48K 128K Spectrum +2 +3

Internationally Convertible
and Compatible Software

Spectrum
Complete

Machine Code
Package

ROYBOT

ROYBOT CONVERTIBLE AND COMPARTIBLE MACHINE CODE PACKAGE

by Roy Longbottcm C.Eng., M.I.E.R.E., M.B.L.5.
CONTENTS
Page
ASSEMBLER SUMMARY 1 TEACH YDURSELF MACHINE CODE
TESTING SUMMARY 2 Register loading
LOADING THE SOFTWARE b Loading memory contents
COPYING THE SOFTWARE Indirect addressing
CONVERSION Indexed addressing
THE PROCESSOR 5 Stack push and pop
TESTING FACILITIES b Exchange registers
Hexadecimal and bimary I and K registers
Direct instruction input Block transfer and search
Backtrack Characters, hex and binary
Start address 7 8 bit arithmetic and logic
Step Flags
Run slow beneral purpose cperation
Run fast Sixteen bit arithaetic
Run CLS Jump, call and return
Breakpoint Rotates and shifts
End Binary coded decimal

Meaory display
Enter progras in test mode 8
Relative addressing
Loading code to test
Large machine code prograes
Step calls
Errors
Printing
DISASSEMBLY
Other ROMs 18
bGanes Ero rags
ASSEMBLER FACILITIES
Asseably 12
Label addresses
Relative addressing
Large frngrams
Input lines 13
Merge and delete
Save and load
Utilities 14
128K systems
Errors
AUTOLDADER PROGRAM

Bit manipulation
Restart roug
Input and cutput
Miscellanecus CPU control
Suemary of flags
Tieing

EXAMPLE PROGRAMS
Instruction tieing
Character design
Screen design
Hoving object
Screen mapping
Keyboard
Joystick
Sound
Reading tapes
Games headers
Code in variables
Headerless tapes
Non standard loaders
Loading long codes
128K RAM bank switching
Alternative screen

Copyright ROYBOT 1988
ROYBOT, 45 Hullbridge Road, Rayleigh, Essex, 556 9NL

Page

15

2b
27

28

ROYBOT INTERNATIONALLY CONVERTIBLE AND COMPATIBLE MACHINE CODE SYSTEM

The following four programs are supplied:

Asseabler BASIC driver Assembler sachine code
Test BASIC driver Test sachine code

The drivers are written in BASIC to provide the internationally
convertible and compatible features, whereby any inforsation appearin% on
the screen can be easily converted to a different language and any output
can be directed to any channel that can be driven via BASIC. Sperial
characters can be constructed by user defined graphics, as shown in the
Spectrua manual, or by using the asseabler: a range of French, Berman and
Scandanavian characters are predefined in the software and can be entered
in the progras by using 6raph Shift a to s. Machine code is used where
speed is re?uired, such as on assesbly, disassenbl{, testing and output
forlattini. he software is driven by sisple senu selections and prospted
input, making it very easy to use.

The eicrodrive and disk versions have an additional auto-run progras which
has facilities for user defined character design.

ASSEMBLER SUMMARY

The asseabler has been written particularln to suit beginners but it is
also suitable for professional software, such as that produced by ROYBOT.
Asseabler input is in the lower case forsat given in Spectrua sanuals and
is entered 1in BASIC REM lines, with aultiple instructions per line, if
required: this aeans that there are no new cosplex editing procedures to
be learnt, input files can be prepared on a Spectrua without needing to
load special software and sunlarg grlnted listings can easily be produced.
An exasple of the similarity to BASIC, using line nuaber labels, is:

18 LET a=18:605UB 29:60T0 38 = 10 REM 1d a,18;call L26;jr L36
20 LET a=a+100:RETURN 28 REM add a,lbﬂ;ret

Alternatively, nased labels can be used and comeents added: this allows
easier line renuabering and built in docuaentation:

1 REM NUMBER 1;defb 18

2 REM NUMBER 2;defb 188

18 REM START;1d a,(ONUMBER 1);1d b,a;ld a,(INUMBER 2);call JADDEM;jr aNEXT
2@ REM ADDEM:add a,bjret
30 REN NEXT;éonnents can be added as this

Various menu controlled utility frocedures are provided for lerqin? and
deleting input lines, saving assembled code, erasing and cataloguing files
for tape, disks, microdrives or RAM disks.

The asseable senu allows all or selected lines to be asseabled, asseably
with or without listing and listing or label addresses to screen or
printer. The code i5 always assesbled to address 53888 onwards, but this
15 only used for relative addressing purposes, the final address being
selected as a menu option. Long assenblz input codes can be split into two
or more sections and asseabled as one through the process of @erge lines,
asseable, save code, delete lines, merge new lines, continue asseably,
save new code and so on. The various sections of code can then be loaded
to the real addresses and saved as one code file.

Lines 1 to 2860 are used for asseabler input lines. An exasple of size is
4989 input lines, with an averaae of & instructions per line, could occupy
28,000 bytes and generate 480¢ bytes of code. This would be asseabled 1n
about 75 seconds. The mzemory is used as follows:

Below 53868 BASIC driver and input lines

53809 - 57249 fsseabled machine code

57259 - 61251 268¢ label addresses

61252 - 65367 Asseabler variables and machine code
45368 - 65535 User defined characters

TEST SUMMARY

When the TEST program is loaded, a display appears, showing the computer’s
register contents, stack, flags, selected nenorl, last and next
instructions with addresses. Underneath the aenu cptions are shown. In
this amode, the progras is ready to accept assesbler instructions. typed in
one at a time for the beginner to learn all about machine code, in
conjunction with the marwal supplied. The menu options are:

1 Exit - this goes to a second senu, allowing code to be loaded froam tape,
disks, microdrives or RAM disks and also to disasseable it.

2 Step - this allows the code to be stepped and executed one instruction
at a time, showing what effect it has on the registers, flags, stack etc.
flso, at any time, new asseabler instructions can be typed in to change
the values,

3 Run slow - this steps through the code automatically at about S
instructions per second, showing changes in register contents etc.
dynasically.

4 Run fast - this steps at about 3@ instructions per second but only
displays instruction addresses until a stop is reached or the space bar
pressed, when the full display is given.

5 Run CLS - this is the sase as 4, without address display, and is
provided to test programs producing screen output.

b Backtrack - this allows the last 5 instructions and their effects to be
replayed.

; Dec{Hex - this switches all the displays between decisal and hexadeciaal
oraat,

8 Binary - this allows the contents of one selected register/pair to be
displayed as binary.

9 Start address - allows selection of a new start address for the next
instruction to be executed. It can also be used to step one instruction at
a time without execution and showing disasseabled instructions.

18 End address - slow or fast trace will stop when the selected end
address 15 passed.

11 Breakpoint - tracing will stop when an instruction exactly at the
breakpoint address coses up next for execution.

12 Memory display address - this can be for any B bytes of |enor£.
Initially, it displays a buffer area showing the code produced by
instructions typed 1n directly.

13 Real address - initially, the prograa can be used for testing or
disassesbling code at a real address e.g. the 4BK Spectrua ROM. Selecting
13 will switch to virtual mode, so that code loaded can be re?arded as
being at a different address e.g. code asseabled to start at address
30909, 40688 or whatever, can be tested as though it was loaded to the
real address.

14 Step calls - normally subroutines are stepped at the slow rates, but
selecting 14 can cause subroutine calls to be executed at the full rate of
up to nearly ! million instructions per second. Using real addresses, any
depth of calls will be executed correctly. Using virtual addresses, only
the first call can be executed correctly as address conversion cannot be
carried out for subsequent ones.

15 Print - this sends the output to the printer and shows register
contents, instruction address and sneaonic code as programs are stepped or
when a trace stops.

The eesory is used as follows:

Below 32880 BASIC driver and variables
32809 - 498949 test and disasseebler machine code
49958 - 44999 asseabler for direct input
45000 - 653467 wmachine code to be tested
65368 - 65535 user defined characters if required

Code to be tested can be loaded below 45688, as low as 48958 but, if this
is selected, direct instruction input 1s disabled.

LOADING THE SOFTWARE

The tape version has the test software (test.bas & test.bin) on one side

and asseabler (ass.bas & ass.bin) on the other. To load and start, reset

the cosputer and use the usual LOAD "". Prograa test.bas can be loaded via

;gqqgsgenbger aenu but to load the asseebler always reset or type CLEAR
irst.

The microdrive and disk versions have auto-locad programs "run® and “disk®.
For the former, enter NEW (select BASIC on 128K) and enter RUN. On the +3,
select “Loader® to load “disk®. The main software can the be loaded by
selecting menu options 1 or 2.

COPYING THE SOFTWARE

On receiving the software, a copy should be sade for noraal use and the
original stored in a safe flace. In line with the design objectives of
putting the user’s requirements first and easy conversion for other disks
etc., the software provides facilities for making the copies. Please do
not abuse this wuser friendly facility for making ille%al copies for
others: as the purchaser, you are only {icensed to aake extra copies for
your oWn use.

To copy the TEST Basic and code, on loading, select aenu option 1 EXIT
(press ENTER), then 4 SAVE ROYBOT from the second menu. Tape, RAM disk or
drive can the be selected, as appropriate, the drive nuaber or letter
being requested for the latter.

To copy the assesbler Basic and code, on loading, select menu option 4
SAVE, then 2 ROYBOT code/BASIC, followed by tape etc., as above.

The microdrive loader can be saved by selecting menu option 3. On the disk
version this option copies all the software to another disk.

CONVERSION

All wvariables that are displayed are declared at the start of the BASIC
drivers (TEST lines 2@-438, ASSEMBLER lines 28628 to 2568, LDADER lines 28
to 256). These can be changed by the user to teras that he understands
better or to a different language. To assist in the latter, braph Shift
characters a to s have been defined to represent special French, beraan
and Scandanavian characters at the end of the asseabler code: these can be
changed as shown in the example in the asseabler sectiom or via the drive
auto-load progras. The code (63348 to 63535) can be saved and loading
arranged for wuse in the TEST program (automatic with auto-load) but care
sust be taken that the area is not overwritten by machine code that is
being tested. The length of the words displayed is limited by the
dimensioned arrays, which cannot be changed (see TEST line 1688, ASSEMBLER
4386, LOADER 999{.

If it 1is necessary to initialise a channel, send special characters to a
printer etc., it can be arranged by selecting INITIALISE froam the
secondary TEST menu or the main ASSEMBLER menu: these 60 TO 466 and 2588
respectively, where additional BASIC statesents can be included.

-4-

All accesses to tapes, disks etc. follow the variables, at the start of
the srograms, and can be changed for other devices. The BASIC lines are:

Tage Drive RAM Disk
TEST loading code 499 588 518
saving RUYBOT software 348 550 568
start line to load test code 3588 298 b
ASSEMBELER loading BASIC program gb;g 2628 2639
b

merging input lines 2658 2660
saving asseabled code 2768 2689 2698
saving ROYBOT BASIC and code 2748 2728 2730
saving all BASIC 2768 2778 2758
start line to load code 2798 c80p 2780
CATALDG 2838 2848
ERASE file 2860 2B78

For drive i1dentificaticn, n$ 1s used for a letter or VAL n$ for a number.
For the drive autoloader, lines 27¢ to 388 and 356 to 398 can be changed.

Printina is carried out using LPRINT at lines 628 to 638 for TEST and 2988
to 3080 for ASSEMBLER. These can be changed to print statements peculiar
to certain interfaces.

THE PROCESSOR

The heart of the Spectrum is a microprocessor chip known as a 288. This
has its own internal fast memory elesents, known as registers. Registers
a:bscodseshyl can store one B bit byte of value up to 255 (see Spectrum
manual Binary and Hexadecimal). Some of these can be combined to give 16
bit words of value up to 55535: they are bc, de and hl. Other registers,
i¥y 1y and sp, can only be used for words. The size of the words liaits
the asount of main memory that can be accessed by the processor to 65336
(0 to 65535) bytes. 128K 5{sten5 work by switching this range of accessing

connections to different blocks of memory.

The 2B@ has over 788 different machine code instructions. Most of these
are quite simple, loading bytes or words between reﬂisters or registers
and memory, manipulating individual bits, 60SUB and 607D type instructions
and simple arithaetic operations.

The B bits of a special register (f), which can also be combined with a to
give af, are used as tlags. These give an indication of the effect of
certain operations, such as result of zero produced.

The processor requires an area of meaory to be set aside as a stack, the
address being contained in the sp register. Words are inserted at the top
of the stack by using push instructions and the last entry removed by pop.
The stack is also used automatically to provide the return address on
calling subroutines.

TESTING FACILITIES

Load ‘“test.bas® and follow the fo]louin% exaaples, which desonstrate how
to use the facilities. On loading, all the registers, except IV, are set
to zero and displaved at the top left of the screen. 1Y is given the value
noreally used by the Spectrum ROM of 23618 or the address of svstea
variable ERR NR (see Spectrua manual). The bc, de and hl register contents
are shown for the register pairs and b.c.d,e.h,l segarately. At the top
right, the stack contents are shown for the last 3 entries, where the
whole word and each of the two bytes are shown. The stack pointer (5SP)

value 1s the one used by the ROYBOT softmware.

The status of the flags is shown underneath the registers. Under these
“was® shows the address and asseably input code for the last instruction
executed and ‘“next" the one to be executed next. Finally, across the
middle of the screen, 4 words (B bytes) of memory are displayed.

The following demonstrate use of the software. Follow the instructions
carefully until you are used to using the software as it is so easy to
cause the system to crash or NEW 1tself when using machine code.

HEYRDECTMAL

Pressin% 7 and ENTER switches the displays between decieal awnd hexadecieal
format {see Spectrum manual for explanation).

BINARY

Imitially, the binary values of the af register pair are displaved at the
bottom right of the screen. Entering 8 provides a prompt for a different
pair of registers: type 1y and ENTER, noting the changes then repeat to
reselect af.

DIRECT INSTRUCTION INPUT

Except when in the middle of one of the menu option procedures, the
software will accept and execute instructions typed 1in directly. On
loading, the meaory display shows a buffer area where the aachine code
numbers are inserted for instructions entered from the keyboard. Typing in
the following, one at a time with ENTER, demonstrates the disEla 5. The
beginner should go to the section "TEACH YOURSELF MACHINE CODE ON-LINE®
after trying these.

Instruction Code Result

dec hl 93 hl becoaes 65533, h and 1 each 253

push hl 229 the hl values appear on the stack, No. on stack = |
pop de 289 de becomes the same as hl, stack is espty

add hl,de 25 hl becomes 65534 and the carry flag is set

1d a,b3 62 65 a becomes 63, the flags are not changed
BACKTRACK

Enter 6 to playback the above, observing the same effects, pressing ENTER
for the next instruction.

START ADDRESS

Enter 9, then 16 in response to the request for the start address. Note
that the next i1nstruction to be executed is at address 16. This is a
restart routine f(rst 14) in the Spectrum 4BK ROM which displays the
character in the a register.

STEP

Enter 2 and observe that the instruction has executed and becomes “"Was"'.
Next press ENTER 4 or 5 times and note the effects of further executions.

RUN SLOW

Enter 3 to trace through the code slowly. After about 43 seconds the
letter A will be foraed in the bottoa left hand corner of the screen. The
progras will stop with an “INVALID OP.® sessage, meaning there was no
return address on the stack to go to. Enter 3 new instructions - 1d a,63
ld bc,16 push bc -. Select 9 and enter start address 16 again, then 3
Slow trace. This time the A is displayed, followed by ancther character as
the return picks up address 16 for a second pass. If sose other value had
been left on the stack, it is possible that the system would crash.

RUN FAST

Select 9 and enter address 16 again, then 4 to run fast. Repeat but press
the space bar when execution has started, noting that the full display is
given on stopping. Enter 4 again to coaplete the routine.

RUN CLS

Select 9 but for the address input H18 (hexadeciral for 16). Then select 5
to run through the code with the screen blank.

BREAKPOINT

Select 11 and enter address 2888. Select 9 and address 146 again, then 4
for fast trace. Enter 4 again (or 2,3 or S) and the grogran executes until
the breakpoint is reached again: then 4 again to go to the end.

END
Change the breakpoint address back to #, 18 End to 5676, start address to
16 and 4 to run fast. The execution stops with an end message. This time

selecting 2,3,4 or 5 does not lead to any further instructions being
executed. Change the end address to 65535, then enter 4 to continue.

MEMORY DISPLAY

Select 12 and enter 23635. This is the address of the systes variable
PRDB, the displa{ shouin? the start address of the BASIC prograam. The
fourth word shows the end of variables E-LIKE.

STOP AND CLEAR

In order to restore the meaory display to its original value or to reset
all displays, select 1 Exit then 8 Stop. Type RUN to restart.

-7-

ENTERING A PROGRAM IN TEST MODE

If you know machine code vou can tyee in a short prograam in the TEST
routine. Type in ld ix,45680 1d (ix),285 1d (ix+1),188 1d (ix+2),23% and
note that the "Next” instruction gives call 68084. Then type 1d (1x+3),201
(return) 1d (ix+4),43 (dec hl) 1d (ix+5),281 1d a,281 1d (50884),a (Euts
return at 68684). Next select 2 and step through the prograe, noting that
it calls 60864 and returns.

RELATIVE ADDRESSING

Follouin% entering the above progras, select 9 and enter address 60086
then option 13 to change the real address from "YES" to "NO": this resets
all displays and the next instruction will show call 68084 at address
60006, Select 2 and step through the program, notinp that it executes the
dec hl instruction that was inserted at agdress 45004.

The above deeonstrates the relative addressing capability where code can
be loaded to address 4580¢ onwards and tested as though i¥ was at another
address. One exception is where prograns being tested refer to an address
belgu 16384, in the ROM, where no adjustaent 1s sade and the real address
used.

The address offset calculation is carried out when real address "NO® is
selected, assuming that whatever 1s at the selected start address is
really at address 43089. Once the offset i1s calculated, the start address
can be changed for testing to start anywhere within the code.

LOADING CODE TO TEST (AND CRASHING)

To load code, select 1 Exit, 3 Load code and menu selections according to
whether the code is on tape, drive or RAM disk. As an experisent, load the
assesbler machine crode "ass.bin", selecting address 45888 when Eronpted.
This code is normally loaded to address &1388 so select this as the start
address, then 13 for real address "ND" (or to "YES" and back to "NO*).
Then select 2 and step through the subroutine call. If it is wished to
demcnstrate a systea crash, continue stegging, noting that the bc register
15 loaded with a value greater than 68886. This is used as the length of
the 1dir copy instruction and executing this will sove most memory
contents up one location. If this is done, the systee will have to be
reset and software reloaded.

LARGER MACHINE CODE PROGRAMS

Code for testina can be loaded below 45886, down to 48958, that is about
24008 bytes. owever, this disables the direct instruction input
capability.

To use the relative addressinq facility, it 1s necessary to calculate the
offset froe 45608. If code is loaded to 48958, the offset is 45868 - 48938
or 4858. As an example, if the real code address was 38080, select start
address and input 34858 (real address + offset), then 13 for real address
°ND®. Selecting a new start address of 30888 will displaé "Next" as the
;éaéﬁAnénstructlon loaded. For larger prograss see DISASSEMBLING GAMES

STEP CALLS

Norna]ln, when a subroutine is called, it is stepped or traced as the main
code. When testing code is loaded to real addresses, subroutines can be
executed at full processor speed. To demonstrate, select 14 to change step
calls to "NO" then, as for the earlier demonstraticn, input start address
16 and 2 to step through the code: this tiae the end will be reached after
12 steps, without stepping through the call. Similarly, instructions tvped
in directly will execute at the full rate: try call 16. Select 14 to
change to step calls "YES". If relative addressing is used, any subroutine
called must not call others as the address cannot be calculated.

ERRORS

The error display appears in the middle of the screen under the, mesory
display. Besides giving an indication when breakEDint or end address is
reached, the main message on testing is "INVALID OP". Assembler errors are
covered later. Certain instructions will nct be executed e.?. halt, Id
sp.NN, reti, ia N or ret and pop, 1f the stack is espty. The software will
not execute a conditional return if the stack is empty, even though the
return 1s not appropriate. To overcome this, the address of a return
instruction can be put on the stack (e.g. type in instructions 1d hl,B82
and push hl). An example to desonstrate this 1s a ROM routine which finds
the start address of any BASIC line - select start address H196E then tyfe
in 1d hl,28 (the line nuasber), then select “Run slow". The program will
stop with both hl and de registers pointing to the start address of the
first line. Reselect the start address, put 82 onto the stack and 28 into
hly, then repeat the trace. This time, de points to the start of line 10
and hl to the start of line 28.

PRINTING

If a printer is available, select 15 to change print to "YES" and repeat
the step address 14 procedure with step calls °NO". The state of the
registers etc. should be printed after each step. Repeat with run fast and
printing should occur when the trace stops.

If the printing does not work see CONVERSION as 1t may need initialising
or different print statesents.

DISASSEMBLY

To disasseable froa the test screen select the start address (e.g. # for
the start of ROM), then enter 9 again for start address and keeE pressin
ENTER to display sequential addresses and instructions as "Next® an
"Was". To end this, enter an appropriate start address.

For a listing tyEe disassesbly, select the start and end addresses (e.g. #
and 20), then 1 Exit and 2 Disasseable. If an end address is not selected,
following the scroll indication, rather than Eressing ENTER for the next
screen, press BREAK or the space bar and type RUN.

To print the disassesbly, select 153 Print before exit to the second senu.
If hexadecimal format is preferred, select 7 Dec/Hex also.

DISASSEMBLING OTHER ROMs

Other ROMs can be disasseabled by using the save routines provided in the
ROMs. For example, on the Spectrum +2, exit from the test and select STOP.
Then type save ! “rom" code §,16384 then RUN. Select 1 Exit, 3 Load code,
3 RAM disk, name "roa", address 45686. Sinilarlg, the microdrive Interface
1 ROM can be saved by save #"a";1;“roa" code #,8192 (or one of the +3 ROMs
by save ‘"m:roa" code 0,1638‘) and loaded to 45686. The ROM can then be
disasseabled froa address 45868 but note that relative addressing cannot
be used to display the real addresses, as they are below 163B4.

DISASSEMBLING GAMES PROGRAMS

Breaking into games programs is a science in its own right and the author
of this software is not an expert on the subject. However, soae
experiments have been carried out to provide a sgarting point. Anyone
attempting this will at least need to absorb the detall given in the
Spectrua manuals on nenorn, systea variables and usinq @achine code.
Following the detail of the desonstration of finding BASIC line numbers

(see ERRURS) will also help.

The 1anes start by loadinE a BASIC proiran, usually quite short. These
usually set RAMTOP (using CLEAR address), load code above this address,
often preceded by loading a screen by load SCREEN$ or load code to 16384.
This may then be followed by a USR address statesent to start running the
sachine code. The first steps for disassesbly are to find the RAMTOF and
USk addresses and to load the code without executing the USR statesent.
Sometimes it may be possible to load the BASIC program and stop the tape
before the follouing load is started and delete the USR statesent so that
the systes will stop after loading the code. In sany cases the BASIC
loaders are written to prevent thea from being listed, msachine code may be
eabedded to control non-standard tape loading, system variables poked to
Rake the system crash and so on. Exan?le prograas, which will allow these
BASIC loaders to be cracked are given later.

Once the code is loaded, it can be saved in two or amore parts for
disasseably later. The code (or data) usually starts at around address
24008, so two parts could be, say, 24988 to 48084 and 48808 (leave sose
overlap) to 63535. These can then be loaded in turn by the TEST prograa.

ASSEMBLER FACILITIES

Asseabler input codes are entered in BASIC lines 1 to 2888, with a REM
stateaent at the start, using the noraal Sfectrul editing facilities. The
codes are entered in lower case format as given in Spectrus manuals.
Multiple instructions can be entered in a line with seai-colons between
thea. The codes sust be exactly the correct format without extra spaces,
or an error lessage will be given and the codes not asseabled. The lines
can be typed in with or without the asseabler being loaded.

One byte variables, N or DIS, and 2 byte variables, NN, can be Eositive
(no sign) decimal or hexadecimal nuabers or characters. The offset, D, in
certain ix or iy instructions can be decimal or hexadecimal, in the range
-128 to +127. Hexadecimal numbers have the prefix H and letters must be
capitals. Characters have a prefix C. i '

_lg-

Load the assembler, select @ to stop and enter the following lines:

18 REM 1d b,254;1d a,CX;1d h1,Cab;ld de,d;1d ix,28480
20 REM 1d b,HFE:1d a,88;1d hl,He1b2;1d desHB;1d ix,HS000
30 REM 1d a,(ix-128);1d (ix+127),Hek;1d (iy-H18),Cn

Rather than using real addresses for call and jusp instructions or a one
byte variable for ;r DIS and djnz DIS (e.g. call 54280;;p 55123; r
2,343djnz 238), a BLSIC line number can be used as a label Hl{ a prefix
L. fhe asseabler detersines the address or. in the case of DIS, the
displacesent values (-126 to +129 from the instruction start address).
Sieilarly, a line nusber can be used as a NN variable. Add the following
to the lines typed in:

49 REM call L18;p nz,L28;jr nc,L3B;djnz L4B;1d hl,L18;5p (hl)
The latter give the same effect as jp L18.

Besides standard 286 instructions, a nusber of additional ones are
provided to preset variables in mesory. These are defb to define a byte,
def! to define a byte in binary, defw to define a word, defc to define a
string of up to 235 characters and defs to define a nusber of bytes of
meaory, initially zeroised. Note defb, 1 and w can be typed in during TEST
to display the value for conversion purposes. Enter:

59 REM defb 65;defb Cajdefw 1234;defu HFFFF;defc "String®
b9 REM defs 18D;def1 1019101

A further function, defL, is available for defining semory addresses to be
referenced by a machine code program. These can be used for various
purposes and have a foreat as shown 1n the following examples. The first
exagple gives an unused line nusber label the same address as an existing
line to enable successful asseebly or to allow the code to be teste
before code for the new line is written. The second two exaaples can be
used to define frequently used addresses which may be changed, for example
when a long prograaz is assembled as a number of parts.

76 REM defL189 L1d;defl] 45328;defle HAGFE

It is usual to 1nclude the deflL statesents at the start of program,
defining lines which are otherwise unused.

The advantage of using line number labels is that it is easy to find the
code referred to. The disadvantage is that lines cannot be renuabered
without checking whether there is a reference to thea. Named labels can be
used instead of or as well as line nuaber labels, the advantages being
that line renusbering 1is easier and, aleng with comments, they provide
built in docuaentation.

Ramed labels and cosments sust start with a capital letter and can be up
to 9 and 15 characters respectively. If they are greater than this, only
the first 15 will be displayed. Labels sust be placed as the first entry
on a line, otherwise they will be treated as coaments. They can be on a
line with no other instructions, otherwise separated by a semi-colon.

-11-

References to named labels must be preceded by a 3 syabol. Examples are:

80 REM Meaory;defs 256;0utput area

99 REM Count {;defw 258

168 REM START

118 REM 1d hl,2Memory;ld bc,{@Count 1)

120 REM Loop;ld th1),B;inc hljdec bcild asbjor cjr nzydloop;Zeroise
138 REM This is a valid line for documentation purposes.

ASSEMBLY

Assumina the assembler 1s loaded for the exasple lines to be typed in,
enter RUN then select 1 Asseable from the main menu. To check that the
tvping 1s correct, select 6 Start assembly. The address 53888 will flash
at right of the chosen entry. Press ENTER to continue or the space bar and
ENTER tc cancel the request, If all are correct, two passes of the
assesbler will be executed with the addresses and line nuabers bein
displayed. If an error is found, an automatic listing is given froa thag
point. For a full listing, before assembly, select 3 List on assembly,
then | to cancel, 2 to display or 3 to print.

A selection of lines can be assembled by changin? the first and last line
nuabers (options 1 and 2). The prograa will not allow a second line nusber
to be selected which is less than the first.

LABEL ADDRESSES

Following assesbly, label and line rumber addresses can be displayed or
printed via assemble cption 4. The label information stored is the start
address of each line used. Nased labels are not stored but are picked up
froe the input code lines as the disglay is given. The addresses are
stored until a new start asseably option is chosen but, if the input
program has been deleted, the label names will not be displaved.

ASSEMBLER RELATIVE ADDRESSING

The code 1s always assesbled to address 53886 onwards but the start
address can be selected according to where the code 1s finally to be
loaded. The assembler calculates label addresses, used by calls and junfs,
and code addresses for listing as the final ones. This can be deeonstrated
by selecting different start addresses, assembling with listing and
displaving label addresses.

ASSEMBLING LARBE PRDGRAMS

Programs, where the ingut lines are in two or eore parts, can be asseabled
and coabined with the second or subsequent parts calling or juaping to
code 1in earlier parts, providing different lire nuabers are used for each

part or, at least, those referenced are unique.

After the first part has been assembled, the continue address is
calculated as the starting point for the next code: this can be changed,
i1f required, by selectinq option 7 and entering the new address. Selectin?
B continue assembly will asseable the next part, calculate the new labe
addresses and gick up references to lines already asseabled. Where only
line nuaber labels are used for the cross references, the procedure is
automatic.

]2

As named labels are not stored forward, thev can be redefined at the start
of subsequent parts: for example, a routine called FIND at line 1268 in
part | can be referred to as 18 REM FIND;deflL1® L126@. If 1268 REM FIND
were used again, the address would be redefined with a wrong value.

The ROYBOT assembler is asseabled in two parts and has B named label
references from part 2 to part 1. The following deaonstrate how it was
asseabled, as an indication of how to deal with large prograes:

1) Merge “ascli", select asseable, start address 61388, select start
assembly, print label addresses (for reference by BASIC), select save
code, save as codel then delete lines 1 to 2088.

2) Merge "assl2", select asseable, note continue address, select continue
asseably, print labels for second part, save code as coded.

3) Select stop, manually load "code!" 61368 and load "code2” to continue
address then save "ass.bin" 61386,4235.

INPUT LINES

Lines 1 to 2009 are reserved for the REM input lines and 2681 to 5868 for
the BASIC driver. Lines greater than 5888 can be used for other purposes,
such as a short BASIC progras for testing machine code just asseabled.

MERGE LINES AND DBELETE

The input lines can be entered without the asseabler being loaded and
incor?orated later by selecting ogtion 3 serge lines. After asseably, soae
or all of these can be deleted by selecting 5 delete, then 3 delete
selected lines. If 1t has been necessary to modify the input lines,
different options are available for saving thea.

If it 1s decided to keep the infut lines as separate inderendent rograms,
select 5 delete then 4 ROYBOT lines. The ROYBUT BASIC will be dereted and
the system will stop with a "Nonsense in BASIC" nessage. Insert a new line
(»5688) to save and verify the lines and, initially, to erase the
ori?inal, if necessary. Then type RUN to save the progras. The new line
will be included in the save and on merging, loaded for future use. DO NOT
SAVE WITHOUT ENTERING RUN OR CLEAR DR THE SYSTEM WILL CRASH ON MERBING.

SAVE AND LOAD

One of the save options is to save all BASIC lines. This can be used as an
alternative approach, saving the asseebler BASIC and input lines together.
If a long input program is produced, it will be observed that aerging is
very slow. When the save all BASIC option 1is used, the save will
incorporate a restart line of 2818, the start of the asseabler. To reload
and automatically run the software, after the assembler and aachine code
has been loaded initially, select 2 load new and input the naae of the
combined asseably BASIC and input lines. This method is euch faster than
using serge 1f microdrives, disks or silicon disks are available.

The other save options are to save the asseabled code from address 53868

and the ROYBOT code and BASIC (see COPYING THE SOFTWARE). Load new can
also be used to load the TEST software "test.bas”.

13

UTILITIES

Options & and 7 from the assesbler main menu are provided for producing
catalogs and erasing files from disks, microdrives or RAM disks as it has
been tound that these functions are used frequently when new machine code
863 Esg?DNare being developed. For details of option B initialise, see

128K SYSTEMS

®hen using 128K systeas, particularly those relying upon tape input, the
gpftuare and input lines can be loaded and saved teeporarily in the RAM
isk.

ASSEMBLER ERRORS
The following errors are detected and indicated on assesbly:

Syntax error - wrong characters typed, extra spaces etc.

Number out of range e.q. >255 for a 1 byte variable

Distance for jr instructions too far or invalid (jusp to itself)
Line nuaber or named label not found

D value in ix or iy+D too large

Label name used previously

oL F WM e

Certain Spectrum systess will hang if adding BASIC progras lines atteepts

to cause the available memory space to be exceeded. The software checks
for this and issue a warning message "too many input lines". If this

occurs, the Erogran should be split into two. On assesbly, the software
also checks that the machine code will not be asseabled to a real address

greater than 57249: if this is attespted, the systes will stop indicating
Out of memory". Assembling defs 4250 will demonstrate this.

If a printer does not work, refer to the section CONVERSION.

AUTO-LDADER PROGRAM

The auto-loader progras, supplied for disk and aicredrive versions,
provides menu selection for loading the assembler or test software,
copying the software and designing user defined characters.

On loadin?, the assesbler code, containing predefined special characters,
is also loaded. These will be in nenorn when TEST 1s selected. When
character design 1s selected, the special characters are displayed along
with a to s, which are used for selection purposes. Entering a letter
displays a large version of the character and a senu with 8 Exit and:

1 Design - a cursor can be aoved around and dots sade white or black.

2 a noreal or graph shift character can be displayed for comparison.

3 transfers the character (even blank) in place of the selected one.

If anythin? is changed another senu is displayed, where # Cancel rereads
the original code, 1 allows another character to be selected and 2 resaves
"asssbin® with the changes included.

-1(’-

TEACH YDURSELF MACHINE CODE ON-LINE

Load TEST as described earlier and read sections *THE PROCESSOR" and
"TESTING FACILITIES® befere starting the following exercises.

REGISTER LOADING

The first group of instructions to consider are those which load registers
with a constant. These are of the general foreat 1d r.N where N is between
§ and 235, and Id rr.NN where NN is between 8 and 63335. Type in the
follouing instructions 1n turn, pressing ENTER to cause them to execute.
Note that, as the instructions are entereg, the code appears in the meeory
display e.g. 62 1 for the first one:

id a,! ldb,2 1dc,3 Id ds108 1d e,75 1d h,234 1d 1,255

Note that the value in the bc register pair 1is 236#btc or 515 and
similarly for de and hl. To confirn this enter the follouing. It can be
observed that the NN value in the machine code 1s the opposite way round
to that in the registers, alse that the ix and 1y loads are the same as
hl, except being preceded by 221 or 253:

1d be,315 1d de,23675 1d hl1,65279 1d 1x,63279 1d 1y,63279

The next group of 49 instructions copy the values of any one of the single
letter registers a\bsc,dseshy1 to any others and itself. Try:

1d a,a 1d a,b 1d a,c 1d a,d 1d a,e 1d a,h 1d a,1 1d b,a 1d c.,d 1d h,] etc.

There 1s no direct equivalent for copyin? 2 letter registers but, for bc,
de and hl, this can be achieved by two lcads e.q. 1d h,d and 1d l.e. For
ancther method, particularly for ix and 1y, see STACK PUSH AND POP.

LOADING MEMORY CONTENTS

All double length registers can be interchanged with 2 adjacent aesor
bytes. Note that the meeory display starts at address 33923 and, wit
instructions being ! to &4 bytes lonq, addresses 33927 to 33938 can be used
to demonstrate mesory transfers. In the following examples note that the
nuabers in mesory are again in the reverse order:

1d h1,1234 1d (35927),h] 1d de,(35927) 1d ix,(35927) 1d (35929),iy

HARNING - these instructions can easily overwrite isportant asesory
addresses, such as Systee Variables, and cause a crash.

The only single byte register that can be used in this way is a:
1d a,255 1d (35927),a 1d a,(35928)
INDIRECT ADDRESSING

Rather than using a number for loading pescry contents, the address can be
loaded into registers which are used for indirect loading. The hl register
can be wused "in comjunctica with a 1 byte nuaber or any one of registers
ayb.cedyeshyl. The *ollouing demonstrate indirect addressing of the

attributes of the first character on the screen:

-15-

1d h1,225¢8 1d c,(hl) 1d a,79 1d (hl),a 1d (h1),249 1d (hl)sc

The bc and de registers can be used, but only in conjunction with a:
1d bc,22528 1d de,22329 1d a,(bc) ld (de),a 1d a,7% 1d (de),a

INDEXED ADDRESSING

Indexed addressing is similar to indirect addressing but uses the iz and
1y registers with a displacesent in the range -12B to +127. The facilities
available are 1identical to those for indirect addressing with hl and,
except for an initial byte of 221 or 233, the machine code is the sase.
The first of the following exaeples again deals with attributes and the
second loads Systeam Variable RAMTUg into hl:

1d 1x,22656 1d b,(ix-128) 1d (1x-128),249 1d (ix-128),b 1d a,{ix)
1d 1y,23618 1d 1,(iy+128) 1d h,{iy+121) - Note reverse order

STACK PUSH AND POP

A push instruction stores a 2 byte register on the stack by subtracting 1
from the stack pointer SPy, storing the first byte, resubtracting 1 then
storing the second byte. The instructions can be used for copyina from one
register to another or for teeporary storage purposes. Note the last in
first out effects:

push bc pop af push iy push hl push de pop hl pop de pop ix

The Spectrus software uses a nusber of stacks and, as in the ROYBOT
software, private stacks can be created by saving the stack pointer (e.g.
1d (35927),sp) then loading sp in various ways. The latter are not
implemented 1n the TEST software (sp to memory is) as they would cause a
crashy but they are of the following general foreat:

1d spyhl 1d spyix 1d sp,iy 1d sp,NN 1d sp.INK) 1d (NN),sp

The stack 1s another dangerous area to play with - push or pop too many
and soaething will be overwritten: pop too few and a crash is likely (see
also JUMP, CALL AND RETURN).

EXCHANGE REBISTERS

The CPU chip has a second set of af,bc.desh] registers which can be
exchanged. Some may be used by Spectrume ROM routines so it may not be a
good 1dea to use them. They are implemented in the ROYBOT software by
storing the values in memory.

1d a,123 ex af,af’ 1d a,235 ey af,af’ 1d de,12345 1d h1,9999
1d bc,1608 exx 1d hl,0 1d de,®§ exx exy exx

Another instruction allows the hl and de re%isters to be exchanged and
o;h:;s e:ch:nge the contents of hl, ix or iy with the two bytes at the top
()} e stack:

ex de,hl push de ex (sp),hl ex (sp)six ex (splyiy pop 1y

_16-

I AND R REGISTERS

There are two other registers that can only be used in conjunction with
the a register. These are the interrupt page register i and the amesory
refresh register r. Loading values into these registers should be avoided.
The instructions are - 1d a,i 1d a,r 1d i,a 1ld rya

BLOCK TRANSFER AND SEARCH

These are some of the sost iouerful and useful instructions available. Any
mesory area, within the 64X addressable range, can be copied to any other
as a block transfer. The hl register has to be lecaded with the source
address, de with the destination and bc with the nuaber of bytes to copy.

There are two ways of copying blocks of aemory to ensure that data is not
overwritten when the blocks overlaf. To copy a block to a lower address it
is necessary to start at the bottos, copy the first byte then increaent
the addresses (ldir). To copy a block to a higher address, start at the
top, copy the last byte then decresent the addresses (lddr). The first
example copies rubbish to the screen (watch the screen on pressing ENTER
for 1dir). The second moves the attributes of the top line. Note: with bc
too large or 9 or addresses being wrong, the system will crash. The third
exasple uses the single byte copy instructions 1di and ldd, moving the
instruction code and first 3 attribute bytes into the memory display.

1d hl,8 1d de,16384 1d bc.s144 1dir 1d de,22527 1d bc,6144 lddr
1d hl1,22529 1d de,22528 1d a,{de) push af 1d bc,32 ldir 1d e,3l
1d 1,38 1d bc,31 1ddr pop af 1d (de).a

1d h1,35923 1d de,35927 1di 1di 1d h1,22539 1ldd 1ldd 1dd

For block search instructions hl is loaded with the start address, bc with
the nusber of bytes toc search and a with the character to be found. The
search stops when bc reaches # or a match is found. For the latter, the z
flag will be switched on and hl points to the address following the match.
The single byte searches cpi and cpd coampare a byte and incresent hl:

1d a,Cr 1d h1,8 1d bc,@ cpir cpir cpdr cpi ld e,lde) cpi cpd cpd
INPUT OF CHARACTERS, HEXADECIMAL AND BINARY NUMBERS

As used in the previous exaeple, characters can be loaded to registers
using the prefix capital C. In order to understand many of the other
instructions, a knowledge of hexadecisal and bimary is necessary and the
appropriate sections in the Spectrua sanual should be studied. Hex nuabers
can be loaded using the prefix H (e.g. 1d a,HFF) or addresses in the same
format. As described under TESTING FACILITIES, selectini option 7 switches
between decimeal and hex format for addresses and register contents. Also,
selecting option 8 enables binary values to be displayed.

Hexadecimal and binary conversions can also be carried out using defb,
defw and def! functions by direct input (see ASSEMBLER FACILITIES). The
hexadecimal digits declared can be 1 or 2 for defb and 1 to 4 for defw.
Binary defl declarations sust always be B bits. Exasples of def functions
displaying numbers in the memory display are:

defb HA defb 18 defb HAB defw HIDE defw H9ABF defl 111186888

_17-

EIGHT BIT ARITHMETIC AND LOGIC

Most of these instructions are in assocciation with the a register
laccusulator) and involve a variable, other registers, indirect addressing
or indexed addressing. The first %roup of instructions are add, add with
carry, subtract and subtract with carry. The carry flag is switched on
where an add gives a value ?reater than 255 or a subtract gives a negative
result. Load arfropriate values in register and eesory locations and input
some of the following:

add a,a add a,b add a,c add a,d add a,e add a,h add a,]1 add a,(hl)
add a,{ix+1) add a.(iy-123) add a,23 adc a,a adc a.b adc a,99 etc.
suba subb subc subd sube subh subl sub (hl)

sub (ix+1988) sub (1y+43) sub 77 sbc aya sbc a,b sbc 2,3 etc.

The next group of instructions are comparisons with the a re$ister. Where
the value being compared 1is equal to that in a, the zero tlag 2 is set
and, where it is greater, the carry flag c is set.

cpa cpb cpc cpd cpe cph cpl cp (hl} cp (ixtdd) cp 255
Instructions are available for adding 1 (incresent) or subtracting !
(decrement) from any register or eeeory location (be careful to only
change known locations):

inca incb incc incd ince inch inc 1l inc (hl) inc {ix+])
dec a dec b dec c dec d dec e dec h dec 1 dec (hl) dec (ix+l)

Three logic instructions, AND, DR and XOR are available, operating on
binar¥ patterns in the a register. The results of carrying out the

operations on each individual bit are:
BANDD=90 O0ORP=0 0XDRO=0 BAND1 =0 BOR1=1 BXOR!=1
1AND 1 =1 10R1=1 1XOR1=90 'ANDB=0 10RB=1 1XORB=1

AND can be used for selecting bits, OR for combining and XOR for
inverting. Load various nusbers into registers via the a register, such at
178, 15, 248 and 235, noting the "binary patterns. Then carry out a
selection of the following instructions.

and a andb andc andd and e and h and 1 and (hl) and {iy-22)
ora orb toor (1y+188) xor a xor b to xor (1y-128) etc.

An ingortant function of these instructions is that thex clear the carry
flag; "and a" and "or a” leave the a register unchanged; “xor 2® will also
zeroise the a register. The or function is often used for checking a
double byte register for zero.

FLAGS

The flags can be all switched on or off through using push/pop (1d e,255
push de pop af 1d e,# push de pop af). The bits in f are:

B Carry flag (c) - see subtract above.

1 Add/subtract (n) - this is switched off for adds and on for subtracts
and is used with deciaal arithmetic.

18

2 Parity/overflow ip) - this is set by and, or, xor, if the nusber of bitz
1s even and reset if odd. It is also used to indicate overflow when
dealin? with positive ruebers (see s flag) where carry is not set (try -
ld a,128 and a (no parity) add a,b4 and a (parity) 1d a,127 and a
{reset p) add a,!1 (overflow).

4 Half carry 'h) - this is similar to carry except it is associated with
with the lower & bits. It can be set by “"and" and reset by “or". The main
use is in decigal arithsetic (see daa).

6 Zero (z2) - this is switched on by an operation %iving a result of zero
or an equal comparison. As other flags, it is not changed by loads.

7 Sign (s) - rather than using a byte to count up to 235 it can be treated
as containing positive numbers 8 to 127 or negative numbers -1 to -128,
where -1 is 235 and -128 15 128 (2°s complement). The sign bit 15 switched
on when an operation sets bit 7 {e.g. 128) - try 1d a,# add a,! sub 129
add a.127 1inc a.

Bits 3 and 5 are indetereinate.
BENERAL PURPOSE OPERATIONS

Decimal Adjust Accusulater (daa) - this is used in conjunction with binary
coded decimal adds and subtracts and uses the n and h flags. It is
difficult to understand but essentially assumes that all nusbers are
decimal e.?. 117 or H75 is decimal 75. Try 1d a,H?5 add a,Hl1é daa
{answer H91) add a,H1® daa (answer 1 + carry for 181) sub H33 daa
{answer H6B).

Coaplement Accuaulater (cpl) - this inverts the bits in the a register.
Try 1d a,1 cpl (answer HFE or 254).

Negate Accusulator (neg) - this gives the 2's coaplement value (see sign
fiag). Try 1d a,1 neg (answer HFF or 255 or -1).

Complement Carry Flag (ccf) and Set Carry Flai (ccf) - note that there is
no clear carry instruction but this is done with "and", "or" or "xor". Try
scf and a ccf ccf ccf.

SIXTEEN BIT ARITHMETIC

These have the same operation codes as for 8 bit instructions but there is
3 aore liaited range. The codes are:

add hl,bc add hl,de add hl,hl add hl,sp add ix,bc add ix,de
add ix,1x add ix,sr add iy,bc add iy,de add iy.iy add iy,sp
adc hl.bc {(or de, hl, sp) sbc hl,bc (or de, hl, sp)

inc bc inc de inc hl inc ix inc iy inc sp dec bc etc.

Note two inc sp instructions drop a word froa the top of the stack but one
gives invalid displays on TEST. The add sp instructions can be useful for
obtaining a copz of a word on the stack: push 3 different values and copy
the third to de by - 1d hl,4 add hl,sp 1d e,(hl) inc hl 1d d,(hl)

-19_

JUMF, CALL AND RETURN

There are two kinds of jump instructions jr (relative) and jp {(absolute).
The first has a | byte dlsplaceaent (DI%), which is forward 8 to 127 or
backwards -1 to -128 (255 to 128) from the start of the next instruction.
The second kind have a 2 byte address (NN). When relative juaps are used
the machine code can be relocated anywhere in meaory but has the
disadvantages that the juep distances are not verg great and lead toc many
assembly errors. As shown in ASSEMBLER FACILITIES, programs are written
referrlne to line number or named labels. The instructions can be typed in
under TEST (e.g. jr 127 jr 2,128 - note addresses) but do nothing other
than display the codes in t%e semory display.

Jusps can be unconditional (as BASIC 60T0) or conditional on the state of
ene of the flags. The instructions are:

jv DIS jr ¢, DIS jr nc,DIS (no carry) jr z,LIS jr nz,DIS (non zero)
jp NN jp coNN jp ncoNN jp 2,NN jp nz,NN jo pe.NN (parity even)
P po,Nd (parity odd) jp ®«NK (sign negative) jp p,NN (sign positive)

Next there are three indirect jumps jp (hl). jp t1x) and jp (1y). where
the register holds the address to jusp to fe.g. fd hl,60898 jp (hf) is the
same as jp b@80Ad).

A special instruction, decreaent b re?ister and relative jusp non zero
(djnz DIS) 1s frovided for loop control. It does the same as dec a and
jr nz,DIS. Enter Id b,# djnz 123 noting b goes to 235 (loop count 256).

The next group are call and ret, for subroutines, which are the same as
BASIC 5605UB and RETURN. The instructions can be unconditional or with the
sase conditions as jp instructions. The call instructions are 3 bytes
long and the following address is pushed onto the stack for the return.
The following will demonstrate this - call 16 1d a,! and a call nz,28
(called) cal? 2,30 (not called) ret (pop) ret z (no pop) ret nz (pop)

Note that the return addresses on the stack prevent other 1tess from being
popped in a subroutine. However, the return address can be pepped into a
register temporarily. The instructions are:

call NN call c,NN call nc,NN call z,NN call nz,NN also pe, po, & p
ret ret ¢ ret nc ret z ret nz alsoc pe. po, B, p

The final two instructions in this group are return froa interrupt or
non-maskable interrupt - reti retn

ROTATES AND SHIFTS

There are again a large nusber of instructions which are used for rotating
and shifting bits in any register or meaory location. They can be used for
nultlglv or divide (by 2, 4 etc.), soving data from one byte to the next
one bit at a time and for counting or checking bits within a loop. The
following diagraas indicate the bit flow and can be demonstrated by using
those associated with the a register and observing the binary values and
carry flag. They are of the following general foreat:

opa opb opc opd ope oph opl op (hl) op (ixtD) op (iy+D)

-20-

e d rmdfi=P nhifiep o

Rotate Left and Right circular rlc and rrc - these circulate the bits
around a byte settinq the carry fla% as a 1 bit is moved from one end to
the other. An exasple 1s rotating the first attribute byte to see which
bits are set - 1d h1,22528 repeat rrc (hl) 8 tises.

Rotate Left or Right rl or rr - these rctate through the carry bit,
requiring 9 steps to return to the original value. An example of use can
be seen by disassembling address 1488 tv 1496, which is used for reading 8
bits froe a taﬂe. Register 1 is set to ! so, within the loop, carry is set
on the eighth rotate left. Before rotate, a compare sets the carry flag
when a | bit 1s read and this 1s moved into the register with the rotate.

Rotate "a" register - instructions rlc a, rrc a, rl a and rr a are
available in a different fors which is guicker and oily ! byte long. Thev
are - rlca rrca rla rra

The shift instructions are as follows:

sla LCfl—=H—9 sra EC@J srl @

B

Shift Left Arithsetic sla - the bits acve left into carry, fill with zeros
and can be used for nultiplyin% by 2, 4 etc. over 1 byte or more with rl -
ld sl slac slac slac 1dde,d75 slae rld slae rld

Shift Right Aritheetic sra and Shift Right Logical srl - these move the
bits right into carry, srl filling with zeros and sra with zeros, if bit 7
1s "B° and with ones if bit 7 i5 °1". These instructions can be used for
division. MWith bit 7 set the number can be regarded as negative (see Sign
Flag) so sra can divide these. e.q. 1d a,128 (-128) sra a (192 or -44).

Rotate Digit Left rld and Rotate Digit Right rrd - are for use with binary
coded decimal and rotate a 4 bit digit in the a register with 2 digits at
a memory location defined by hl.

rd 4. rrd [T 43 .‘

These can be desonstrated bg using the menorr display. Enter 1d h1,33927
1d (h1),1 1d a,H26 rld (a=H28 (h1)=H18) rld (a=H21 (h1)=H88).

BIT MANIPULATION

These represent the largest group of instructions (248 in all). They allow
each bit of single byte registers or any memory location to be switched to
1" (set)y reset to "6" (res) or tesled (biZ). A major use 1s for flags
where 8 different conditions can be recorded in a byte. The test
instructions set the zero flag if a particular bit is zero. The codes are:

set 8,2 set 8,b to set 8,1 set 8,(h]l) set #B,(ix+D) set B,(iytd)
set | to set 7 res @ to res 7 bit 8 to bit 7

El

The Spectrue ROM Software makes fre?uent use of these instructions in
aanipulating System Variables e.g. (1y+8) to (iy+3). Examples to try are -
1d hy8 bit S,k (z on) set 5,h bit 5,h (z off) 1d i:,22528 (attributes)
set 7,(1x+1) to flash res 7,{ix+1) for flash off.

RESTART GROUP

A set of B special instructions are available with the CPU chip which call
subroutines at addresses @, 8, 16, 24, 32, 48, 4B and Sb. These have to be

%rogranned for the functions required on a particular cosputer. In the 48K
pectrua ROM they are:

rst @ - causes a “"NEW"
rst 8 - stops the prograe with an error code (see Spectrua Manual).
rst B;defb 8 gives error 1, rst B;defb 18 error B etc.

rst 16 - displays the character in the a reqister (see TESTING examples).
rst 24 - associated with scanning a BASIC line - fetch (CH-ADD) to "a".
rst 32 - scannin% again but increment (CH-ADD) first.

rst 40 - used with tloating point calculator.

rst 48 - creates workspace.

rst 56 - maskable interrupt routine called 54 times per second to scan

the keyboard and incresent the frame counter (see ia 1).
INPUT AND OUTPUT

Input and output instructions are the same as BASIC IN and OUT so the
appropriate chapters of the Spectrus manual should be studied. The ?ort
address is defined by a one byte variable N (data bits by a register) or
the c register {(data bits b reqister). Example prograes, given later, show
how sose of the instructions can be used. The codes are:

in a,IN) ina,(c) to in l,{c) out (N)ya out (c)ya to out (c),]
Block input/output 1is provided, sieilar to block transfer and search.
Register hl gives the data address, c the port and b the nuaber of bytes
to transfer. The codes are ini inir ind indr outi otir outd otdr.
MISCELLANEOUS CPU CONTROL
nop (code @) does nothing, enabling unwanted codes to be poked with zeros.
halt - suspends operation until the next interrupt.

di el - disable/enable interrupts, di inhibits noraal keyboard scanning.
ie 8 im 1 im2 - interrupt modes. Noreal operation is im 1 where rst 36
is executed automatically. Under ima @ external devices can execute
instructions via the data bus. For im 2 an indirect call is made to an
address defined by the 1 register and the 1/0 port.

SUMMARY OF FLABS

When certain instructions are executed flags may be unchanged so the
condition is preserved for later testing:

No Flags changed - 1d (except 1d a,i or r), 16 bit inc and dec, set, res
push, pop and exchange (except af), jump, call, ret

-2e~

5.2,p unchanged - add hl/ix/iy, rla, rleca etc. (rl, sl etc. do), cpl, scf
¢ unchanged - inc, dec, rld, rrd, cpl, in, out, 1di, ldd etc., bit

c set to 8 - and, or, xor, to 1 - scf

h set toc 8 - ory xor, rla, vl etc. rld, scf, in, 1d1, to 1 - and, cpl, bit
n set to @ - add, adc, and, or, xor, inc, rl, sla etc., scf, 1di.bit

n set toc | - sub, sbc, dec, cp, neg, cply cpiy cpd etc.

TIMING

It 1s sometimes necessary to be able to detersine precise timings in a
progras such as when writing tape, froducin? music or moving a large
nuaber of objects on the screen without flicker. The specification for the
288-CPU inciudes tinina in the form of nueber of clock fulses or T states
for each instruction. On the Spectrum the clock is about 3.35 MHz, givin
around #.28 wmicroseconds per T state. The shortest instructions take 4
states and longest 23. Calculating timings based on T states 15 not
particularly accurate and it is better to do it by prograe (see exangle
prograe 1), Where timing is not too critical, an approxisation of 2.5
aicroseconds per instruction can be used (486,000 per second).

EXAMPLE PROGRAHS

The following programs show how most of the various types of instructions
can be used and particularly in conjunction with Spectrue facilities. They
should be assembled to address 5309&.

EXAMPLE | - Loops and instruction tiaing - For sin%le instruction timing a
double looe 1s required. The outer loop to line 20 is controlled by de at
4908 and the inner loop to 3B by b at 256, giving a total of 1 million
passes. The systea variable FRAMES, which is Incremented at 58 times per
second, is initially set to # and the time returned to BASIC via bc at the
end. The program can be run by entering CLS: PRINT USR 53606/58 and will
give an answer of about 3.78 (eicroseconds per loop). A suitable
instruction or two for timing (not changing b) should be inserted at line
38, the prograa reassesbled and run via PRINT USR 33888/58-3.78, for the
time - 1d a,b gives about 1.16 and 1d hl,1234 2.88 microseconds.

18 REM 1d hl,8;1d (23672),h1;1d de,4680

20 REM LOOP1;1d b,258;push de

39 REM LOOP2;Insert instruction to be tiaed here

49 REM djn:z 5LDDPE-?op de;dec de;ld a,djor ejjr nz,dL00F!
59 REN 1d bc, (23678);ret

A variation can be used for timing longer activities such as copying a
full screen of data (108 times). The %ile %or 1 screen in ailliseconds can
be obtained b{ PRINT USR 53688/3, giving about 39.6. This indicates
that, with data in the right order, the maxisus rate of changing screens
1s about 25 per second.

18 REM 1d hl,@;1d (23672),h1;1d a,188
20 REM LP;1d de,16384;1d bc,glﬁ#;ldir;dec a;jr nz,dLP;ld bc,(23672);ret

-23-

EXAMPLE 2 - Screen display and moving object. The example shous one wav,
with the bare ecssentials. Five charac{ers are defined at lines 738 to
1178. These are copied to an area of @eaory defined at line 696 via line
18. If the characters were to be located in the user defined grafhics
area, line 18 would have ld de,65368 instead of 9CHRS!. Lines 2@ to 38
cogy three of the characters to a mesory area PIC1, defining a screen,
with each occu%yin% 8 lines. Lines 43 and 5¢ copy an equal nusber of bytes
tc an area ATRI, for attribute ink/paper/bright of
white /blue/l (7+8+b4), red/white/@ (2+7%8), green/ &99 REM CHRS1;defs 48
vellow/d (4+638). 60-76 put the other 2 characters 788 REM FIC1;defs 768
at the start of line 12 in PICI. B86-118 set d as a 718 REM ATRl;defs 768
delay count, hl as the address of line 12, ix as an 728 REM FOS;defs 4
area of oesory, (ix)/(ix+l) as counters. 126-130 738 REM CHA&A]

748 REM defl 80100118

produce the display via 688 with hl, bc
scves the 758 REM defl 86119111

defined above. ?he loop MVST repeatedl{
chject 241 bits across the screen, WAIT governin€ 768 REM defl 81111111
778 REM defl 81111111

the speed. After each character bit slice, input a
I of 6 tc 9 or 8 stops the prograa. 788 REM defi 81111119
799 REM defl 11111100

16 REM 1d de,aCHRS1;1d h1,aCHARA 8;1d bc,4@;1dir 868 REM defl 19961068
26 REM 1d h1,9PIC1;1d a.d;call aFILL 810 REM defl 08096080
30 REM 1d a,b3call oFILL:1d a,13call SFILL 829 REM CHARA 1
46 REM 1d hl,9ATR1:1d a,993call FILL 830 REM def! 90606099
S REM 1d a.58;call aFILL:ld a,52;call OFILL 349 REM def! 08616099
b0 REM 1d h1,8PIC1;1d de,384;add hl.de 850 REM defl 06101069
76 REM 1d (h1),23inc hl3ld (A1),3 88 REM defl 00016060
86 REM 1d d,32 878 REM defl 10616109
99 REM START:push de 889 REM defl 01611080
189 REN ST2;1d hl,H4E80;push hl 899 REM defl 08119969
116 REM 1d 1x,9P05:1d (1x),1;1d (ix+1),241 960 REM defl 60999960

and de as

120 REM 1d h1,3FIC{;1d bc,9CHRS1;1d de,dRTRI
139 REM call QDISPLAY
149 REM pop hi

156 REM MVST;dec (ix+1);jr z,95T2;push hl;ld b,8
168 REM MOVE;push h]'srf (h1)sinc hljrr (h1)

178 REM 1nc ﬁl;rr (hi);pop hliinc h

188 REM 1d a,h;cp H38;jr c.aDIM;ld h,H48

199 REW 1d a,15add a,Ho0;1d 1ya

20f REM DIM;djnz @MOVE;pop hljpop de
210 REM xor ajrl (ix);jr nc,dljinc hljld (ix),1
226 REM 1:1d be.HEFFE;in a,(c)jcplzand

239 REM WAIT:1d b.d;push de;ld e,
248 REM DL1:dec e;jr nzsaDLi;djnz aDLt
250 REM jr ONVST

269 REM STOPjret

279 REM J;jr @STOP;Teaporary line

580 REM FfLL;ld (hf),a;push hl;pop dejinc de
598 REM 1d bc,235;1dirjinc hljret

608 REM DISPLAY;push de;ld de,H4688

519 REM Eachc;push bcipush hl3ld 1,(h1)3ld b,
526 KEM add hi,h1:add hi1,h1;add hl,hlzadd hisbe
639 REM push de;1d b,8

649 REM Dch;ld a.(h1);1d (del),a;inc hljinc d
658 REM djnz ODch;Eop dejinc de;ld a,ejand a
bb8 REM jr nz,aNextc;ld a,djadd a,7;1d d.ajcp HS8
679 REM Nextcipop hljinc hljpop bcjjr nz.Otachc
588 REM pop hi3ld bce78;1dir;ret

=24~

HIF;jr nz,d]

919 REM CHARA 2

920 REM defl 98061111
938 REM defl 89811011
949 REM defl 88111811
958 REM defi 81111111
960 REM defl 11111111
978 REM defl 11111111
980 REM defl 11111111
998 REM defl £0111880
1668 REM CHARA 3

1010 REM defl 11118008
1626 REM defl 11911060
1830 REM defl 11811189
1940 REM defl 11111110
1956 REM defl 11111111
1868 REM defl 11111111
1878 REM defl 11111111
1080 REM defl 99811160
1090 REM CHARA &

1189 REM def! 800008080
1119 REM def! 0B0800H0
1128 REM defl 00800800
1139 REN def! 00986809
1149 REM def! 00000000
1158 REM def! 08000000
1160 REM def! 08000000
1178 REM def! 80008000

In order to control the screen properly, it is essential that the
addressing 15 understoocd. The first cgaracter in the display memory starts
at 16384 or Heddd, the second at H4BB1, third af HZBQE etc. The 8
horizontal strips of the first line start at H4808, H4188, H4208 to H4788
and end at H4@IF to H471F: this is the reascn that inc d is used at 64
and inc h at 178. The second line is H4828 - H4@3F toc H4728 - H4T3F so inc
de or inc hl are used to step along characters and to the next line. This
continies to the eighth line EhﬂEﬁ - H4OFF toc H47ED - HATFF. Lines 9 to 16
follow a similar pattern with starting with H4588, H4828 tu H4BE@ and
strips H48, 49, 4A to 4F. Lines 17 to 24 are HSB@P to HSPEB and strips H3P
tc H57. Changes after lines 8, 16 and 24 are dealt with at prograe lines
638 to 678 when de becomes H4198, 4988 or 5188. Attributes start at HSB6@.
The following additions demonstrate keyboard or jeystick operation. Input
1s obtained via line 228, using port address HEFFE (61438) for keys 6 to 8
or Spectrum jn¥stick !. Addresses for other keys are given in the Spectrua
manual f{see IN). At 278, 8 or fire stops the program. Via 288, joystick
left or key b slows down movement across the screen and right or 7 speeds
it up by changing delay d. Down or 8 moves the object down and up or 9
moves i1t up within the bounds of the middle third of the screen.

270 REM Jicp 13jr 2,85TOP;1d c,3;bit B, (ix);jr 2,01251d c,2

298 REM J3:co 8:ir 2vdR:cp 16;jr zyal;push Ae;cp 23ir 2,dUP;cp 4;jr z,9DN
312 REM DLZ:pop dejir @WAIT

320 REM L;ld a,32;cp dijr z,aWAIT;inc dyjr QWAIT

330 REM R;1d a.4;cp djjr z.aWAlT;dec d;jr QWAIT

348 REM UP;1d a.l;cp ﬁiﬂ;jr nc,@UP1;1d a,H4B;cp hyjr z,2DLE

369 REM UP1;1d d,ﬂ;ld e,);dec d;1d a,H47;cp d;jr nz,dUP2

378 REM 1d a.e;sub H28;1d era;ld d,H4F

399 REM UP2;call 3C0F Y push hisld by?
409 REM UP3;push bcyld h.d;ld f,e;inc hild a,HS@icp h;jr nz.aUP4

419 REM 1d a,);add 2,H28;1d 1,a31d h,Heb

428 REM UP4:call aCOPY; op bcjdjnz dUP3;call @BLANK;pop hljjr aDL2

488 REM DN:1d arlicp Hb Nt nc,$DL2;ld de,H26;add hl,de;ex deshl;ld b,B
498 REM DNf;push bc;ld h,d-ld lyejdec h;ld a,H47;cp hyjr nz,dDN2

580 REM 1d a,1;sub H20;1d i,a;ld yH4F

518 REM DNE;cail QCUPY;ﬂoﬂ bcidjnz aDN1jcall GBLANK;jr @DL2

538 REM COPY;ld b,c-?us | ?usﬂ de

548 REM CPL;1d a,(hf +1d {de).ajinc hljinc dejdjnz 9CFijpop hl;pop dejret
540 REM BLANK;1d byc;ld 2,0

578 REM BL1;1d (de).ajinc dejdjnz &BL1jret

Sound can be included in the pro?ran by addin? the following at WAIT,
where the delaK varies between about 46 and 5 milliseconds. Fllﬂping the
port after each delay ?ives sound in the range 12.5 to 188Hz. The border
can be flashed black/white by changing AND 146 to AND 23 and deleting OR 7.

235 REM 1d a,(ix+2)jxor 233;and 1b6j0r 7;1d (1x+2),a
245 REM out (234),a

EXAMPLE 3 - Reading tapes. The following ﬁrograns can be used to assist in
hacking software supplied on tape. They aust not be used for illegal
copying. The first program has three starting addresses: 33868 reads
headers for interpretation by BASIC: 53884 loads BASIC programs and stops
without executinﬂ any autostart LINE: 53888 loads BASIC as coede for later
interpretation. Headers are loaded to 354888 and code to 541688. In the
prograey ix defines the start address for loading and de the length.

-ES_

All loading starts at ROM address H536 with the carry flaﬁ set and a=@ for
a header or a=235 in other cases. BASIC and code are via H775 and HB86@

10 REM 1d a,l;;r 95tart;Read headers

26 REM 1d a,2;;r abBasic

30 REM deode;id a:3;Load as code

40 REM Start;push af;ld ix,54088;call dHeadr;pop af

50 REM cp tjret z;1d a,(ix);c? #;jr nz,dLdcode

68 REM Code;scf;l& dofix+12);1d e, (ivet1)3ld 1%,54180;call HBOO;ret

78 REM Basic;ld bc,34;rst Qﬂ-gush de;?op 1x;1d (ix),851d (ix+1),235

86 REM 1d hl,(23641);1d de,(83635);sctssbe hlode;ld (1x+11),131d (ix+12),h
59 REM ﬂush de;ld bc,17;add ix,bc
109 REM HeadBj;call dHeadr;ld a.{ix);cp 83jr nz,eHeadk

119 REM 1d (ix+14),128;No line no.;id 3,1;1d (23668),a;jp H775
120 REM Headr;push ix;fd des17;x0r ajscficall H3Sbjpop 133jr ncyaHeadrjret

% REM the following runs the above to read BASIC and cede headers
18 LET bc=USR 53888: REM Read header, %ress BREAK to stop

2® FOR 1=54@81 70 54018: PRINT CHR$ PEEK i;: NEXT 1: REM naee

36 IF PEEK 54986=8 THEN PRINT " B ";: 60 70 198: REM BASIC

49 1F PEEK 54869=3 THEN PRINT " C ";:60 TO 78: REM Code

58 PRINT: GO TO 18: REM 54886=1/2 are no./chara arrays, lenath S4p11/12
79 PRINT PEEK 54013+256¢FEEK 546814;"," ;FEEK 54811+2564PEEK 54612

88 GOTO 19: REM Prints start address, length (16384 = SCREENS)
180 LET 1=PEEK S4@14: IF 1=128 THEN PRINT " None";: B0 TD 129
118 PRINT " ";]1#256+FEEK 54613;: RER Automatic start line nuaber
128 PRINT " “;PEEK 54811+2564PEEK 548123 °3PEEK S4P15+256¥PEEK 54016
130 60 7D 16: REM above give length (PrOB) fo (E LINE) and (VARS)

Many games will give headers and a BASIC loader as basic B # 120 128
shown on the right, loading a screen, attributes and screen C 16384,6912
code to fill uf the aemory. The prograe is started ?aae C 28069,37536
at line 18 on loading and starts the game with the # CLEAR 27999

USR. To copy, than?e the basic if required, e.g. to 28 LDOAD "* CODE

load from disk including nases in loads and save by 38 LOAD "* CODE

SAVE "basic” LINE 8. Ehan?e the loader to as it was 48 GO TD USK 28690
delete the USR statement (and INKs etc.). add SAVE

statements after the LOADs, with appropriate start addresses and lengths,
and RUN to load the tape and save uﬁere ever. A variation of the above may
have loading addresses with LOAD CODE which are different to the headers.

Most proqrans set PAPER and INK on starting to make the listing invisible
on norsal loading. A variation which can prevent the above from giving a
roper listing is te include control codes @ to 31 in the BASIC lines.

ype in a program 18 ::LET pr02=PEEK 23635+2564PEEK 23636:PRINT prog. RUN
to print the start address of the prograa, then POKE,prog+l,d to make the
line nuaber #. Listing will appear correct on a 48K system but, on the
128K, the line numter will not be given and the line will ag%ear several
tises. RUN and note that it still works. Then POKE prog+4,17:POKE prog+d.d
to change the two colons to PAPER 8. The listing 1s then blacked out,
although the display may not change on the 128K systes. In order to crack
these, the program can be loaded and a loop typed in to peek and print
fros (PROG) to (VARS). In order to understand the foreat, the Spectrua
manual should be studied. The games driver can then be reloaded and
offending characters poked with 32 (space) and a suitable line nusber
inserted to give a proper listing.

_26-

Headers as on the right indicate that BASIC variables basic B 0 234 122
are present. Assuming these are used in the program codel C 28000.37536
and the USR address is in the stain code, the method code2 C 23333.20
used for the previous example may be satisfactory but

BO TO should be wused instead"of RUN to avoid losing the variables. The
last code is loaded to the printer buffer area which could cause a problem
on 128K systems. If it does, it may be possible to transfer it to the
screen memory until loading is finished: e.g. change the USR address to
16384 and add the code at CODE after the following new program which
should be loaded to 16334 - Id hl,3COBE;ld de,23333;1d bc,20;idir;jp 28000

Programs with headerless loaders may indicate only a basic B 10 350 100
BASIC header and have a program essentially as shown 10 CLEAR 25000

here, indicating machine code in the variables area, 20 PRINT USR 23950
or embedded in a BASIC line, with slightly different

numbers. The address of (PROG) should be noted and a code file saved
starting from this address with length as indicated in the header. This
can then be loaded later for disassembly.

In many cases the code is likely to wuse normal ROH routines around
addresses H556 to H800 (1366-2048)for loading, using 1ix, a and de as
described above, followed by a jump to the start address for e.g. Id
h1,35000;push hhjp H556 to pick up tne start by the return at the end of
the 1loading routine). In this case it is quite easy to produce a new
loader to read each section of tape in turn, to enable a copy to be made
using normal save with headers.

Other loaders may use non standard code and have no ROM calls. These can
be 1identified by having out (254),a instructions for flashing the border
and Id a,127jin a,(254), or the in r,!c) equivalent for loading. Assuming
standard saving techniques are tobe used, it may notbe necessary to
determine how tne loading works, but the ending procedures and any special
variables wused will have to be found. The loader code should be modified
using BASIC POKEs, direct input with TEST or merging newly assembled code
to make it interruptible so tne real code can be loaded and copied.

In returning to a BASIC loader for different sections of code being
copied, it must be ensured that overwriting does not take place of System
Variables, the program and variables area, the stack (normally just below
RAMTOP) or the printer buffer on +3 systems. Once in machine code, with no
return to BASIC, these areas can be overwritten, if this is done in the
original program. It should normally be possible to transfer the final
parts of code via the display memory, as shown above.

A particular thing to watch out for in the machine code loaders are
instructions which move the stack e.g. Id sp,hl or Id sp,23530. A return
to BASIC cannot occur if this is done and these new stacks are often in
the print buffer area. The creation of these stacks should be deferred to
after the last stage of loading when they may again be handled via the
memory display.

The final example is for dealing with long pieces of code e.g. with a
header - prog C 23552,41984 indicating loading from the start of System
Variables to the end of memory with the start address on a stack within
the code loaded or in the printer buffer. Alternatively, a small amount of
code may be first loaded to the top of memory and used to control the
remaining loading.

-27-

This program copies loading code from ROM 10 REH Id hl,H556;1d de.3Rd2
into the program area. Lines 40 to 48 are 12 REH Id bc,116;1dir;call 3Rdl

as in ROH but not copied due to the jp 14 REH ret c;rst 8;defb 26
instruction. Rdl is called and stops with 20 REH Rdl;lo is,28000;1d a,255
a tape loading error message if reading 22 REH Id de.(3Lenl);and a;scf

is incorrect. The idea is to load code in 30 REH Rd2;def5 116

parts the lengths defined by Lenl/2. If 40 REH Rd3;call H5E3:ret nc

FI is 1 the code is loaded from 28000 to 42 REH Id a,HCB;cp b;rl 1
65535 then to ROH addresses which are not 44 REH Id b,HBO;jp nc SRd3
changed. The first part of code can then 46 REH Id a,h;xor I;ld h,a

be saved. With F1=0 loading of the second 48 REH Id a,d;or e:jr nz,202
part starts at 28000. The code should be 50 REH Id de,(3Len2);l1d a,(3FI)
assembled for address 27800 and saved. It 60 REH cp O:jr nz,3Part2

is driven by the following BASIC program. 62 REH Id ix.28000

The example shown is for code starting at 70 REH Part2:jp H5A9

23552. Tne first part to be saved is up 80 REH Lenl;def« 1

to address 27999 and the second to its 82 REH Len2;defw 1

real address of 28000. This can be loaded 90 REH Fljdefb 0

normally, but the first part may need to

be via the screen display with code to transfer it added as shown earlier.

10 LET f1=1: LET a=4448: LET b=37536: LET c=INT (a/256): LET d=INT (b/256)
20 POKE 27984.a-256*c:POKE 27985,c:POKE 27986,b-256»d:POKE 27987,d

30 POKE 27988,f1: PRINT USR 27800: STOP

50 CLEAR 27799: LOAD "rdbin™ CODE 27800: STOP

60 REM fl=1 save CODE 28000,a: f1=0 save CODE 2B000,b

EXAMPLE 4 - 128K RAH bank switching. The Spectrum manual describes memory
bank switching. The following shows how it is done in machine code. The
BASIC displays 8 screens, poking the number to BANKN and calling START
where, for 0,1,3,4,6,7, a different memory bank is switched in and screen
contents are copied along with attributes. The normal bank is then
switched back in. Calling START2 (LET u=USR 40029) switches the memory
banks in and copies the stored contents back to the screen: this is
repeated 25 times. Calling STARTS (USR 40065) switches the screen display
between the normal one and the alternative in bank 7, without switching
the bank within the normal addressing range: this is repeated 65536 times
in 3.5 seconds. The program should be assembled for address 40000.

10 REH BANKH;defL10 23388 150 REH Id be,6912;1dir

20 REH PORT1:defL20 32765 160 REH A;pcp af:jr nz,3LI

30 REH BANKN;defb 0 170 REH pop oc;djnz SLOOP;jr SEND
40 REH START;Id a,(3BANKN);cp 8 180 REH START3;la de,0

50 REH ret nc;call 3CHEK;ret z 190 REH LOOP2

60 REH or 16;call 3SUITCH 200 REH Id a,24;call 3SUITCH

70 REH Id hi,16384;1d de,49152 210 REH Id a,16:cal 1 3SUITCH
80 REH Id be,6912;1dir;jr SEND 220 REH dec de;ld a,d;or e

90 REH START2;1d b,25 230 REH jr nz,3LO0P2
100 REH LOOP;push be;ld a,8 240 REH END;Id a,16

110 REH LlI;dec ajpusn af 250 REH SUITCH;di;Id bc,3PORTI
120 REH call 3CHEK;jr z,3A 260 REH Id (3BANKM),a;out ic).a
130 REH or 16;call 3SUITCH 270 REH eijret

140 REH Id de.16384;1d hi, 49152 280 REH CHEKjcp 2;ret z;cp 5;ret

10 FDR 1=0 to 7: CLS: FOR j=I to 21: PRINT TAB i»3:PAPER 7-i;INK 1;"****"
20 NEXT j: POKE 40000, i:LET u=USR 40001:NEXT i: STOP
40 CLEAR 39999:LOAD “ramsw.bin® CODE 40000

-28-

