used in conjunction with a 1 byte nuaber or any one of registers
a,b,cfd,e,h,l. The following .deaonstrate indirect addressing of the
attributes of the first character on the screen:

-15-

Id hi,22528 Id c,(hi) Id a,79 Id (hi),a Id (hi),249 Id (hl),c

The be and de registers can be used, but only in conjunction with a:

Id be,22528 Id de,22529 Id a,(be) Id (de),a Id a,79 Id (de),a

INDEXED ADDRESSING

Indexed addressing is similar to indirect addressing but uses the ix and
iy registers with a displacement in the range -12B to +127. The facilities
available are identical to those for indirect addressing with hi and,
except for an initial byte of 221 or 253, the machine code is the same.
The first of the following examples again deals with attributes and the
second loads System Variable RAMTOP into hi:

Id ix,22656 Id b,(ix-128) Id (ix-128),249 Id (ix-128),b Id a,(ix)
Id iy,23610 Id 1, (iy+120) Id h , (iy+121) - Note reverse order

STACK PUSH AND POP

A push instruction stores a 2 byte register on the stack by subtracting 1
from the stack pointer SP, storing the first byte, resubtracting 1 then
storing the second byte. The instructions can be used for copying from one
register to another or for temporary storage purposes. Note tne last in
first out effects:

push be pop af push iy push hi push de pop hi pop de pop ix

The Spectrum software uses a number of stacks and, as in the RDYBOT
software, private stacks can be created by saving the stack pointer (e.g.
Id (35927),sp) then loading sp in various ways. The latter are not
implemented in the TEST software (sp to memory is) as they would cause a
crash, but they are of the following general format:

Id sp,hl Id sp,ix Id sp,iy Id sp,NN Id sp,(NN) Id (NN),sp

The stack is another dangerous area to play with - push or pop too many
and something will be overwritten: pop too few and a crash is likely (see
also JUMP, CALL AND RETURN).

EXCHANGE REGISTERS

The CPU chip has a second set of af,bc,de,hl registers which can be
exchanged. Some may be used by Spectrum RON routines so it may not be a
good idea to use them. They are implemented in the ROYBOT software by
storing the values in memory.

Id a,123 ex af,af’ Id a,255 ex af,af’ Id de,12345 Id hi,9999
Id be,1000 exx Id h1,0 Id de,0 exx exx exx

Another instruction allows the hi and de registers to be exchanged and
others exchange the contents of hi, ix or iy with the two bytes at the top
of the stack:

ex de,hl push de ex (sp),hl ex (sp),ix ex (sp),iy pop iy

-16-

I AND R REGISTERS

There are two other registers that can only be used in conjunction with
the a register. These are the interrupt page register i and the aeaory
refresh register r. Loading values into these registers should be avoided.
The instructions are - Id a,i Id a,r Id i,a Id r,a

BLOCK TRANSFER AND SEARCH

These are soae of the aost powerful and useful instructions available. Any
aeaory area, within the 64K addressable range) can be copied to any other
as a block transfer. The hi register has to be loaded with the source
address) de with the destination and be with the nuaber of bytes to copy.

There are two wavs of copying blocks of aeaory to ensure that data is not
overwritten when the blocks overlap. To copy a block to a lower address it
is necessary to start at the bottoa, copy the first byte then increaent
the addresses (ldir). To copy a block to a higher address) start at the
top. copy the last byte then decreaent the addresses (lddr). The first
exaaple copies rubbish to the screen (watch the screen on pressing ENTER
for ldir). The second aoves the attributes of the top line. Note: with be
too large or 0 or addresses being wrong) the systea will crash. The third
exaaple uses the single byte copy instructions ldi and ldd, aoving the
instruction code and first 3 attribute bytes into the aeaory display.

Id hi.0 Id de.16384 Id be.6144 ldir Id de,82537 Id be.6144 lddr
Id hi,22529 Id de,22528 Id a,(de) push af Id be,32 ldir Id e,31
Id 1,30 Id be,31 lddr pop af Id (de).a
Id hi,35923 Id de,35927 ldi ldi Id hi,22530 ldd ldd ldd

For block search instructions hi is loaded with the start address, be with
the nuaber of bytes to search and a with the character to be found. The
search stops when be reaches 0 or a Batch is found. For the latter, the :
flag will be switched on and hi points to the address following the watch.
The single byte searches cpi and cpd coapare a byte and increaent hir

Id a,Cr Id hi,0 Id be,2 cpir cpir cpdr cpi Id e,(de) cpi cpd cpd

INPUT OF CHARACTERS, HEXADECIMAL AND BINARY NUMBERS

As used in the previous exaaple, characters can be loaded to registers
using the prefix capital C. In order to understand aany of the other
instructions, a knowledge of hexadeciaal and binary is necessary and the
appropriate sections in the Spectrua aanual should be studied. Hex nuabers
can be loaded using the prefix H (e.q. Id a,HFF) or addresses in the saae
foraat. As described under TESTING FACILITIES, selecting option 7 switches
between deciaal and hex foraat for addresses and register contents. Also,
selecting option 8 enables binary values to be displayed.

Hexadeciaal and binary conversions can also be carried out using defb,
defw and defl functions by direct input (see ASSEMBLER FACILITIES). The
hexadeciaal digits declared can be 1 or 2 for defb and 1 to 4 for defw.
Binary defl declarations aust always be 8 bits. Exaaples of def functions
displaying nuabers in the aeaory display are:

defb HA defb 10 defb HAB defw HIDE defw H9A8F defl 11110000

-17-

EIGHT BIT ARITHMETIC AND LOGIC

Most of these instructions are in association with the a register
(accumulator) and involve a variable, other registers, indirect addressing
or indexed addressing. The first group of instructions are add. add with
carry, subtract and subtract with carry. The carry flag is switched on
where an add gives a value qreater than 25j or a subtract gives a negative
result. Load appropriate values in register and memory locations and input
soae of the following:

add a.a add a.b add a.c add a.d add a.e add a.h add a.l add a.(hl)
add a,(ix+1) add a,(iy-123) add a,23 adc a.a adc a.b adc a,99 etc.
sub a sub b sub c sub d sub e sub h sub 1 sub (hi)
sub (ix+100i sub (iy+A5) sub 77 sbc a,a sbc a.b sbc a.5 etc.

The next group of instructions are comparisons with the a register. Where
the value beinq compared is equal to that in a. the zero flag z is set
and. where it is greater, the carry flag c is set.

cp a cd b cp c cp d cp e cp h cp 1 cp (h i ! cp (ix+96) cp 355

Instructions are available for adding 1 (increment) or subtracting 1
(decrement) from any register or memory location (be careful to only
change known locations):

inc a inc b inc c inc d inc e inc h inc 1 inc (hi) inc (ix+1)
dec a dec b dec c dec d dec e dec h dec 1 dec (hi) dec (ix+1)

Three logic instructions, AND, DR and XOR are available, operating on
binary patterns in the a register. The results of carrying out the
operations on each individual bit are:

0 AND 0 = 0 0 DR 0 = 0 0 XDR 0 = 0 0 AND 1 = 0 0 OR 1 = 1 0 XDR 1 = 1
1 AND 1 = 1 1 OR 1 = 1 1 XOR 1 = 0 1 AND 0 = 0 1 OR 0 = 1 1 XOR 0 = 1

AND can be used for selecting bits, OR for combining and XOR for
inverting. Load various numbers into registers via the a register, such at
170, 15, 2A0 and 255, noting the binary patterns. Then carry out a
selection of the following instructions.

and a and b and c and d and e and h and 1 and (hi) and (iy-22)
or a or b to or (iy+100) xor a xor b to xor (iy-120) etc.

An important function of these instructions is that they dear the carry
flag; hand a' and "or a* leave the a register unchanged; dxor a* will also
zeroise the a register. The or function is often used for checking a
double byte register for zero.

The flags can be all switched on or off through using push/pop (Id e.255
push de pop af Id e.0 push de pop af). The bits in f are:

0 Garry flag (c) - see subtract above.

1 Add/subtract (n) - this is switched off for adds and on for subtracts
and is used with decimal arithmetic.

FLAGS

-18-

2 Parity/overflow ip) - this is set by and. or. xor, if the number of bits
is even and reset if odd. It is also used to indicate overflow when
dealing with positive nuabers (see s flag) where carry is not set (try -
Id a.128 and a (no parity) add a,6A and a (parity) Id a.127 anil a
(reset p) add a.l (overflow).

A Half carry !h) - this is similar to carry except it is associated with
with the lower A bits. It can be set by "and" and reset by “or". The aain
use is in decimal arithaetic (see daa).'

6 Zero (z) - this is switched on by an operation giving a result of zero
or an egual comparison. As other flags, it is not changed by loads.

7 Sign (s) - rather than using a byte to count up to 255 it can be treated
as containing positive numbers 0 to 127 or negative numbers -1 to -128?
where -1 is 255 and -128 is 128 (2’s complement). The sign bit is switched
on when an operation sets bit 7 (e.g. 128) - try Id a,0 add a.l sub 129
add a.127 inc a.

Eits 3 and 5 are indeterminate.

GENERAL PURPOSE OPERATIONS

Decimal Adjust Accumulator (daa) - this is used in conjunction with binary-
coded decimal adds and subtracts and uses the n and h flags. It is
difficult to understand but essentially assumes that all numbers are
decimal e.g. 117 or H75 is decimal 75. Try Id a,H75 add a.HI6 daa
(answer H91) add a,H10 daa (answer 1 + carry for 101) sub H33 daa
(answer H68).

Complement Accumulator (cpl) - this inverts the bits in the a register.
Try Id a?1 cpl (answer HFE or 25A).

Negate Accumulator (neg) - this gives the 2’s complement value (see sign
flag). Try Id a.l neg (answer HFF or 255 or -1).

Complement Carry Flag (ccf) and Set Carry Flag (ccf) - note that there is
no dear carry instruction but this is done with "and", "or" or "xor". Try
scf and a ccf ccf ccf.

SIXTEEN BIT ARITHMETIC

These have the same operation codes as for 8 bit instructions but there is
a more limited range. The codes are:

add hi,be add hi,de add hi,hi add hl,sp add ix,bc add ix,de
add ix,ix add ix,sp add iy,bc add iy,de add iy,iy add iy,sp
adc hi,be (or de, hi, sp) sbe hl.be (or de, hi, sp)
inc be inc de inc hi inc ix inc iy inc sp dec be etc.

Note two inc sp instructions drop a word from the top of the stack but one
gives invalid displays on TEST. The add sp instructions can be useful for
obtaining a copy of a word on the stack: push 3 different values and copy
the third to de fey - Id hi,A add hi,sp Id e,(hi) inc hi Id d,(hl)

-19-

JUMP, CALL AND RETURN

There are two kinds of junp instructions jr (relative) and jp (absolute).
The first has a 1 byte displacement (DIS)< which is forward 0 to 127 or
backwards -1 to -128 i255 to 128) from the start of the nest instruction.
The second kind have a 2 byte address (NN). When relative jumps are used
the machine code can be relocated anywhere in memory but has the
disadvantages that the .jump distances are'not very great and lead to many
assembly errors. As shown in ASSEMBLER FACILITIES.’ programs are written
referring to line number or named labels. The instructions can be typed in
under TEST (e.g. jr 127 jr z,128 - note addresses) but do nothing other
than display the codes in the memory display.

Jumps can be unconditional (as BASIC GOTO) or conditional on the state of
one of the flags. The instructions are:

jr DIS jr c.DIS jr nc.DIS (no carry) jr z.DIS jr nz.DIS (non zero)
jp NN ip c,NN jp nc,NN jp z,NN jp nz.NN jp pe.NN (parity even)
jp po.NN (parity odd) jp m.NN (sign negative) jp p.NN (sign positive!

Neat there are three indirect jumps jp (hi), jp !ix) and jp (iyi, where
the register holds the address to jump to (e.g. Id hi,60000 jp (hi) is the
same as jp 60000).

A special instruction, decrement b register and relative jump non zero
(djnz DIS) is provided for loop control. It does the same as dec a and
jr nz,DIS. Enter Id b,0 djnz 123 noting b goes to 255 (loop count 256).

The nest group are call and ret, for subroutines, which are the same as
BASIC GOSUB and RETURN. The instructions can be unconditional or with the
same conditions as jp instructions. The call instructions are 3 bytes
long and the following address is pushed onto the stack for the return.
The following will demonstrate this - call 10 Id a,l and a call nz,20
(called) call z,30 (not called) ret (pop) ret z (no pop) ret nz (pop)

Note that the return addresses on the stack prevent other items from being
popped in a subroutine. However, the return address can be popped into a
register temporarily. The instructions are:

call NN call c,NN call nc,NN call z,NN call nz,NN also pe, po, m, p
ret ret c ret nc ret z ret nz also pe, po, m, p

The final two instructions in this group are return from interrupt or
non-maskable interrupt - reti retn

ROTATES AND SHIFTS

There are again a large number of instructions which are used for rotating
and shifting bits in any register or memory location. They can be used for
multiply or divide (by 2, A etc.), moving data from one byte to the next
one bit at a time and for counting or checking bits witnin a loop. The
following diagrams indicate the bit flow and can be demonstrated by using
those associated with the a register and observing the binary values and
carry flag. They are of the following general format:

op a op b op c op d op e op h op 1 op (hi) op (ix+D) op (iy+D)

-20-

rlc C-H 7 4 r - $ rrc c J ^7 - 4 ^ rl l-Cf-j" f— ^ rr k — $1 — » 0p

Rotate Left and Right circular rlc and rrc - these circulate the bits
around a byte setting the carry flag as a 1 bit is moved from one end to
the other. An example is rotating the first attribute byte to see which
bits are set - Id hi<22528 repeat rrc (hi) 8 times.

Rotate Left or Right rl or rr - these rotate through the carry bit,
requiring 9 steps to return to the original value. An example of use can
be seen by disassembling address 1980 to 1996, which is used for reading 8
bits from a tape. Register 1 is set to 1 so, within the loop, carry is set
on the eightn rotate left. Before rotate, a compare sets the carry flag
when a 1 bit is read and this is moved into the register with the rotate.

Rotate "a" register - instructions rlc a, rrc a, rl a and rr a are
available in a different form which is quicker and only 1 byte long. They
are - rlca rrca rla rra

The shift instructions are as follows:

Shift Left Arithmetic sla - the bits move left into carry, fill with zeros
and can be used for multiplying by 2, 9 etc. over 1 byte'or more with rl -
Id c,l sla c sla c sla c Id de,175 sla e rl d sla e rl d

Shift Right Arithmetic sra and Shift Right Logical srl - these move the
bits right into carry, srl filling with zeros and sra with zeros, if bit 7
is "0‘ and with ones if bit 7 is T . These instructions can be used for
division. Uith bit 7 set the number can be regarded as negative (see Sign
Flag) so sra can divide these, e.g. Id a,128 (-128) sra a (192 or -69).

Rotate Digit Left rid and Rotate Digit Right rrd - are for use with binary
coded decimal and rotate a 9 bit digit in the a register with 2 digits at
a memory location defined by hi.

These can be demonstrated by using the memory display. Enter Id hl<35927
Id (hi),1 Id a,H28 rid (a=H20 (hi)=H1B) rid (a=H21 (hl)=H80).

BIT MANIPULATION

These represent the largest group of instructions (290 in all). They allow
each bit of single byte registers or any memory location to be switched to
T (set), reset to "0" (res) or tested (bit). A major use is for flags
where 8 different conditions can be recorded in a byte. The test
instructions set the zero flag if a particular bit is zero. The codes are:

set 0,a set 0,b to set 0,1 set 0,(hi) set 0,(ix+D) set 0,(iy+d)
set 1 to set 7 res 0 to res 7 bit 0 to bit 7

rid 17 9l3 ' 0l (7 9l 3 01 rrd 17 9l3 0 M 7 9i3 0l

-21-

5la C<-OE3{— 0 sra U c r E J H srl kcrEHZF•-P 0

The Spectrui RDM Software lakes frequent use of these instructions in
■anipulating System Variables e.g. (iy+0) to (iy+3). Exaiples to try are -
Id h,0 bit 5,h (z on) set 5,h bit 5•h iz off) Id ia rE25S8 (attributes)
set 7 , 1 m l) to flash res 7,(ix+1) for flash off.

RESTART GROUP

A set of B special instructions are available with the CPU chip which call
subroutines at addresses 0, 8, 16, 84, 32, 40, 48 and 56. These have to be

E aued for the functions required on a particular coiputer. In the 4BK
:ru* ROM they are:

rst 0 - causes a "NEW"
rst 8 - stops the prograi with an error code (see Spectrui Manual).

rst 8;defb 0 gives error 1, rst 8;defb 10 error B etc.
rst 16 - displays the character in the a register (see TESTING exaiples).
rst 24 - associated with scanning a BASIC line - fetch (CH-ADD) to “a",
rst 32 - scanning again but increient (CH-ADD) first,
rst 40 - used with floating point calculator,
rst 48 - creates workspace.
rst 56 - laskable interrupt routine called 50 tiies per second to scan

the keyboard and increment the fraie counter (see ii 1).

INPUT AND OUTPUT

Input and output instructions are the sane as BASIC IN and OUT so the
appropriate chapters of the Spectrui lanual should be studied. The port
address is defined by a one byte variable N (data bits by a register) or
the c register (data bits b register). Example prograis, given later, show
how soie of the instructions can be used. The codes are:

in a,(N) in a,(c) to in l,(c) out (N),a out (c),a to out (c),l

Block input/output is provided, siiilar to block transfer and search.
Register hi gives the data address, c the port and b the nuiber of bytes
to transfer. The codes are ini inir ind indr outi otir outd otdr.

MISCELLANEOUS CPU CONTROL

nop (code 0) does nothing, enabling unwanted codes to be poked with zeros.

halt - suspends operation until the next interrupt.

di ei - disable/enable interrupts, di inhibits nonal keyboard scanning.

ii 0 ii 1 ii 2 - interrupt lodes. Nonal operation is in 1 where rst 56
is executed automatically. Under ii 0 external devices can execute
instructions via the daia bus. For n 2 an indirect call is iade to an
address defined by the i register and the I/O port.

SUMMARY OF FLAGS

When certain instructions are executed flags iay be unchanged so the
condition is preserved for later testing:

No Flags changed - Id (except Id a,i or r), 16 bit inc and dec, set, res
push, pop and exchange (except af), juip, call, ret

-22-

s,z,p unchanged - add hl/'ix/iy, rla, rlca etc. (r 1, si etc. do), cp 1, scf

c unchanged - inc, dec, rid, rrd, cpl, in, out, ldi, ldd etc., bit

c set to 0 - and, or, xor, to 1 - scf

h set to 0 - or, xor, rla, rl etc. rid, scf, in, ldi, to 1 - and, cpl, bit

n set to 0 - add, adc, and, or, xor, inc, rl, sla etc., scf, ldi,bit

n set to 1 - sub, sbc, dec, cp, neg, cpl, cpi, cpd etc.

TIMING

It is sometimes necessary to be able to determine precise timings in a
program such as when writing tape, producing music or moving a large
number of objects on the screen without flicker. The specification for the
ZB0-CPU includes timing in the form of number of clock pulses or T states
for each instruction. On the Spectrum the clock is about 3.55 MHz, giving
around 0.28 microseconds per T state. The shortest instructions take 4 T
states and longest 23. Calculating timings based on T states is not
particularly accurate and it is better to do it by program (see example
program 1). Where timing is not too critical, an approximation of 2.5
microseconds per instruction can be used (400,000 per second).

EXAMPLE PROGRAMS

The following programs show how most of the various types of instructions
can be used and particularly in conjunction with Spectrum facilities. They
should be assembled to address 53000.

EXAMPLE 1 - Loops and instruction timing - For single instruction timing a
double loop is required. The outer loop to line 20 is controlled by de at
4000 and the inner loop to 30 by b at 250, giving a total of 1 million
passes. The system variable FRAMES, which is incremented at 50 times per
second, is initially set to 0 and the time returned to BASIC via be at the
end. the program can be run by entering CLS: PRINT USR 53000/50 and will
give an answer of about 3.7G (microseconds per loop). A suitable
instruction or two for timing (not changing b) should be inserted at line
30, the program reassembled and run via PRINT USR 53000/50-3.7B, for the
time - Id a,b gives about 1.16 and Id hi,1234 2.88 microseconds.

10 REM Id hi,0:ld (23672),hl;ld de,4000
20 REM LDDP1;Id b,250;push de
30 REM LD0P2;Insert instruction to be timed here
40 REM djnz SLD0P2;pop de;dec de;Id a.djor e;jr nz.JLODF'l
50 REM Id be,(23672);ret

A variation can be used for timing longer activities such as copying a
full screen of data (100 times). The time for 1 screen in milliseconds can
be obtained bv PRINT USR 53000/5, giving about 39.6. This indicates
that, with data in the right order, tne maximum rate of changing screens
is about 25 per second.

10 REM Id hi,0;Id (23672),hi;Id a,100
20 REM LP;Id de,16384;Id bc,6144;ldir;dec a;jr n:,3LP;ld be,(23672);ret

-23-

EXAMPLE E - Screen display and moving object. The example shows one way,
with the bare essentials'. Five characters are defined at lines 730 to
1170. These are copied to an area of memory defined at line 690 via line
10. If the characters were to be located in the user defined graphics
area, line 10 would have Id de• 65363 instead of 3CHRS1. Lines E0 to 30
copy three of the characters to a memory area PIC1, defining a screen,
with each occupying 8 lines. Lines 40 and 50 copy an equal number of bytes
to an area ATKl. for attribute ink/paper/bright of
white /blue/1 (7+3+64). red/white/0 (E+7*8), green/
yellow/0 (4+6*8). 60-70 put the other E characters
at the start of line IE in PIC1. 80-110 set d as a
delay count, hi as the address of line 13, ix as an
area' of memory, (ix)/(ix+l) as counters. 120-130
produce the display via 600 with hi, be and de as
defined above. The loop MVST repeatedly moves the
object E41 bits across the screen, WAIT governing
the speed. After each character bit slice, input at
I of 6 to 9 or 0 stops the program.

10 REM Id de,3CHRSl:ld hl.SCHARA 0;Id be,40;ldir
E0 REM Id hl.3PICl;ld a.0:call 3FILL
30 REM Id a,4;call 3FILL:Id a,l;call 3FILL
40 REM Id hi.3ATR1:Id a.79:call 3FILL
50 REM Id a.58:cal 1 3FILL;ld a,5E;call 3FILL
60 REM Id hi,3PICl;ld de,384:add hi,de
70 REM Id (hi),E;inc hi;Id (hi),3
80 REM Id d,3£
90 REM START;push de

100 REM STE;ld hi,H4B80;push hi
110 REM Id ix,3P0S;ld (ix),l;ld (ix+l),S41
1S0 REM Id hl.SPICljld bc,3CHRSl;ld de,3ATRl
130 REM call 3D ISPLAY
140 REM pop hi
150 REM MVST;dec (ix+1):jr z,3STE;push hi;Id b,8
160 REM MOVE:push hi:sr 1 (hi);inc hi;rr (hi)
170 REM inc hl;rr (hl);pop hi;inc h
180 REM id a,h;cp H50:jr c.3DJM;ld h,H48
190 REM Id a,1;add a,H20;Id l,a
E00 REM DJM;djnz 3M0VE;pop hi;pop de
E10 REM xorajrl (ix);jr nc,31;inc hi:Id (ix), 1
EE0 REM I:Id bc.HEFFE;in a.lc);cpl;and HlF;jr nz,
E30 REM UAlTjld b.d;push de;lde,0'
E40 REM DLljdec e:jr nz.SDLl;djnz 3DL1
E50 REM ,r 3MVST '
E60 REM STOP;ret
E70 REM J :jr 3ST0P:Temporary line
580 REM FILLjId (hl),a;push hl;pop de;inc de
590 REM Id be,255;ldir;inc hi;ret
600 REM DISPLAY;push de;id de,H4000
610 REM Eachc:push bejpush hi:Id l,(hl):ld h ,0
6E0 REM add hl,hl;add hi.hi;add hl,hl;add hi,be
630 REM push de;Id b,8
640 REM Dch;Id a,(hl);ld (de),a;inc hi;inc d
650 REM djnz 3Dch;pop de;inc de;Id a,e;and a
660 REM jr nz,3Nextc;ld a,d;add a,7;Id d,a:cp H58
670 REM Nextcjpop hi;inc hljpop be;jr nz,3Eachc
680 REM pop hi;Id bc,768;ldir;ret

690 REM CHRSljdefs 40
700 REM PIClidefs 76B
710 REM ATR1-defs 768
720 REM F'DSjdefs 4
730 REM CHARA 0
740 REM def1 00100110
750 REM def1 00110111
760 REM def1 01111111
770 REM def1 01111111
780 REM def1 01111110
790 REM def1 11111100
800 REM defl 10001000
810 REM defl 00000000
B20 REM CHARfi 1
830 REM defl 00000000
840 REM defl 00010000
850 REM defl 00101000
860 REM defl 00010000
870 REM defl 10010100
880 REM defl 01011000
890 REM defl 00110000
900 REM defl 00000000
910 REM CHARA 2
920 REM defl 00001111
930 REM defl 00011011
940 REM defl 00111011
950 REM defl 01111111
960 REM defl 11111111
970 REM defl 11111111
980 REM defl 11111111
990 REM defl 00111000
1000 REM CHARA 3

SJ 1010 REM defl 11110000
1020 REM defl 11011000
1030 REM defl 11011100
1040 REM defl 11111110
1050 REM defl 11111111
1060 REM defl 11111111
1070 REM defl 11111111
1080 REM defl 00011100
1090 REM CHARA 4
1100 REM defl 00000000
1110 REM defl 00000000
1120 REM defl 00000000
1130 REH defl 00000000
1140 REM defl 00000000
1150 REM defl 00000000
1160 REM defl 00000000
1170 REM defl 00000000

In order to control the screen properly, it is essential that the
addressing is understood. The first character in the display memory starts
at 16334 or H4000, the second at H4001, third ar Hh002 etc. The 8
horizontal strips of the first line start at H4000, H4100, H4200 to H4700
and end at H401F to H471F: this is the reason that inc d is used at 640
and inc h at 170. The second line is H4020 - H403F to H4720 - H473F so inc
de or inc hi are used to step along characters and to the nest line. This
continues to the eighth line H40E0 - H40FF to H47E0 - H47FF. Lines 9 to 16
follow a similar pattern with starting with H4300, H48E0 to H4BE0 and
strips H48, 49, 4fi to 4F. Lines 17 to E4 are H5000 tD H50E0 and strips H50
to H57. Changes after lines 8, 16 and E4 are dealt with at program lines
650 to 670 when de becomes H4100, 4900 or 5100. Attributes start at H5800.

The following additions demonstrate keyboard or joystick operation. Input
is obtained via line EE0, using port address HEFFE 161438) for keys 6 to 0
or Spectrum joystick 1. Addresses for other keys are given in the Spectrum
manual (see IN). At 270, 0 or fire stops the program. Via E80, joystick
left or key 6 slows down movement across the screen and right or 7 speeds
it up by ’changing delay d. Down or 8 moves the object down and up or 9
moves it up within the bounds of the middle third of the screen.

270 REM J;cp l:jr z,3STQP;ld c,3;bit 0,(ix):jr z,3J2;ld c,2
290 REM J2:co 8:ir z.3R:ch 16; ir z,3L;push oe;cp 2:ir z,3UP;cp 4;jr :,3DN
310 REM DL2;pop de; ir 0WAIT
320 REM L;ld a,32;cp d;jr z,3WAIT;inc d;jr 3WAIT
330 REM R:ld a,4;cp d:jr z,3WAIT;dec d;jr 3WAIT
340 REM UP;Id a.licp H20;jr nc,3UPl;ld a,H48;cp h:jr Z.3DL2
360 REM UP1;Id d,h;ld e,l;dec d:ld a,H47;cp d;jr nz,3UP2
370 REM Id a,e;sub H20;ld e.ajla d.H4F
390 REM UP2;call 3C0PY;push hi:Id b,7
400 REM UP3;push be;Id n.d;ld f.e;inc h:ld a,H50;cp h ;jr nz.3UP4
410 REM Id a, 1:add a,H20;Id 1 .a;Id h,H48
420 REM UP4:ca 11 3C0PY:pop bcjdjnz 3UP3;call 3BLANK;pop hi;jr 3DL2
480 REM DN;ld a,l;cp HDF;jr nc,3DL2;ld de,H20;add hi,de;ex de,hl;Id b,B
490 REM DNI;push be;Id h.ojld l,e;dec h:Id a,H47;cp h;jr nz.3DN2
500 REM Id a,lisub H20;ld l,a;ld n,H4F
510 REM DNEicall 3C0PY;pop bc;djnz 3DNl;call 3BLANK;jr 3DL2
530 REM COPY;1d b,c;pusn nl;pusn de
540 REM CPI;Id s,!hll:ld (de;■ a;inc hi;inc de;djnz 3CF'l;pop hl;pop de;ret
560 REM BLANK;Id b,c;ld a,0
570 REM BLl;ld (de),a;inc de;djnz 3BLl;ret

Sound can be included in the program by adding the following at WAIT,
where the delay varies between about 40 and 5 milliseconds. Flipping the
port after each delay gives sound in the range 12.5 to 100Hz. Tne border
can be flashed black/wnite by changing AND 16 to AND 23 and deleting OR 7.

235 REM Id a,(ix+2);xor 255:and 16;or 7;Id (ix+2),a
245 REM out (254),a

EXAMPLE 3 - Reading tapes. The following programs can be used to assist in
hacking software supplied on tape. Tney must not be used for illegal
copying. The first program has three starting addresses: 53000 reads
headers for interpretation by BASIC: 53004 loads BASIC programs and stops
without executing any autostart LINE: 53008 loads BASIC as code for later
interpretation. Headers are loaded to 54000 and code to 54100. In the
program, ix defines the start address for loading and de the length.

-25-

fill loading starts at RDM address H556 with the carry flag set and a=0 for
a header or a=255 in other cases. BASIC and code are via H775 and H800

10 REM Id a< 1;jr SStart;Read headers
20 REM Id a,S;jr 3Basic
30 REM Ldcodejld a,3;Load as code
90 REM Start;push af;Id i>:.54000;ca 11 SHeadr;pop af
50 REM cp 1;ret z;ld a,(ix);cp 0;jr nz.SLdcode
60 REM Code;acf;1□ d.tix+12);ld e,(ix+il!;ld ix,59100;call H800;ret
70 REM Basic;Id bc,39;rst 49:push de;pop ls: 1 d (ix).0;ld il>:+1).255
80 REM Id h1.(23641) ;ld de,(23635);scf;sbc hl.dejld (ix+11).1;Id (ix+12),h
90 REM push de;Id be• 17;add ix.be

100 REM HeadB;call 3Headr;ld a,(ix);cp 0;jr nz.SHeadB
110 REM Id (ix+19),128;No line no.;ld a,l;ld (23668),a;jp H775
120 REM Headr;push ix;ld de. 17;sor a;scf;cal 1 H556;pop is;jr nc,SHeadr;ret

5 REM the following runs the above to read BASIC and code headers
10 LET bc=USR 53000: REM Read header, press BREAK to stop
20 FOR i=54001 TD 54010; PRINT CHRt PEEK i;: NEXT i: REM name
30 IF PEEK 59000=0 THEN PRINT " B ";: 60 TO 100: REM BASIC
90 IF PEEK 59000=3 THEN PRINT " C ";:GD TO 70: REM Code
50 PRINT: GO TO 10: REM 59000=1/2 are no./chara arrays, length 59011/12
70 PRINT PEEK 59013+256*F'EEK 59019;",“;FEEK 59011+256*PEEK 59012
80 GOTO 10: REM Prints start address, length (16389 = SCREEN*)
100 LET 1=PEEK 59019: IF 1 = 128 THEN PRINT * None";: GO TD 120
110 PRINT ” ";1*256+F'EEK 59013;: REM Autoaatic start line number
120 PRINT " “;PEEK 59011+256*PEEK 59012;" ";PEEK 59015+256*PEEK 59016
130 GO TO 10: REM above give length (PROG) to (E LINE) and (VARS)

Many gaaes will give headers and a BASIC loader as
shown on the right, loading a screen, attributes and
code to fill up the aeaory. The prograe is started
at line 10 on loading and starts the gaae with the
USR. To copy, change the basic if required, e.g. to
load froa disk including naaes in loads and save by
SAVE "basic" LINE 0. Change the loader to as it was
delete the USR statement (and INKs etc.), add SAVE
statements after the LOADs, with appropriate start addresses and lengths,
and RUN to load the tape and save where ever. A variation of the above say
have loading addresses with LOAD CODE which are different to the headers.

basic B 0 120 120
screen C 16389,6912
gaae C 28000.37536
10 CLEAR 27999
20 LDAD "“ CODE
30 LOAD "" CODE
90 GO TD USR 28000

Most prograas set PAPER and INK on starting to sake the listing invisible
on normal loading. A variation which can prevent the above froa giving a
proper listing is to include control codes 0 to 31 in the BASIC lines.
Type in a program 10 ::LET prog=PEEK 23635+256*PEEK 23636:PRINT prog. RUN
to print tne start address of the program, then POKE,prog+1,0 to make the
line nuaber 0. Listing will appear correct on a 98K svstea but, on the
128K, the line nuaber will not be given and the line will appear several
times. RUN and note that it still works. Then POKE prog+9,17:PDKE prog+5,0
to change the two colons to PAPER 0. The listing is then blacked out,
although the display may not change D n the 128K system. In order to crack
these, the program can be loaded and a loop typed in to peek and print
from (PROG) to (VARS). In order to understand the format, the Spectrum
manual should be studied. The gaaes driver can then be reloaded and
offending characters poked with 32 (space) and a suitable line nuaber
inserted to give a proper listing.

-26-

Headers as on the right indicate that BASIC variables basic B 0 234 122
are present. Assuming these are used in the program codel C 28000.37536
and the USR address is in the stain code, the method code2 C 23333.20
used for the previous example may be satisfactory but
BO TO should be used instead'of RUN to avoid losing the variables. The
last code is loaded to the printer buffer area which could cause a problem
on 128K systems. If it does, it may be possible to transfer it to the
screen memory until loading is finished: e.g. change the USR address to
16384 and add the code at CODE after the following new program which
should be loaded to 16334 - Id hl,3C0BE;ld de,23333;ld bc,20;idir;jp 28000

Programs with headerless loaders may indicate only a basic B 10 350 100
BASIC header and have a program essentially as shown 10 CLEAR 25000
here, indicating machine code in the variables area, 20 PRINT USR 23950
or embedded in a BASIC line, with slightly different
numbers. The address of (PROG) should be noted and a code file saved
starting from this address with length as indicated in the header. This
can then be loaded later for disassembly.

In many cases the code is likely to use normal ROH routines around
addresses H556 to H800 (1366-2048) for loading, using ix, a and de as
described above, followed by a jump to the start address for e.g. Id
hl,35000;push hhjp H556 to pick up tne start by the return at the end of
the loading routine). In this case it is quite easy to produce a new
loader to read each section of tape in turn, to enable a copy to be made
using normal save with headers.

Other loaders may use non standard code and have no ROM calls. These can
be identified by having out (254),a instructions for flashing the border
and Id a,127jin a,(254), or the in r,!c) equivalent for loading. Assuming
standard saving techniques are to be used, it may not be necessary to
determine how tne loading works, but the ending procedures and any special
variables used will have to be found. The loader code should be modified
using BASIC POKEs, direct input with TEST or merging newly assembled code
to make it interruptible so tne real code can be loaded and copied.

In returning to a BASIC loader for different sections of code being
copied, it must be ensured that overwriting does not take place of System
Variables, the program and variables area, the stack (normally just below
RAMTOP) or the printer buffer on +3 systems. Once in machine code, with no
return to BASIC, these areas can be overwritten, if this is done in the
original program. It should normally be possible to transfer the final
parts of code via the display memory, as shown above.

A particular thing to watch out for in the machine code loaders are
instructions which move the stack e.g. Id sp,hl or Id sp,23530. A return
to BASIC cannot occur if this is done and these new stacks are often in
the print buffer area. The creation of these stacks should be deferred to
after the last stage of loading when they may again be handled via the
memory display.

The final example is for dealing with long pieces of code e.g. with a
header - prog C 23552,41984 indicating loading from the start of System
Variables to the end of memory with the start address on a stack within
the code loaded or in the printer buffer. Alternatively, a small amount of
code may be first loaded to the top of memory and used to control the
remaining loading.

-27-

Id hl,H556;ld de.3Rd2
Id bc,116;ldir;call 3Rdl
ret c;rst 8;defb 26
Rdl;lo is,28000;Id a,255
Id de.(3Lenl);and a;scf
Rd2;def5 116
Rd3;call H5E3:ret nc
Id a,HCB;cp b;rl 1
Id b,HB0;jp nc SRd3
Id a,h;xor l;ld h,a
Id a,d;or e:jr nz,202
Id de,(3Len2);ld a,(3Fl)
cp 0:jr nz,3Part2
Id ix.28000
Part2:jp H5A9
Len1;def« 1
Len2;defw 1
Fljdefb 0

normally, but the first part may need to
be via the screen display with code to transfer it added as shown earlier.

This program copies loading code from ROM
into the proqram area. Lines 40 to 48 are
as in ROH but not copied due to the jp
instruction. Rdl is called and stops with
a tape loading error message if reading
is incorrect. The idea is to load code in
parts the lengths defined by Lenl/2. If
FI is 1 the code is loaded from 28000 to
65535 then to ROH addresses which are not
changed. The first part of code can then
be saved. With F1=0 loading of the second
part starts at 28000. The code should be
assembled for address 27800 and saved. It
is driven by the following BASIC program.
The example shown is for code starting at
23552. Tne first part to be saved is up
to address 27999 and the second to its
real address of 28000. This can be loaded

10 REH
12 REH
14 REH
20 REH
22 REH
30 REH
40 REH
42 REH
44 REH
46 REH
48 REH
50 REH
60 REH
62 REH
70 REH
80 REH
82 REH
90 REH

10 LET f1=1: LET a=4448: LET b=37536: LET c=INT (a/256): LET d=INT (b/256)
20 POKE 27984.a-256*c:P0KE 27985,c:P0KE 27986,b-256»d:P0KE 27987,d
30 POKE 27988,f1: PRINT USR 27800: STOP
50 CLEAR 27799: LOAD "rdbin" CODE 27800: STOP
60 REM fl=l save CODE 28000,a: f1=0 save CODE 2B000,b

EXAMPLE 4 - 128K RAH bank switching. The Spectrum manual describes memory
bank switching. The following shows how it is done in machine code. The
BASIC displays 8 screens, poking the number to BANKN and calling START
where, for 0,1,3,4,6,7, a different memory bank is switched in and screen
contents are copied along with attributes. The normal bank is then
switched back in. Calling START2 (LET u=USR 40029) switches the memory
banks in and copies the stored contents back to the screen: this is
repeated 25 times. Calling STARTS (USR 40065) switches the screen display
between the normal one and the alternative in bank 7, without switching
the bank within the normal addressing range: this is repeated 65536 times
in 3.5 seconds. The program should be assembled for address 40000.

10 REH BANKH;defL10 23388
20 REH PORT1:defL20 32765
30 REH BANKN;defb 0
40 REH START;Id a,(3BANKN);cp 8
50 REH ret nc;call 3CHEK;ret z
60 REH or 16;call 3SUITCH
70 REH Id hi,16384;Id de,49152
80 REH Id be,6912;ldir;jr SEND
90 REH START2;Id b,25

100 REH LOOP;push be;Id a,8
110 REH Ll;dec ajpusn af
120 REH call 3CHEK;jr z,3A
130 REH or 16;call 3SUITCH
140 REH Id de.16384;Id hi,49152

150 REH Id be,6912;ldir
160 REH A;pcp af:jr nz,3Ll
170 REH pop oc;djnz SLOOP;jr SEND
180 REH START3;la de,0
190 REH L00P2
200 REH Id a,24;ca11 3SUITCH
210 REH Id a,16:cal 1 3SUITCH
220 REH dec de;Id a,d;or e
230 REH jr nz,3L00P2
240 REH END;Id a,16
250 REH SUITCH;di;Id bc,3P0RTl
260 REH Id (3BANKM),a;out ic).a
270 REH eijret
280 REH CHEKjcp 2;ret z;cp 5;ret

10 FDR 1=0 to 7: CLS: FOR j=l to 21: PRINT TAB i»3:PAPER 7-i;INK i;'****"
20 NEXT j: POKE 40000,i:LET u=USR 40001:NEXT i: STOP
40 CLEAR 39999:LOAD "ramsw.bin' CODE 40000

-28-

