
A Fast Well-Behaved Pattern Flood Fill
Alvin Albrecht

Sinclair Basic comes with a number of graphics primitives that are easy to use
but they only manage to scratch the surface when it comes to computer graphics.
There are many interesting graphic tools that are practically begging to be
implemented on the ts2068, the flood fill being one of them. But before we can
tackle the subject of flood fills, a small review of recursion is in order.

A Review of Recursion

In plain terms a recursive subroutine is a subroutine that calls itself. A typical
recursive algorithm breaks a complicated problem into simpler pieces, then
applies itself to those pieces repeatedly until the original problem is broken into
many tiny problems that can be trivially solved. I have written about recursion in
a past issue of ZQA so I will not be rehashing that material here. Instead, as a
refresher, let's investigate the one recursive algorithm that everyone sees in
Computer Science 101 -- the computation of a factorial.

N! (N factorial) is defined as (N)x(N-1)x(N-2)x…x1 with N being a positive
integer. 5! = 5x4x3x2x1 = 120, for example. 0! is defined as 1. A recursive
solution might look like this:

int factorial(int n)
{
 if (n <= 1) // if n<1 the answer is 1
 return 1;
 return n*factorial(n-1); // else break into smaller problem
}

This is a C function that computes N! but don't let that put you off - C is a fairly
easy language to understand. Sinclair Basic does not fully support recursion so
a Basic version would require artifacts surrounding it, which would only obscure

the point I want to make. Now that a decent C compiler is available for our T/S
machines, I don't feel too guilty about sticking with the C.

We make a call, asking to compute the factorial of N. If N <= 1 the answer is 1.
Otherwise the problem is too difficult to solve so it is broken into a smaller one: N
times the factorial of (N-1).

That was easy, but it may be initially surprising to learn that this is a poor method
for calculating factorials. To understand why, we'll need to pay closer attention to
what is involved in a recursive call.

The factorial function, as written above, needs to remember two things: the
number N and where it was called from so that it can return there later.
Compiling the above for a ts2068 using the z88dk C compiler would reserve two
bytes to store N and two bytes for the return address, for a total of four bytes.
The "return" value is passed in the z80's HL register pair which is free. So the
initial call to compute 5! would require four bytes to be reserved on the stack.
But that is not the end of the story. Factorial(5) would try to return
"4*factorial(4)", causing another call to be made to factorial with N=4, requiring
another four bytes. Factorial(4) would make a call to factorial(3), requiring a
further four bytes, etc. In other words, to find the answer to factorial(5), the
computer would make calls to factorial(5), factorial(4), factorial(3), factorial(2) and
factorial(1). We say that factorial(5) has a recursion depth of 5 because a
maximum of five instances of factorial will exist at any one time during its
computation. With each instance needing four bytes to remember its value of N
and return address, factorial(5) requires 5*4=20 bytes of memory to compute its
result. Generalizing, we can say that the recursion depth of factorial(N) is N and
4*N bytes are required to compute the result.

Even on our small 64K machines that doesn't seem to be a lot of memory and
really it isn't. Things get worse if you try to compute something like 69! which
would seem to require 276 bytes in the recursive solution. I say "seem to"
because we would actually need to introduce a new large variable to hold the
result in each recursive step -- 69! requires 41 bytes to hold its value precisely!
Switching to a floating point representation would reduce that to four bytes (at the
expense of precision), compared to the two bytes we've assumed (the result in
each step is held in the HL register pair, a consequence of how the z88dk C
compiler does things). With the way the subroutine is written now we couldn't
correctly compute anything more than 8! and therefore memory usage is never
really an issue. Other recursive algorithms may have a recursion depth in the
thousands with dozens of bytes needed for each instance. Then the matter of
memory is significant, and, indeed, you will see one such example shortly.

Another problem with the factorial recursive solution is runtime. It takes time to
set up calls and return from them -- these actions translate directly into pushes

and pops on the z80's stack. Compare this recursive solution to the alternative
iterative solution below:

int factorial(int n)
{
 int fact, i;

 fact = 1; // the answer starts at 1
 for (i=2; i<=n; i++) // i=2, while i<=n execute the loop
 fact = fact*i;
 return fact;
}

We need two bytes for "fact", two bytes for "i", two bytes for "N" and two bytes for
the return address = 8 bytes total no matter what "N" is. There are no calls to set
up, just a for loop. This version will be faster and use up a small, fixed and
predictable amount of memory. It is superior to the recursive solution in every
way.

So what is the conclusion of all this discussion? Recursion must be used with
care. It can be a panacea to solve many very difficult problems, but you must be
fully aware of how much memory will be required and the runtime necessary in
comparison to an equivalent iterative solution. The Towers of Hanoi solution in a
back issue of ZQA has a maximum recursion depth of 64 (for 64 disks) and the
Knight's Tour has a recursion depth of 64 (the number of squares on a chess
board), very manageable numbers.

A Recursive Flood Fill Algorithm

So what has all this got to do with flood filling? It turns out that the obvious
approach to filling an arbitrary region involves a recursive solution. And the
recursive solution is a bad one.

In comp.sys.sinclair, Geoff Wearmouth shared a Basic subroutine from an early
'80s type-in magazine that would fill an arbitrary area on screen bounded by a
solid pixel boundary. Here it is:

 5 REM AUTHOR UNKNOWN
10 CIRCLE 128,88,80
20 LET x=100 : LET y = 100 : REM START POINT
30 GO SUB 1000 : STOP

1000 PLOT x,y
1010 IF NOT POINT(x+1,y) THEN LET x=x+1 : GO SUB 1000 : LET x=x-1
1020 IF NOT POINT(x-1,y) THEN LET x=x-1 : GO SUB 1000 : LET x=x+1
1030 IF NOT POINT(x,y+1) THEN LET y=y+1 : GO SUB 1000 : LET y=y-1
1040 IF NOT POINT(x,y-1) THEN LET y=y-1 : GO SUB 1000 : LET y=y+1
1050 RETURN

The main subroutine begins at line 1000 and the algorithm used is a recursive
one, the evidence being the "GOSUB 1000" statements in the subroutine itself.
The fill subroutine above plots the current point and then tries to move in all four
directions away from the point. Before each move it checks to see if the point is
already black, indicating a boundary. If not, it is considered a valid move and a
fill is initiated from that point by another recursive call to line 1000 with the new
pixel coordinate in (x,y).

Earlier I mentioned that Sinclair Basic does not fully support recursion. The
reason it doesn't can be seen in this fill program. Each run through the
subroutine at 1000 expects to have its own private copy of (x,y). The value of
(x,y) at 1010 must be the same value at lines 1020, 1030 and 1040 in order for
the program to work. But there are one or more "GOSUB 1000" calls in the
middle, which themselves require new values of (x,y) and which will themselves
change (x,y). Sinclair Basic has only one copy of these variables which must be
shared by each recursive call. A recursive C call would give each "GOSUB" a
private copy of (x,y) on the stack independent of all other "GOSUBs". Not so in
Sinclair Basic. So the problem is, after each "GOSUB 1000" in the fill subroutine,
how do we make sure that our own (x,y) has not changed? In the above code,
the solution is simple. We promise that when "GOSUB 1000" returns, the value
of (x,y) is not changed from what it was when "GOSUB 1000" was executed. In
line 1010, for example, x is increased by one before a call to "GOSUB 1000".
Because of our promise (the jargon calls such a promise an "invariant") we know
that when the GOSUB returns, x will be one larger than what it was at the
beginning of line 1010. So to get x back to where it was, decrease by one and
everything will be fine for the next line. Before the routine returns in line 1050 we
know that (x,y) has not changed from its initial state in line 1000. That's the
subroutine keeping its promise.

This fill algorithm is called a flood fill because the fill "floods away" from the initial
point in all directions. Other fill algorithms exist, but this one is both easy to
understand and capable of filling any arbitrary region without restrictions. Earlier
I hinted that a recursive solution to the flood fill problem is a bad one. I'll leave
that thought here and come back to it later when we've looked at a couple of
machine code implementations of the algorithm. For now, realize that each
"GOSUB" requires the ts2068 to remember a return line number (two bytes) and
then consider what the recursion depth might be for a 256x192 resolution blank
screen (hint - you wouldn't be far off if you just multiplied 256 and 192 together!).

If you typed in the Basic program and ran it, you'd realize that it is mighty slow.
Any useful fill utility will need to be written in machine code. To do that, we will
need to review the structure of the ts2068's display file.

Display File Organization

The ts2068's display file is where all the screen information is stored. The SCLD
chip constructs the TV display by reading the information stored there. The
display file is "memory-mapped" because the storage exists in the z80's memory
space, from address 16384 to 22527. If you poke values into those addresses
you will see the display change. In the ts2068's other display modes (dual
screen, hi-colour, hi-res) more areas of memory are used to hold the display. In
this article, we'll only concern ourselves with the default 256x192 mode.

A pixel display occupying 16384 to 22527 reserves 6144 bytes to store all the
screen information. The ts2068 has a resolution of 256*192 = 49152 pixels.
How do we cram information about 49152 pixels into 6144 bytes? Well, each
pixel can be represented by one bit - either one or zero, on or off. Cramming 8
pixels into a byte, we'd need 256*192/8 = 6144 bytes. Problem solved!

A simple way to organize the display might have pixels 0..7 for the top line of the
display stored at address 16384, pixels 8..15 at address 16385, … pixels 248-
255 stored at address 16415. The next pixel line would follow with pixels 0..7 of
line 1 at address 16416, and so forth for all 192 lines on the screen. This is
indeed how the TV draws its display, left to right, top to bottom. But the display
organization was chosen to optimize the printing of characters so it's not done in
this simple manner. To see evidence of this, try this short program:

10 FOR z=16384 TO 22527
20 POKE z,255
30 NEXT z

On the largest scale you will notice that the display is divided into three parts
called blocks. First the top block is filled, then the second and finally the third.
Each block is further divided into eight character lines. Each of these lines is
divided into eight scan lines. The first scan line for all character lines in a block is
filled, followed by the second scan line for all character lines, and so on to the
final eighth scan line. Each scan line itself is composed of 32 horizontal bytes
with each byte holding eight pixels.

This organization sounds complicated but it really isn't that bad if some thought is
applied to it. By paying attention to how the display is built up in increasing byte
order, we can construct a screen address given block, character line, scan line
and column as follows:

FIGURE 1. Screen Address Organization in Binary

0 1 0 B B S S S L L L C C C C C

Where:
BB = screen block, 0..2
SSS = scan line, 0..7
LLL = character line, 0..7

CCCCC = horizontal byte / character, 0..31

While observing the Basic program in action, you'll notice that the horizontal
column changes the fastest. There are 32 columns, requiring 5 bits to represent
those. They increase the fastest so they appear in the bottom 5 bits of the 16-bit
address. The next fastest thing that changes is the character line. There are 8
lines in each block, requiring 3 bits to represent them. These 3 bits appear next
to the column bits. Next, in order of fastest changing, are the scan lines (8 of
them requiring 3 bits) followed by the block (3 of them requiring 2 bits). The
display starts at address 16384 (0x4000) so we add that to our 16-bit address.
This is responsible for the lone '1' you see in figure 1.

The character position row = 10, column = 12 is located in block 1 (the second
block since it holds the second third of the display, rows 8..15), line 2 (the third
character line in this block -- rows 8, 9, 10), scan lines 0 (top) through 7 (bottom)
for the full character square, and column 12. This leads to a screen address that
looks like:

0 1 0 0 1 S S S 0 1 0 0 1 1 0 0

With various values of SSS:

SSS 0 1 2 3 4 5 6 7
Screen
Address

484C
18508

494C
18764

4A4C
19020

4B4C
19276

4C4C
19532

4D4C
19788

4E4C
20044

4F4C
20300

To print a letter 'A' at (10,12), poke the appropriate values into memory at these
addresses:

POKE 18508,BIN 00000000
POKE 18764,BIN 00111100
POKE 19020,BIN 01000010
POKE 19276,BIN 01000010
POKE 19532,BIN 01111110
POKE 19788,BIN 01000010
POKE 20044,BIN 01000010
POKE 20300,BIN 00000000

At this point, you may realize why UDGs and printed characters are 8x8 pixels in
size. There are 8 vertical scan lines in each character line and there are 8 pixels
packed into a byte. But you may not realize why this particular display file
organization speeds up character printing. If you back up and look at the screen
addresses computed above, you'll notice that each scan line is separated by
exactly 256 bytes. In assembly language, an address is held in a register pair,
like HL. Adding 256 to an address to move to the next scan line is a simple
matter of incrementing the most significant register, in this case H with the "INC
H" instruction. That's all it takes! Moving horizontally to the right one character
position involves adding one to the screen address (ie adding one to "CCCCC" in

figure 1), which can be done just as quickly with "INC L". You can’t get any
faster than that. In fact, this display file organization was patented by Sinclair's
Richard Altwasser back in 1982 (visit http://wearmouth.demon.co.uk/ to see the
patent).

That's all fine and good but we still haven’t managed to easily map a pixel
coordinate to a screen address. Here's how we do it:

FIGURE 2. Mapping Pixel Coordinates to Screen Address Units

X Y
C C C C C T T T B B L L L S S S

The thought process that led to figure 2 is similar to the previous one. The X
coordinate is more or less obvious: there are 32 columns horizontally (5 bits) with
each column containing 8 pixels (requiring 3 bits). The pixel position within a
byte (0..7) changes fastest as we move horizontally so it appears as "TTT" in the
least significant bits of X. For the Y coordinate, the fastest changing items as we
move from the top of the screen to the bottom are the scan line, followed by the
character line, followed by the block.

Given an X coordinate in the range 0-255 and a Y coordinate in the range 0-192,
convert them to binary as in figure 2 and reassemble the bits as in figure 1. For
example, pixel coordinate (x,y) = (133,67) in binary is (1000 0101, 0100 0011)
with CCCCC=10000, BB=01, LLL=000, SSS=011 according to figure 2. Moving
the bits around to the form in figure 1 gives an address of "0100 1011 0001
0000" or 19216 in decimal. The bits "TTT" in the X coordinate do not appear in
figure 1. They identify which bit within the screen byte corresponds to the
individual pixel. "0" corresponds to the leftmost bit and "7" corresponds to the
rightmost; in this case it's 5. To plot the pixel (133,67) we could simply "POKE
19216,BIN 00000100" where the single '1' in the BIN statement sits in bit 5 from
the left. Keep in mind that the pixel coordinates I am using have the screen's
origin located at the top left corner of the screen. This is different from TS2068
Basic which places the origin 16 pixels above the bottom left corner of the
screen.

If this procedure had to be done by hand for each pixel, it would get tedious
quickly. Here's a short machine code routine that does it for us:

; Get Screen Address
;
; Returns the screen address and pixel mask corresponding
; to a given pixel coordinate.
;
; enter: a = h = y coord
; l = x coord
; exit : de = screen address, b = pixel mask
; uses : af, b, de, hl

.SPGetScrnAddr
 and $07 ; A = 00000SSS
 or $40 ; A = 01000SSS
 ld d,a ; D = 01000SSS
 ld a,h ; A = Y coord = BBLLLSSS
 rra
 rra
 rra ; A = ???BBLLL
 and $18 ; A = 000BB000
 or d ; A = 010BBSSS
 ld d,a ; D = 010BBSSS top 8 bits of address done

 ld a,l ; A = X coord = CCCCCTTT
 and $07 ; A = 00000TTT
 ld b,a ; B = 00000TTT = which pixel?
 ld a,$80 ; A = 10000000
 jr z, norotate ; if B=0, A is the right pixel so skip

.rotloop
 rra ; rotate the pixel right one place B times
 djnz rotloop

.norotate
 ld b,a ; B = pixel mask
 srl l
 srl l
 srl l ; L = 000CCCCC
 ld a,h ; A = Y coord = BBLLLSSS
 rla
 rla ; A = LLLSSS??
 and $e0 ; A = LLL00000
 or l ; A = LLLCCCCC
 ld e,a ; E = LLLCCCCC
 ret ; DE = 010BBSS LLLCCCCC, the screen address!

The subroutine is called with A=H=Y coordinate and L=X coordinate and we get
the screen address in DE and the pixel mask in B on the way out. If we ORed B
into (DE), we could plot the pixel. If we ANDed the complement of B into (DE),
we could unplot the pixel and if we ANDed B with (DE) we could test whether the
pixel was set.

This subroutine is great for calculating a screen address corresponding to a pixel
position from scratch, but you'll notice that it is rather lengthy and therefore slow,
in a relative sense. Frequently you'll be plotting a pixel and then plotting many
more nearby, possibly a single pixel away. For example, in the process of
drawing a line, the initial point is plotted and then succeeding points above,
below, to the left or right are plotted. We could handle the drawing of the line as
plotting many individual pixel points, calling the above subroutine to compute the
screen address for every pixel, but that would be much slower than working
directly on the screen address to move up, down, left and right from a current
pixel position.

Let’s investigate further to substantiate that claim. Given a screen address in HL
and a pixel mask in B, how would one move left one pixel? Here’s the necessary
code:

; hl = screen address, B = pixel mask
.left
 rlc b
 ret nc
 dec l
 ret

The pixel mask is rotated left one bit. This will be a valid pixel position unless B
was already at the leftmost pixel position in the screen byte (ie B=1000 0000).
The "RLC B" instruction will set the carry flag in that case and leave B=0000
0001. We use the no carry flag to return early if the new mask is valid, otherwise
we update the column position one character to the left by decreasing the
"CCCCC" portion of the screen address. The value of B at this point is 0000
0001, correctly masking the rightmost pixel in the new screen byte to the left of
the old one. These four instructions are clearly quicker than rerunning the screen
address subroutine. Notice that this subroutine doesn't check if it runs off the
edge of the screen. The right pixel movement is similar, substituting "rrc b" for
"rlc b" and "inc l" for "dec l".

To move up a pixel we need to decrement the Y coordinate, as pictured in figure
2. Given a screen address, this means first decreasing SSS followed by LLL (if
necessary) and finally BB (if necessary). These bits are scattered about in the
screen address pictured in figure 1 so a little care must be taken. The necessary
code is shown here:

; hl = screen address

.SPPixelUp
 ld a,h ; A=H=010BBSSS
 dec h ; decrease SSS
 and $07 ; if SSS was not originally 000
 ret nz ; we're done
 ld a,$08 ; otherwise SSS=111 (correct)
 add a,h ; and we fix BB in H (one was subtracted)
 ld h,a
 ld a,l ; A=X coord=LLLCCCCC
 sub $20 ; decrease LLL
 ld l,a
 ret nc ; if no carry, LLL was not originally 000, okay
 ld a,h ; otherwise LLL=111 now, that's okay
 sub $08 ; but need to decrease screen block
 ld h,a
 ret

This subroutine derives a lot of speed by minimizing the number of instructions
executed in the most common cases. For example, 7 out of 8 times, only the first
four instructions will be executed. 7 out 64 times, the first 11 instructions will

execute and the rest of the time (1 out of 64) all the instructions will execute.
This makes the subroutine much quicker than one would initially guess by
looking at the size of the code. The PixelDown subroutine is similar but is not
shown here. All these pixel movement routines are reprinted in full in the floodfill
listings elsewhere in this article.

That's enough information to have a first crack at a machine code version of the
Basic flood fill routine.

Machine Code Flood Fills

Figure 3 contains a direct conversion of the Basic flood fill we saw earlier. No
optimization has been done but it has been improved slightly to check for moving
across screen boundaries. Type in the associated Basic listing to see it in action.

We have managed to speed things up considerably by moving to machine code,
but there are still a couple of improvements that can be made. First, we compute
screen addresses for every single point plotted. Since we always move up,
down, left or right from the current pixel we could speed things up by avoiding
this computation as discussed above.

The other optimization we can make is to plot 8 pixels at a time rather than one.
Recall that each screen byte holds eight pixels. Why fiddle with it eight times to
plot eight pixels in it when we could plot all 8 pixels at once with a single write of
a whole byte?

The secret to plotting multiple pixels at once is the bytefill subroutine. It operates
directly on a screen address and pixel mask, exactly what we will have available
now that we have decided not to compute the screen address for every single
pixel plotted.

; hl = screen address
; b = incoming pixel mask

.Bytefill
 ld a,b ; get pixel mask
 xor (hl) ; zero out incoming pixels that
 and b ; run into set pixels in display
 ret z ; if no pixels left, ret

.bfloop ; carry flag never set here
 ld b,a ; b = incoming pixels
 rra ; expand incoming pixels
 ld c,a ; to the right and left
 ld a,b ; within byte
 add a,a
 or c
 or b ; a = incoming pixels wiggled
 ld c,a ; save in c
 xor (hl) ; zero out pixels that run into

 and c ; set pixels on display
 cp b ; have pixels changed from last loop?
 jr nz, bfloop ; keep going until incoming does not change

 or (hl)
 ld (hl),a ; fill byte on screen
 scf ; indicate that this was a viable step
 ret

Bytefill is called with a screen address in HL and a pixel mask containing all the
"incoming" pixels. The incoming pixels are those pixels from where the flood fill
grows in the current screen byte. Previously the flood fill always grew from a
single point, but not anymore. The origin of the incoming byte will be clear while
perusing the second flood fill listing in figure 4.

The Bytefill routine takes the incoming pixels and "wiggles" them to the left and
right, trying to grow them into blank spaces within the screen byte. It does this
until no more growth is possible within the screen byte. It then plots all those
pixels and returns.

Putting these ideas into action produces figure 4, a byte-at-a-time flood fill
routine. Type in the Basic listing to see it in action.

This routine is blazing fast; you will not see anything quicker. But, and this is a
big but, there is a major flaw in the program that is shared with all the previous
fills we have seen so far: the recursion depth is huge.

Consider a flood fill from the bottom left corner of a blank screen. According to
figure 4, the first thing that is done is the fill of the entire screen byte in the
bottom left corner. Then a move to the right is made and its byte is filled in a
recursive call to "fill". Followed by another right move and call to "fill", then
another, until we hit the right edge of the screen. A right move is not possible
from the right edge of the screen so a left move is tried from there. That is
unsuccessful because it was just filled. An up movement from the right edge is
tried, successfully. Now we are at the right edge, one pixel up from the bottom of
the screen. The filler fills in the byte and tries a right movement. That's not
possible because a screen boundary is hit so it successfully tries a left
movement. If this is carried on you'll notice that, from the bottom left corner of a
blank screen, the screen is filled alternately from the left to the right and then
from the right to the left as the fill line moves one pixel higher for each scan line
filled.

You may have noticed that not a single return instruction is executed during the
entire screen fill. That is a problem. Each call to fill puts at least 2 bytes on the
stack to remember the return address. Since no returns are made for all screen
bytes on the screen, there are 6144 calls made to fill without a single return.
That's a recursion depth of 6144! Since at least 2 bytes are saved on the stack
for each recursive call, at least 12288 bytes are needed to complete the fill. The

situation can be much worse, however. In the worst case movement (up or
down) 6 bytes are saved on a recursive call (two for BC, two for HL and two for
the return address). We may need up to 36864 bytes to fill the screen! The truth
is somewhere in the middle. Notice that by moving from a pixel fill to a byte fill
we have reduced the depth of recursion by a factor of eight since entire screen
bytes are considered rather than individual pixels. Still this amount of memory
usage is unacceptable for most applications. How can you use a flood fill in your
own programs if it's going to need most of the available memory to complete?

This recursive fill is an example of a depth-first algorithm. It fills an area by going
as deep as possible into the area (one call begets another call begets another,
etc. without returning). The result is a memory requirement, computed as
recursion depth times size of state information for each recursive step, that is
proportional to the area to be filled. We can rescue the situation by considering
another algorithmic approach, known as a breadth-first algorithm. Instead of
going as deep as possible into an area, we try going wide first. This sounds like
a lot of metaphysical talk of questionable value, but the terms "depth-first" and
"breadth-first" are bonafide jargon that is used to describe the solution behaviour
of many kinds of algorithms.

A breadth-first approach to a flood fill would try to fill all points in the immediate
area first. From a starting point, all pixels to the immediate left, right, top and
bottom are filled. Then for all those adjacent pixels, their immediate neighbours
are filled, etc. The savings come from a key observation: once the immediate
neighbours of a pixel are filled, there is no need to remember (come back to) the
current pixel. Its information can be forgotten. This was not possible in the
previous depth-first approaches. As will be seen later, the breadth-first approach
will have a memory requirement proportional to the circumference of the area
being filled, a significant savings.

The Breadth-First Approach

To implement the breadth-first approach, we will need to introduce a queue to
hold future pixel positions that need investigating. From a currently filled screen
byte (imagine the first screen byte to get the ball rolling), each direction should be
investigated for possible flood fill expansion. If a move in any direction is
possible (ie no pixel boundary was met), the surrounding pixel should be filled
and added to the end of the queue for later investigation. Once all directions
have been looked into, the next screen byte to investigate is retrieved from the
front of the queue. Its immediate neighbours are then investigated with potental
expansion pixels added to the end of the queue as before. This loop is repeated
until there are no more screen bytes to investigate, indicated by an empty queue.

Figure 5 is the implementation. Run the Basic program to see it in action. We
have lost a little speed, but you'll notice that the fill seems to progress in a saner
manner. In the previous version the fill spread out all over the place. Now the fill

expands along a diamond-shaped boundary that grows away from the starting
pixel. A little thought will reveal that, at any moment, the screen bytes in the
queue are those screen bytes around the edge of the expanding diamond-
shaped fill boundary. As a result, the necessary queue size to fill an area is
roughly proportional to the circumference of the area to be filled.

The implementation in figure 5 allocates space on the stack for a queue whose
size is determined by the caller. If at any moment the queue is found not to be
large enough to complete the fill, the fill is aborted. This pleasant side effect of
the breadth-first approach allows the caller to control how much memory is
available for the fill. In previous versions there was no control, with the fill taking
as much memory as needed.

With the necessary queue size to fill an area proportional to the circumference of
the area to be filled, I have found the queue size can be as small as 100 screen
positions for a complete fill of a typical screen. At three bytes per screen
position, that adds up to a total memory requirement of about 300 bytes, a vast
improvement over the previous requirement of between 12288 and 36864 bytes!

The Pattern Fill

This flood fill would become much more interesting if we were able to apply a
pattern while filling an area rather than being stuck with the same old black. That
would be the next logical step to take and really it's a small one compared to the
large steps we have taken so far.

The first question to answer is how can we apply a pattern to the fill region? The
procedure is fairly straightforward. Before writing the solid black fill byte to each
screen position, logically AND it with a pattern byte. If the pattern is "10101010"
and the fill byte is "00011111", the screen should be written with the logical AND
of the two: "00001010". If the pattern were just a single byte, however, we could
never make a filled area appear as anything more interesting than a collection of
vertical stripes using this method.

To add some more variation I decided on an 8x8 pixel pattern defined in the
same way as a UDG graphic. To determine which byte of the pattern UDG to
use, the scan line bits in the screen address of the fill byte is used as an index.
This is ideal since the scan line bits iterate through 0-7 repeatedly from the top to
the bottom of the screen. For example, if the pattern UDG is stored beginning at
address "x" and the screen address is held in register HL, then the pattern byte
to use is stored at address "x + H&0x7" where "&" represents a logical AND.
This byte should be read and ANDed with the fill byte, followed by a write to the
screen to get the desired effect.

It is not quite as simple as that, however. With the breadth-first algorithm we
have now, the flood fill expands from a diamond-shaped boundary centered on

the start pixel. If the naïve approach is taken, as suggested above, and the
screen is written with a patterned fill byte, the boundary surrounding the start
pixel would have holes in it wherever the pattern byte held a '0' bit. What would
prevent the flood fill from expanding through those holes back to the start pixel
from where it came? Nothing! The result could be a flood fill that constantly
grew into and out of itself, possibly never terminating!

This problem occurs because of holes in the outermost boundary of the fill area.
To avoid this problem, the outermost boundary needs to be kept black, with the
pattern only applied to pixels in the interior of this boundary.

The implementation in figure 6 maintains three regions within the queue, called
the new block, the investigate block and the pattern block. Each block is
delimited by a special sentinel to indicate block boundaries within the queue.
The investigate block contains the outermost boundary screen bytes from where
the flood fill is growing. This corresponds to the set of screen bytes that were in
the queue in the previous black flood-fill. As before, the flood fill attempts to
expand from each screen byte in the investigate block in all directions; a
successful expansion is added to the new block in the queue. The pattern block
contains all those screen bytes that were previously investigated, representing
the former outermost boundary. Initially the new block and the pattern block are
empty and the investigate block contains the single screen byte representing the
starting point of the fill.

Fill bytes in the new block are written as solid black to the screen. Once the
investigate block has been completely investigated, the screen bytes in the
pattern block (currently all black) have the pattern applied to them. Then the
points in the investigate block become the pattern block and the new block
becomes the investigate block. The loop repeats until the pattern block is empty.
This algorithm maintains a solid black boundary two pixels thick around the fill
region. The outermost boundary is the investigate block from where the fill grows
and the innermost boundary is the pattern block, kept black to avoid an inward
growth by the fill algorithm.

The queue now needs to be large enough to hold three circumferences of the fill
region, one circumference per block in the queue. Previously it was found that
100 queue positions were needed per circumference so the pattern fill will need
about 300 queue positions to complete most fills on screen. That corresponds to
about 900 bytes of memory, still an acceptable memory requirement for almost
all applications!

The assembly listing in figure 6 is rather large so I have not produced a Basic
listing that you can type in and run to see the pattern fill in action. Instead I have
supplied a C program that calls the pattern fill subroutine made available through
the Sprite Pack library. The Sprite Pack library is a collection of various
assembly language subroutines I have written over the years and made available

as a C library for C programs compiled using z88dk. Another article in this issue
of ZQA explains this further. You can see the demo in action on your ts2068 or
an emulator by downloading the compiled program from my website at
"http://justme895.tripod.com/zqa/fillprogs.zip". This zip file contains "pfill.tap"
which can be loaded and run in an emulator or on the real machine as described
in the other article. A screenshot of the demo in action can be seen elsewhere in
this article.

Figure 3. Pixel Coordinate Depth-First Flood Fill

; SPGetScrnAddr is not reprinted here to reduce the
; size of the article. It can be found in the article text.

.test
 ld h,96 ; starting y coordinate
 ld l,128 ; starting x coordinate

; Flood Fill Version 1
; H = Y coord 0..191, L = X coord 0..255

.flood1
 push hl ; save (x,y) coordinate
 ld a,h ; GetScrnAddr requires A=H
 call SPGetScrnAddr ; compute screen address
 pop hl ; restore (x,y) in HL
 ld a,(de) ; byte on screen
 and b ; check if this pixel is set
 ret nz ; if so, hit boundary so ret

 ld a,(de) ; get screen byte
 or b ; set this pixel
 ld (de),a ; plot it on screen

.right
 inc l ; move pixel coord right
 call nz, flood1 ; if no wrap 255->0
 dec l ; restore x coord
.left
 dec l ; move pixel coord left
 ld a,l
 inc a
 call nz, flood1 ; if no wrap 0->255
 inc l ; restore x coord
.up
 dec h ; move pixel coord up
 ld a,h
 inc a
 call nz, flood1 ; if no wrap 0->255
 inc h ; restore y coord
.down
 inc h ; move pixel coord down
 ld a,h
 cp 192
 call c, flood1 ; if less than 192
 dec h ; restore y coord
 ret

 10 REM COPY MACHINE CODE INTO MEMORY
 20 FOR n=32768 TO 32850: READ a: POKE n,a: NEXT n
 30 REM DRAW SOME CIRCLES ON DISPLAY
 40 FOR n=1 TO 10
 50 LET x=INT (RND*256)
 60 LET y=INT (RND*176)

 70 LET r=INT (RND*40)
 80 IF x-r<0 OR y-r<0 OR x+r>255 OR y+r>175 THEN
 GO TO 50
 90 CIRCLE x,y,r: NEXT n: CIRCLE 127,88,87
 95 REM THIS LAST CIRCLE IS NEEDED TO ENFORCE A MAXIMUM
 SIZE FILL REGION, OTHERWISE THERE MAY NOT BE ENOUGH
 MEMORY FOR THE FILL WHICH WOULD LEAD TO A CRASH
 100 LET a=USR 32768: PAUSE 50: RUN

1000 DATA 38,96,46,128,229,124,205,44,128,225,26
1010 DATA 160,192,26,176,18,44,196,4,128,45,45
1020 DATA 125,60,196,4,128,44,37,124,60,196,4,128
1030 DATA 36,36,124,254,192,220,4,128,37,201
1035 REM SPGetScrnAddr
1040 DATA 230,7,246,64,87,124,31,31,31,230,24,178
1050 DATA 87,125,230,7,71,62,128,40,3,31,16,253
1060 DATA 71,203,61,203,61,203,61,124,23,23,230
1070 DATA 224,181,95,201

Figure 4. Byte-At-A-Time Depth-First Flood Fill

; SPGetScrnAddr, Bytefill and SPPixelDown are not reprinted here
; to reduce the size of the article. They can be found in the
; article text.

.test
 ld h,96 ; start pixel at centre of screen
 ld l,128

; byte at a time fill
; h = y coord, l = x coord

.flood2
 ld a,h
 call SPGetScrnAddr ; b = pixel mask
 ex de,hl ; hl = screen address

.fill
 call Bytefill ; wiggle around incoming pixel mask
 ret nc ; if incoming pixels hit boundary, ret

.up
 push hl ; save screen address
 call SPPixelUp ; move up one pixel
 jr c, offscreen1
 push bc ; save pixel mask
 call fill ; try to fill from new screen position
 pop bc ; moving up, pixel mask remains same
.offscreen1
 pop hl

.down ; a replay of up
 push hl
 call SPPixelDown
 jr c, offscreen2
 push bc
 call fill
 pop bc
.offscreen2
 pop hl

.right
 bit 0,b ; if first pixel in mask set, try right
 jr z, left
 inc l ; move right one byte
 ld a,l ; have we wrapped off screen?
 and $1f ; (if so, CCCCC=0 now)
 jr z, offscreen3
 push bc ; save current pixel mask
 ld b,$80 ; new incoming mask = leftmost pixel set
 call fill ; fill from new screen position
 pop bc
.offscreen3
 dec l

.left ; a replay of right
 bit 7,b
 ret z
 ld a,l
 and $1f
 ret z
 dec l
 ld b,$01
 call fill
 inc l
 ret

; enter: HL = valid screen address
; exit : Carry = moved off screen
; HL = moves one pixel up
; used : AF, HL

.SPPixelUp
 ld a,h
 dec h
 and $07
 ret nz
 ld a,$08
 add a,h
 ld h,a
 ld a,l
 sub $20
 ld l,a
 ret nc
 ld a,h
 sub $08
 ld h,a
 cp $40
 ret

 10 REM COPY MACHINE CODE INTO MEMORY
 20 FOR n=32768 TO 32941: READ a: POKE n,a: NEXT n
 30 REM DRAW SOME CIRCLES ON DISPLAY
 40 FOR n=1 TO 10
 50 LET x=INT (RND*256)
 60 LET y=INT (RND*176)
 70 LET r=INT (RND*40)
 80 IF x-r<0 OR y-r<0 OR x+r>255 OR y+r>175 THEN
 GO TO 50
 90 CIRCLE x,y,r: NEXT n: CIRCLE 127,88,87
 100 LET a=USR 32768: PAUSE 50: RUN

1000 DATA 38,96,46,128,124,205,70,128,235,205,109,128
1010 DATA 208,229,205,131,128,56,5,197,205,9,128,193
1020 DATA 225,229,205,152,128,56,5,197,205,9,128,193
1030 DATA 225,203,64,40,14,44,125,230,31,40,7,197,6
1040 DATA 128,205,9,128,193,45,203,120,200,125,230,31
1050 DATA 200,45,6,1,205,9,128,44,201
1055 REM SPGetScrnAddr
1060 DATA 230,7,246,64,87,124,31,31,31,230,24,178
1070 DATA 87,125,230,7,71,62,128,40,3,31,16,253

1080 DATA 71,203,61,203,61,203,61,124,23,23,230
1090 DATA 224,181,95,201
1095 REM ByteFill
1100 DATA 120,174,160,200,71,31,79,120,135,177
1110 DATA 176,79,174,161,184,194,113,128,182,119
1120 DATA 55,201
1125 REM SPPixelUp
1130 DATA 124,37,230,7,192,62,8,132,103,125,214
1140 DATA 32,111,208,124,214,8,103,254,64,201
1145 REM SPPixelDown
1150 DATA 36,124,230,7,192,124,214,8,103,125,198
1160 DATA 32,111,208,124,198,8,103,254,88,63,201

Figure 5. Breadth-First Black Flood Fill

; GetScrnAddr, Bytefill, PixelUp and PixelDown have
; been omitted for brevity. You can find them
; elsewhere in this article.

.test
 ld l,128 ; x coord
 ld h,96 ; y coord
 ld bc,100 ; queue size
 call ffill
 ret

; enter: h = y coord, l = x coord, bc = queue size
; used : ix, af, bc, de, hl
; exit : this version does not bail, but portions of the screen may not
be
; filled if the queue size was too small
; stack: 3*bc+12 bytes, not including the call to ffill or interrupts

.ffill
 ld a,h
 cp 192
 ret nc ; if y coord out of bounds
 dec bc ; we will start with one struct in the queue
 push bc ; save max stack depth variable
 call getscrnaddr ; de = screen address, b = pixel byte
 ex de,hl ; hl = screen address
 call bytefill ; b = fill byte
 jr c, viable
 pop bc
 ret

.viable
 ld ix,-1
 add ix,sp ; ix = top of queue = initial investigate block
 push hl ; screen address and fill byte are
 push bc ; first struct in investigate block
 inc sp
 xor a
 push af ; mark end of investigate block
 dec sp

 ld c,(ix+1) ; reserve space on stack for queue
 ld b,(ix+2) ; bc = max stack depth - 1
 inc bc
 ld l,c
 ld h,b
 add hl,bc ; space required = 3*BC (max depth) + 7
 add hl,bc ; but have already taken 6 bytes and the
 ld c,l ; queue end marker is pushed below.
 ld b,h ; bc = # uninitialized bytes in queue
 ld h,a
 ld l,a ; hl = 0
 sbc hl,bc ; hl = -bc
 add hl,sp

 ld (hl),a ; zero last byte in queue
 ld sp,hl ; move stack below queue
 ld a,$80
 push af ; mark end of queue with $80 byte
 inc sp
 ld e,l
 ld d,h
 inc de
 dec bc
 ldir ; zero the uninitialized bytes in queue

; NOTE: Must move the stack before clearing the queue, otherwise an
interrupt
; may overwrite portions of the cleared queue.

 push ix
 pop bc ; bc = top of queue
 ld hl,-6
 add hl,bc
 ex de,hl ; de = new block
 ld l,c
 ld h,b ; hl = investigate block

; ix = top of queue, bottom of queue marked with $80 byte
; hl = investigate block, de = new block

; Variables indexed by ix, LSB first:
; ix + 03/04 return address
; ix + 01/02 max stack depth

; A picture of memory at this point:
;
;+-----------------------+ higher addresses
;| | |
;|- return address -| \|/
;| | V
;+-----------------------+ lower addresses
;| |
;|- max stack depth -|
;| |
;+-----------------------+
;| screen address MSB | <- ix = top of queue = hl = investigate
block
;| screen address LSB |
;| fill byte |
;+-----------------------+
;| end of block marker |
;| ? |
;| ? |
;+-----------------------+
;| 0 | <- de = new block
;| 0 |
;| 0 |
;+-----------------------+
;| |
;| | size is a multiple of 3 bytes
;| rest of queue |

;| all zeroed |
;| |
;| |
;+-----------------------+
;| $80 | <- sp, special byte marks end of queue
;+-----------------------+

.pfloop
 ld a,(hl)
 cp $80 ; bit 15 of screen addr set if time to wrap
 jr c, inowrap
 push ix
 pop hl ; hl = ix = top of queue
 ld a,(hl)
.inowrap
 cp $40 ; screen address < $4000 marks end of block
 jr c, endinv ; are we done yet?
 ld b,a
 dec hl
 ld c,(hl) ; bc = screen address
 dec hl
 ld a,(hl) ; a = fill byte
 dec hl
 inc (ix+1) ; increase available queue space by one
 jr nz, bcnowrap
 inc (ix+2)
.bcnowrap
 push hl ; save spot in investigate block
 ld l,c
 ld h,b ; hl = screen address
 ld b,a ; b = fill byte

.goup
 push hl ; save screen address
 call pixelup ; move screen address up one pixel
 jr c, updeadend ; if went off-screen
 push bc ; save fill byte
 call bytefill
 call c, addnew ; if up is not dead end, add this to new block
 pop bc ; restore fill byte
.updeadend
 pop hl ; restore screen address

.godown
 push hl ; save screen address
 call pixeldown ; move screen address down one pixel
 jr c, downdeadend ; if went off-screen
 push bc ; save fill byte
 call bytefill
 call c, addnew ; if down is not dead end, add this to new block
 pop bc ; restore fill byte
.downdeadend
 pop hl ; restore screen address

.goleft

 bit 7,b ; can only move left if leftmost bit of fill byte
set
 jr z, goright
 push hl ; save screen address
 ld a,l
 dec l ; decrease column
 and 31
 jr z, leftdeadend ; if went off-screen
 push bc ; save fill byte
 ld b,$01 ; set rightmost pixel for incoming byte
 call bytefill
 call c, addnew ; if left is not dead end, add this to new block
 pop bc ; restore fill byte
.leftdeadend
 pop hl ; restore screen address

.goright
 bit 0,b ; can only move right if rightmost bit of fill byte
set
 jr z, nextinv
 inc l ; next column
 ld a,l
 and 31
 jr z, nextinv ; if went off-screen
 ld b,$80 ; set leftmost pixel for incoming byte
 call bytefill
 call c, addnew ; if right is not dead end, add this to new block

.nextinv
 pop hl ; hl = spot in investigate block
 jr pfloop

.endinv
 dec hl
 dec hl
 dec hl ; investigate block now points at new block

 ld a,(de) ; check if new block is at end of queue
 cp $80
 jr c, nowrapnew
 push ix
 pop de ; de = ix = top of queue
.nowrapnew
 xor a
 ld (de),a ; store end marker for new block
 dec de
 dec de
 dec de

 ld a,(hl) ; done if the investigate block is empty
 cp $40
 jr nc, pfloop

.endpfill
 ld sp,ix
 inc sp
 inc sp

 inc sp ; return address at ix+3
 ret

; add incoming fill byte and screen address to new block
; enter b = incoming byte, hl = screen address, de = new block

.addnew
 push hl ; save screen address
 ld l,(ix+1)
 ld h,(ix+2) ; hl = max stack depth
 ld a,h
 or l
 jr nz, stillroom ; this version doesn't bail
 pop hl ; just don't add to new block
 ret

.stillroom
 dec hl ; available queue space decreases by one struct
 ld (ix+1),l
 ld (ix+2),h
 pop hl ; hl = screen address

 ld a,(de) ; check if new block is at end of queue
 cp $80
 jr c, annowrap
 push ix
 pop de ; de = ix = top of queue
.annowrap
 ex de,hl
 ld (hl),d ; make struct, store screen address (2 bytes)
 dec hl
 ld (hl),e
 dec hl
 ld (hl),b ; store fill byte (1 byte)
 dec hl
 ex de,hl
 ret

10 REM COPY MACHINE CODE INTO MEMORY
 20 FOR n=32768 TO 33121: READ a: POKE n,a: NEXT n
 30 REM DRAW SOME CIRCLES ON DISPLAY
 40 FOR n=1 TO 10
 50 LET x=INT (RND*256)
 60 LET y=INT (RND*176)
 70 LET r=INT (RND*40)
 80 IF x-r<0 OR y-r<0 OR x+r>255 OR y+r>175 THEN
 GO TO 50
 90 CIRCLE x,y,r: NEXT n: CIRCLE 127,88,87
 100 LET a=USR 32768: PAUSE 50: RUN

 995 REM TEST
1000 DATA 46,128,38,96,1,100,0,205,11,128,201
1005 REM FFILL
1010 DATA 124,254,192,208,11,197,205,249,128,235
1020 DATA 205,75,129,56,2,193,201,221,33,255,255

1030 DATA 221,57,229,197,51,175,245,59,221,78,1
1040 DATA 221,70,2,3,105,96,9,9,77,68,103,111,237
1050 DATA 66,57,119,249,62,128,245,51,93,84,19,11
1060 DATA 237,176,221,229,193,33,250,255,9,235,105
1070 DATA 96,126,254,128,56,4,221,229,225,126,254,64
1080 DATA 56,91,71,43,78,43,126,43,221,52,1,32,3,221
1090 DATA 52,2,229,105,96,71,229,205,32,129,56,8,197
1100 DATA 205,75,129,220,211,128,193,225,229,205
1110 DATA 53,129,56,8,197,205,75,129,220,211,128,193
1120 DATA 225,203,120,40,18,229,125,45,230,31,40,10
1130 DATA 197,6,1,205,75,129,220,211,128,193,225,203
1140 DATA 64,40,14,44,125,230,31,40,8,6,128,205
1150 DATA 75,129,220,211,128,225,24,152,43,43,43,26
1160 DATA 254,128,56,3,221,229,209,175,18,27,27,27
1170 DATA 126,254,64,48,131,221,249,51,51,51,201
1175 REM ADDNEW
1180 DATA 229,221,110,1,221,102,2,124,181,32,2,225,201
1190 DATA 43,221,117,1,221,116,2,225,26,254,128,56,3
1200 DATA 221,229,209,235,114,43,115,43,112,43,235,201
1205 REM GETSCRNADDR
1210 DATA 230,7,246,64,87,124,31,31,31,230,24,178
1220 DATA 87,125,230,7,71,62,128,40,3,31,16,253
1230 DATA 71,203,61,203,61,203,61,124,23,23,230
1240 DATA 224,181,95,201
1245 REM PIXELUP
1250 DATA 124,37,230,7,192,62,8,132,103,125,214
1260 DATA 32,111,208,124,214,8,103,254,64,201
1265 REM PIXELDOWN
1270 DATA 36,124,230,7,192,124,214,8,103,125,198
1280 DATA 32,111,208,124,198,8,103,254,88,63,201
1285 REM BYTEFILL
1290 DATA 120,174,160,200,71,31,79,120,135,177
1300 DATA 176,79,174,161,184,71,194,80,129,182,119
1310 DATA 55,201

Figure 6. Breadth-First Pattern Flood Fill

; In the interest of brevity, the source for getscrnaddr, pixelup,
; pixeldown and bytefill is not reprinted here.

; Each entry in the queue is a 3-byte struct that grows down in memory:
; screen address (2-bytes, MSB first)
; fill byte (1-byte)
; Screen address with MSB<0x40 is used to indicate the end of a block.
; Screen address with MSB>=0x80 is used to mark the physical end of Q.
;
; The fill pattern is a typical 8x8 pixel character, stored in 8 bytes.

; enter: h = y coord, l = x coord, bc = queue size, de = address of
fill pattern
; In hi-res mode, carry flag is most significant bit of x coord
; used : ix, af, bc, de, hl
; exit : no carry = success, carry = had to bail queue was too small
; stack: 3*bc+30 bytes, not including the call to PFILL or interrupts

.SPPFill
 push de ; save (pattern pointer) variable
 dec bc ; we will start with one struct in the queue
 push bc ; save max stack depth variable

 ld a,h
 call SPGetScrnAddr ; de = screen address, b = pixel byte
 ex de,hl ; hl = screen address
 call bytefill ; b = fill byte
 jr c, viable
 pop bc
 pop de
 ret

.viable
 ex de,hl ; de = screen address, b = fill byte
 ld hl,-7
 add hl,sp
 push hl ; create pattern block pointer = top of queue
 push hl
 pop ix ; ix = top of queue
 dec hl
 dec hl
 dec hl
 push hl ; create investigate block pointer
 ld hl,-12
 add hl,sp
 push hl ; create new block pointer

 xor a
 push af
 dec sp ; mark end of pattern block
 push de ; screen address and fill byte are
 push bc ; first struct in investigate block
 inc sp
 push af

 dec sp ; mark end of investigate block

 ld c,(ix+7)
 ld b,(ix+8) ; bc = max stack depth - 1
 inc bc
 ld l,c
 ld h,b
 add hl,bc ; space required = 3*BC (max depth) + 10
 add hl,bc ; but have already taken 9 bytes
 ld c,l
 ld b,h ; bc = # uninitialized bytes in queue
 ld hl,0
 sbc hl,bc ; negate hl, additions above will not set carry
 add hl,sp
 ld (hl),0 ; zero last byte in queue
 ld sp,hl ; move stack below queue
 ld a,$80
 push af ; mark end of queue with $80 byte
 inc sp
 ld e,l
 ld d,h
 inc de
 dec bc
 ldir ; zero the uninitialized bytes in queue

; NOTE: Must move the stack before clearing the queue, otherwise an
interrupt could overwrite portions of the (just cleared) queue.

; ix = top of queue, bottom of queue marked with 0x80 byte

; Variables indexed by ix, LSB first:
; ix + 11/12 return address
; ix + 09/10 fill pattern pointer
; ix + 07/08 max stack depth
; ix + 05/06 pattern block pointer
; ix + 03/04 investigate block pointer
; ix + 01/02 new block pointer

; A picture of memory at this point:
;
;+-----------------------+ higher addresses
;| | |
;|- return address -| \|/
;| | V
;+-----------------------+ lower addresses
;| fill |
;|- pattern pointer -|
;| |
;+-----------------------+
;| |
;|- max stack depth -|
;| |
;+-----------------------+
;| |
;|- pattern block -|
;| |
;+-----------------------+

;| |
;|- investigate block -|
;| |
;+-----------------------+
;| |
;|- new block -|
;| |
;+-----------------------+
;| end of block marker | <- ix = pattern block = top of queue
;| ? |
;| ? |
;+-----------------------+
;| screen address MSB | <- investigate block
;| screen address LSB |
;| fill byte |
;+-----------------------+
;| end of block marker |
;| ? |
;| ? |
;+-----------------------+
;| 0 | <- new block
;| 0 |
;| 0 |
;+-----------------------+
;| |
;| | size is a multiple of 3 bytes
;| rest of queue |
;| all zeroed |
;| |
;| |
;+-----------------------+
;| 0x80 | <- sp, special byte marks end of queue
;+-----------------------+

.pfloop
 ld l,(ix+3)
 ld h,(ix+4) ; hl = investigate block
 ld e,(ix+1)
 ld d,(ix+2) ; de = new block
 call investigate
 ld (ix+1),e
 ld (ix+2),d ; save new block
 ld (ix+3),l
 ld (ix+4),h ; save investigate block

 ld l,(ix+5)
 ld h,(ix+6) ; hl = pattern block
 ld c,(ix+7)
 ld b,(ix+8) ; bc = max stack depth (available space)
 call applypattern
 ld (ix+7),c
 ld (ix+8),b ; save stack depth
 ld (ix+5),l
 ld (ix+6),h ; save pattern block

 ld a,(hl) ; done if the investigate block was empty
 cp 0x40

 jp nc, pfloop

.endpfill
 ld de,11 ; return address is at ix+11
 add ix,de
 ld sp,ix
 or a ; make sure carry is clear, indicating success
 ret

; IN/OUT: hl = investigate block, de = new block

.investigate
 ld a,(hl)
 cp 0x80 ; bit 15 of screen addr set if time to wrap
 jp c, inowrap
 push ix
 pop hl ; hl = ix = top of queue
 ld a,(hl)

.inowrap
 cp 0x40 ; screen address < 0x4000 marks end of block
 jp c, endinv ; are we done yet?
 ld b,a
 dec hl
 ld c,(hl) ; bc = screen address
 dec hl
 ld a,(hl) ; a = fill byte
 dec hl
 push hl ; save spot in investigate block
 ld l,c
 ld h,b ; hl = screen address
 ld b,a ; b = fill byte

.goup
 push hl ; save screen address
 call SPPixelUp ; move screen address up one pixel
 jr c, updeadend ; if went off-screen
 push bc ; save fill byte
 call bytefill
 call c, addnew ; if up is not dead end, add this to new block
 pop bc ; restore fill byte

.updeadend
 pop hl ; restore screen address

.godown
 push hl ; save screen address
 call SPPixelDown ; move screen address down one pixel
 jr c, downdeadend
 push bc ; save fill byte
 call bytefill
 call c, addnew ; if down is not dead end, add this to new block
 pop bc ; restore fill byte

.downdeadend
 pop hl ; restore screen address

.goleft
 bit 7,b ; can only move left if leftmost bit of fill byte
set
 jr z, goright
 ld a,l
 and 31
 jr nz, okleft
 bit 5,h ; for hi-res mode: column = 1 if l=0 and bit 5 of
h is set
 jr z, goright

.okleft
 push hl ; save screen address
 call SPCharLeft
 push bc ; save fill byte
 ld b,0x01 ; set rightmost pixel for incoming byte
 call bytefill
 call c, addnew ; if left is not dead end, add this to new block
 pop bc ; restore fill byte
 pop hl ; restore screen address

.goright
 bit 0,b ; can only move right if rightmost bit of fill
byte set
 jr z, nextinv
 or a ; clear carry
 call SPCharRight
 jr c, nextinv ; went off screen
 ld a,l
 and 31
 jr z, nextinv ; wrapped around line
 ld b,0x80 ; set leftmost pixel for incoming byte
 call bytefill
 call c, addnew ; if right is not dead end, add this to new block

.nextinv
 pop hl ; hl = spot in investigate block
 jp investigate

.endinv
 dec hl
 dec hl
 dec hl ; investigate block now points at new block

 ld a,(de) ; check if new block is at end of queue
 cp 0x80
 jr c, nowrapnew
 defb 0xdd
 ld e,l
 defb 0xdd
 ld d,h ; de = ix = top of queue

.nowrapnew
 xor a
 ld (de),a ; store end marker for new block
 dec de
 dec de

 dec de
 ret

; add incoming fill byte and screen address to new block
; enter b = incoming byte, hl = screen address, de = new block

.addnew
 push hl ; save screen address
 ld l,(ix+7)
 ld h,(ix+8) ; hl = max stack depth
 ld a,h
 or l
 jr z, bail ; no space in queue so bail!
 dec hl ; available queue space decreases by one struct
 ld (ix+7),l
 ld (ix+8),h
 pop hl ; hl = screen address

 ld a,(de) ; check if new block is at end of queue
 cp 0x80
 jr c, annowrap
 defb 0xdd
 ld e,l
 defb 0xdd
 ld d,h ; de = ix = top of queue

.annowrap
 ex de,hl
 ld (hl),d ; make struct, store screen address (2 bytes)
 dec hl
 ld (hl),e
 dec hl
 ld (hl),b ; store fill byte (1 byte)
 dec hl
 ex de,hl
 ret

; if the queue filled up, we need to bail. Bailing means patterning
any set pixels
; which may still be on the display. If we didn't bail
; there is no guarantee the fill would ever return.

.bail
 pop hl ; hl = screen address, b = fill byte
 ld a,b
 xor (hl)
 ld (hl),a ; clear this byte on screen

 xor a
 ld (de),a ; mark end of new block

 ld l,(ix+5)
 ld h,(ix+6) ; hl = pattern block
 call applypattern ; for pattern block
 call applypattern ; for investigate block
 call applypattern ; for new block

 ld de,11 ; return address is at ix+11
 add ix,de
 ld sp,ix
 scf ; indicate we had to bail
 ret

; hl = pattern block, bc = max stack depth (available space)

.applypattern
 ld a,(hl)
 cp 0x80 ; bit 15 of screen addr set if time to wrap
 jp c, apnowrap
 push ix
 pop hl ; hl = ix = top of queue
 ld a,(hl)

.apnowrap
 cp 0x40 ; screen address < 0x4000 marks end of block
 jr c, endapply ; are we done yet?

 and 0x07 ; use scan line 0..7 to index pattern
 add a,(ix+9)
 ld e,a
 ld a,0
 adc a,(ix+10)
 ld d,a ; de points into fill pattern
 ld a,(de) ; a = pattern

 ld d,(hl)
 dec hl
 ld e,(hl) ; de = screen address
 dec hl

 and (hl) ; and pattern with fill byte
 sub (hl) ; or in complement of fill byte
 dec a
 ex de,hl
 and (hl) ; apply pattern to screen
 ld (hl),a
 ex de,hl
 dec hl
 inc bc ; increase available queue space
 jp applypattern

.endapply
 dec hl
 dec hl
 dec hl ; pattern block now pts at investigate block
 ret

/* Pattern Fill Demo Program */
/* Alvin Albrecht 01.2003 */

/* C Program for ts2068 or Spectrum */
/* Compile with the z88dk compiler */
/* http://z88dk.sourceforge.net/ */

#include <stdlib.h>
#include <graphics.h>
#include <spritepack.h>

/* first define some pattern UDGs */
extern uchar patterns[];
#asm
._patterns

defb @11111111
defb @11111111
defb @11111111
defb @11111111
defb @11111111
defb @11111111
defb @11111111
defb @11111111

defb @10101010
defb @01010101
defb @10101010
defb @01010101
defb @10101010
defb @01010101
defb @10101010
defb @01010101

defb @00000000
defb @01111110
defb @01100110
defb @01100110
defb @01100110
defb @01100110
defb @01111110
defb @00000000

defb @10001000
defb @01000100
defb @00100010
defb @00010001
defb @10001000
defb @01000100
defb @00100010
defb @00010001

defb @00010001
defb @00100010
defb @01000100
defb @10001000
defb @00010001
defb @00100010
defb @01000100
defb @10001000

defb @10011001
defb @01100110

defb @01100110
defb @10011001
defb @10011001
defb @01100110
defb @01100110
defb @10011001

defb @00100010
defb @01010101
defb @10001000
defb @00000000
defb @00100010
defb @01010101
defb @10001000
defb @00000000

defb @11111111
defb @10000000
defb @10100010
defb @10010100
defb @10001000
defb @10010100
defb @10100010
defb @10000000
#endasm

main() /* C programs start here */
{
 int x,y,r,n;

 while (1) { /* forever */
 clg(); /* clear screen */
 for (n=0; n!=10; n++) { /* for loop executed 10 times */
 do {
 x = rand() % 256; /* pick centre coordinate of circle */
 y = rand() % 192;
 r = rand() % 40; /* pick random radius */
 } while (((x-r)<0) || ((y-r)<0) || ((x+r)>255) || ((y+r)>191));
 circle(x,y,r,1); /* draw random circle */
 }
 x = rand() % 256;
 y = rand() % 192;
 r = (rand() % 8)*8; /* 1 of 8 patterns defined above */
 sp_PFill(x, y, patterns + r, 300); /* pattern fill @ x,y */
 sp_WaitForKey();
 }
}

