
CharAde BASIC Graphics Engine
for the ZX Spectrum, by Jason J Railton

So What Is It?
The CharAde engine is some machine code that you can load into a BASIC program to provide
faster sprites and scrolling graphics in a BASIC program.

It comes with an editing suite to design graphics characters and blocks. This saves off a block of
combined code and graphics which you can load into your own programs.

You only need call this code once at the start of your program, and from then on all commands are
accessed through the LPRINT command (except for the odd PEEK where you might need to read
back data).

It gives you up to four sets of 64 User-Defined-Graphics (UDGs) with pre-set attributes (that's 256
characters in total) and up to 64 pre-defined 4x4 blocks made up from those characters.

It gives you two hidden over-sized character-mapped screens to prepare graphics on before
displaying them on the Spectrum's screen. And one of those screens can be scrolled or used as an
even larger map of those 4x4 blocks.

And finally it provides on-demand Keyboard (QAOP M/N/[SPACE]) and Kempston Joystick
decoding.

1 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

Part A - Programming Guide

1. Loading
We'll start with a few quick examples of programming to give you an idea of what's possible, before
you go off and start designing your own graphics. An example set of graphics is provided in the file
'EXAMPLE_DATA.TAP'.

If using an emulator:

• First turn off auto-loading of TAP files
• Reset the emulated Spectrum
• Select the file 'EXAMPLE_DATA.TAP'
• Type: CLEAR 54099 [ENTER]
• Type: LOAD "" CODE [ENTER]
• Type: LET pk=USR 54100[ENTER]
• And you're ready to go!

If using a real Spectrum, you'll need to convert the example file to tape, then load it as above.

If using a card storage device like DivIDE, you'll need to do whatever works for you. The
'EXAMPLE_DATA.TAP' file doesn't include a BASIC loader, it's just the CODE block. So you
should be able to select it as a .TAP file, then follow the instructions above. At the point you LOAD
"" CODE it should load in as if from tape.

And from now on, I'll stop telling you to press [ENTER] after every command as it's a bit obvious.

2 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

2. The Basics
Let's start with a simple "Hello World" example.

 LPRINT "@CØHELLO WORLD)"

If you've done it exactly, beginning with the 'At' symbol, a capital 'C', a zero, capital letters with a
space and no extra punctuation, then a close-bracket, you should see the centre part of the screen
turn black and the phrase appear in the middle of it. If it didn't happen, check you've loaded it
correctly, called USR 54100, and typed the command correctly.

So let's break down exactly what is happening. First, when you loaded the example, it loaded in
the CharAde engine and then you called it once with USR 54100 to activate it. After that,
everything you send with the LPRINT command goes straight to the CharAde engine.

Now in the CharAde engine all the punctuation characters have special properties. So that first '@'
is like a 'PRINT AT' - it moves the print position (the cursor). The next two characters represent the
row ('C' is 13) and column ('Ø' is 10 - I'll explain later) to move to.

Then the phrase 'HELLO WORLD' is just ordinary text, so gets printed there. But, this is printed to
a hidden screen, so you won't see it happening straight away. So finally the close-bracket ')' is a
command to dump everything to the actual screen.

Complicated? Ah, there's more.

For a start, we were using character set #1 in this example, where the characters actually look like
text. Once you start designing your own graphics, those characters could be anything, so trying to
print words and phrases will just look silly.

3 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

2. Your First Hidden Screen
So, why draw on a hidden screen instead of the visible one? And why doesn't it line up (or hadn't
you noticed that)? The main reason is to reduce flicker. In BASIC, if you have to erase something
and re-draw it every time it moves, it will flicker. More so if you try to move large graphics or
scenery. So, it's smoother if you can build up the picture on a hidden screen, then reveal it all in
one go. Also, the hidden screen is bigger than the part you see. This lets you draw large things
partially off-screen without running into awkward programming errors.

So, first of all, about the hidden screen. For reasons which will become clear later, I shall refer to it
as the 'Foreground' screen. The Foreground screen is 32 characters wide and 32 characters high.
If you print to it and run off one side, you wrap around to the other. If you go off the bottom, you
come back on at the top. It is therefore impossible for you to get an error from printing 'outside' the
screen.

What you may have noticed when the Foreground is copied to the visible screen (type LPRINT ")"
if you like) is that a window 18 characters high and 24 wide is filled in in the middle of the screen.
Two lines are left clear at the top and bottom of the normal printable area, and four columns either
side (this is for you to draw a border or scores etc. from BASIC). This window is taken from the
foreground screen, starting at a position four columns in from the left, and four rows down from the
top. So, if you print something at position (0,0) it will never make it to the visible screen. If you print
at position (4,4) then it will appear in the top-left corner of the window when you LPRINT ")".

Transfer of 24x18 window from hidden Foreground
screen to actual Spectrum Screen

Now let's do some more tricks to show you why this is worth it. In BASIC, of you want to draw a
sprite of 4x4 characters, you need to use an AT statement in your PRINT to move the cursor four
times. In CharAde, you only need to move the cursor once, then there's a special 'New-Line'
command that takes account of the last cursor placement.

First let's move the cursor to somewhere in the visible window of the foreground:

4 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

32

32

18

24

4

4 4

2

24
18

4

2

LPRINT "@55"

Now let's print a 4x4 object - a ring of numbers on the foreground screen:

LPRINT " 12 8 3 7 4 65 " - pay careful attention to dots and commas

And finally copy it to the visible screen:

LPRINT ")"

See what it does? You can now print large multi-line objects with a single string. You can also store
them as single strings for printing later. Perhaps you might store them in an array for animation.

Here's another example - a vertical 'HELLO WORLD':

 LPRINT "@5NH W,E O,L R,L L,O D)"

What those commands do specifically:

 . - skips over a character space without printing anything, not even a SPACE.

 , - move the cursor down one row, and resets it to the horizontal position directly below
where the last @ command put it.

5 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

,, ,.

3. An Engine of Character
Now, before I go any further - the purpose of this engine. It's not designed to print numbers and
letters, but graphics. If you want to print text or scores, use the ordinary BASIC commands and do
so outside the main CharAde window. This is about graphics. Use the editor to design up to four
separate sets of 64 graphics characters, like UDGs, but each with their own colour attributes. Then
get printing them.

Now, with UDGs, you use the characters A..U (A..S on a 128K Spectrum) in graphics mode to
bring them up. With CharAde, there's a slightly more complex order to remember.

The first character, representing code 'zero', is the empty [SPACE].

Then come the numbers 1..9, representing codes 'one' to 'nine'.

Next the bit you will repeatedly get wrong, for which I apologise in advance; the Ø or zero on your
keyboard is the code for 'ten'. Look, it comes after the 'nine' on the keyboard, right? And zero is
already taken, and looks better as an empty space. So Ø is 'ten'.

Then come the upper-case characters A..Z, counting as codes 11..36, followed by lower-case, a..z,
which are codes 37..62.

Finally the underscore mark "_" represents code 63. Remember we started counting with zero, so
that makes sixty-four in total.

Any of these can be redefined as whatever you like. They won't look any different when you type
them in a BASIC listing, but they will appear in their new form when you LPRINT them.

Now there are a couple of reasons why you should remember these numbers. Just don't get them
confused with ASCII codes, as they're not the same. Most importantly is when moving the cursor
with the "@" function. You can use either CHR$() to insert the unprintable characters 0..31, or you
can use the equivalent typeable characters from this list.

So you can follow the "@" with CHR$ codes representing row and column:

LPRINT "@" + CHR$(13) + CHR$(10) + "HELLO WORLD)"

Or you can use the letter-equivalents from this list for 13 and 10, which are easier to type:

LPRINT "@CØHELLO WORLD)"

But clearly the first method is simpler if your row and column values are in variables:

LPRINT "@" + CHR$(row) + CHR$(column) + "HELLO WORLD)"

Note that you can only move the cursor with a row or column value of 0..31. This is equivalent to
the first 32 CharAde characters [SPACE] 1..9 Ø A..S.

And if you do know ASCII, you'll know that CHR$(0)..CHR$(31) are unprintable ASCII characters
and stop just short of [SPACE] at CHR$(32) - so the two schemes do not overlap. Feel free to use
either.

Just remember that that 'zero' digit represents 10. The empty [SPACE] is actually character 'zero'.

6 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

4. The Sets of Four
Yes, there are four sets of characters. You can call them 'Fonts' if you like. Now, you can only work
with one font at a time. To switch fonts, use the "#" command followed by the number 1..4, or the
code CHR$(1)..CHR$(4).

Now remember that I said you could only use one font at a time? The reason for this is that the
foreground screen is character-mapped, not bit-mapped. When you print on the Speccy screen it
draws 8 bytes that represent the pixels that make up that character. In CharAde, it simply places
one byte that represents the code of the character printed there - it's a lot quicker, and takes up
less memory. This only gets turned into a graphic when you LPRINT ")" to dump the Foreground
to the visible screen. And it will do so with whichever font is selected at the time of transfer, not
when you printed it.

Also, it takes a little bit of time to switch fonts. This is because the dump routine is highly optimised,
and mixes the font data in with program code. To use a different font means copying it into all the
right places in that code. So don't go switching fonts willy-nilly for trivial animations.

TIP:
For a quick change of scenery in a game, draw different characters to make up walls, ledges,
baddies, etc. but line them up in the same places in multiple fonts, so that you can use exactly the
same printed objects and code but just switch the font for a different look. Don't be afraid to waste
a few characters making your player graphics the same in each font though, so at least one thing is
consistent.

TIP:
To start with, stick to just defining graphics with the lower-case letters and leave the numbers and
upper-case characters as text you can print. Even when you get more advanced, you may prefer to
reserve one font with text characters for title screens etc. You could replace the lower-case
characters with little symbols or motifs, or even a few punctuation characters you can't live without.

7 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

5. Advanced LPRINTing
Okay, the foreground is probably getting fairly cluttered now, so to clear it use:

LPRINT " " (That's LPRINT an apostrophe ')

Note that this only clears the hidden screen. You won't see the change on the display until you:

LPRINT ")"

Now some notes about chaining commands together. You may have noticed that following a
PRINT command in BASIC, the next PRINT command starts off on the next row. This is because
following each PRINT command there is an implicit NEW-LINE character, CHR$(13).

The same happens with LPRINT - after each LPRINT command the Speccy will send a CHR$(13)
to the CharAde engine, which can confuse it if you're not careful. Usually it ignores it as something
that's not a command and that it can't print, but if it's expecting a code, for example following an
"@" command, it will take that CHR$(13) as the number 13.

So, never do:

LPRINT "@" : LPRINT CHR$(13) : LPRINT CHR$(10)

As what CharAde will receive is:

 "@" + CHR$(13) + CHR$(13) + CHR$(13) + CHR$(10) + CHR$(13)

And it will act on the first two codes after the "@" and ignore the rest.

You should do:

 LPRINT "@" + CHR$(13) + CHR$(10)

So that the "@" command and its parameters are all one string.

You could follow each LPRINT command with a ";", like you do in BASIC, to prevent the NEW-
LINE occurring. But it's easier to just remember not to split up a single command and its
parameters across multiple LPRINT statements.

8 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

'

So, with that lesson in mind, here's your first summary list of printing functions:

 ' - Clear the foreground screen

 @RC - Move the print position (cursor) to row R, column C of the Foreground screen

 #N - Switch to Font N (where N = 1..4)

 [SPACE] 1..9 Ø A..Z a..z _ - Print a graphic at the cursor position

 . - Skip one space without printing anything

 , - Move to the next row, directly below the last @ command

) - Copy the window from the Foreground screen to the visible Spectrum screen

9 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

6. A Brief Background
So, all this talk of the Foreground screen has to have you wondering, is there a Background
screen? and the answer is - YES.

It's another 32x32 character-mapped screen. But what is it good for?

Well, the basic idea is that you draw your game scenery on it once, and leave it alone. You then
treat the foreground screen as your 'work area'.

So whenever you want to update your game, you first copy the background onto the foreground
(wiping everything that was there from last time), then you LPRINT on it your game characters
(sprites), then you copy that lot to the visible screen.

So for that to happen, you need some new symbol commands, and they are:

 &RC - The equivalent of "@", but moves the cursor to a printing position
on the Background screen

 (- Copies the background screen to the foreground

 ! - Clears both the Foreground and the Background screens

Now, you see, you start your display cycle with '(', to copy in from the Background screen, then end
it with ')', to copy to the display - clever, huh? Not entirely mad, now, is it?

Just remember that, like the foreground, the background is 32x32 characters, and the only visible
bit is that window 18 rows by 24 columns starting four in from the top-left.

If you want to, have a try now - print some stuff on the Background screen with "&". Then use "()"
to copy it first to the Foreground, then from there to the display.

LPRINT "!#1" - to clear all screens and select Font 1

FOR N=Ø TO 17 : LPRINT "&" + CHR$(4+N) + CHR$(21-N) + "CHARADE" : NEXT N

LPRINT ")" - to convince yourself the Foreground is clear

LPRINT "()" - to copy the Background in and see it

LPRINT ")" - to clear just the Foreground and see it empty again

LPRINT "()" - to see the Background is still available

10 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

'

7. Consult the Scrolls
Okay, now for some real trickery. The foreground and the background are both 32x32 characters.
Apart from a bit of border for allowing printing outside the screen areas, what use is all that extra
space? Well, how about some scrolling? Here's a new command:

 :VH - Offset the background and foreground screens vertically and horizontally

Using a Scroll Offset to Shift the Background
Relative to the Foreground

Just set up the background again (no need to do this if you just did the last exercise):

LPRINT "!#1"
FOR N=Ø TO 17 : LPRINT "&" + CHR$(4+N) + CHR$(21-N) + "CHARADE" : NEXT N

Now if you LPRINT "()" you'll see the background copied to the foreground and displayed as you
originally drew it. But now do:

LPRINT ": 1" - note the [SPACE] then the 1

11 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

V

H

Wrap-
Around

Wrap-
Around

Foreground

Background

H

V

View Window

And then:

LPRINT "()"

You'll see the background has been copied as before, but shifted one character to the left.

You can keep doing this up to 31 characters either horizontally or vertically, and the background
just wraps around when it reaches the edge. In fact, you have to remember to wrap this number
around as there are no negative values.

For example, to scroll the screen completely around once to the left:

FOR N=0 TO 31 : LPRINT ": " + CHR$(N) + "()" : NEXT N

Now you have to admit, that's some pretty quick scrolling for BASIC!

To scroll left, the offset goes [SPACE]=0, 1, 2, 3 etc. To scroll right, it goes [SPACE]=0, 31, 30, 29
etc...

Or upward:

FOR N=0 TO 31 : LPRINT ":" + CHR$(N) + " ()" : NEXT N

To scroll up, the offset goes [SPACE]=0, 1, 2, 3 etc. To scroll down, it goes [SPACE]=0, 31, 30, 29
etc...

The shift happens when you copy the background to the foreground; anything you draw on the
foreground still appears in the same place. For example:

FOR N=0 TO 31 : LPRINT ": " + CHR$(N) + "(@BA , CHARADE ,
)" : NEXT N

Note that as the screen scrolls, you get to see more of the 32x32 background screen that's outside
the 24x18 character display window. You can print things in this area out of sight, and have them
scroll into view.

By keeping track of where the right-hand edge of the visible window is on the background (28
characters to the right of the horizontal offset, less 32 if it needs to wrap-around) you can fill in new
data just off-screen and have horizontal scrolling scenery that goes on forever.

Similarly, you can fill in just above or below the visible part of the background (remember it wraps
around) and give the appearance of scrolling vertically over a much larger area than 32x32.

You can read this data from a map, or you can generate it randomly as you go to create a zig-
zagging path, tunnel, or series of obstacles to dodge.

12 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

TIP:
Remember to reset the scrolling, you must use LPRINT ": " (two [SPACE]s). Doing LPRINT
":00" will offset the scrolling by ten characters in each direction!

TIP:
Remember, things drawn on the foreground don't move as the background scrolls. So to make a
sprite look like it's moving with the background, remember to subtract the scroll offset from its
position. Or just subtract 1 from its position every time you add 1 to the offset.

TIP:
Remember that the viewing window starts four characters down and in from the top-left corner of
the foreground. So even when the scrolling offset is reset by LPRINT ": " , the background is
copied in four pixels up and to the left of the visible part of the screen. To position the background
in the top-left corner of the viewing window, you need to set the offset to -4, -4 or 28, 28 with the
command:

LPRINT ":RR"

13 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

8. Programmer's Block
Now, onto the other thing you can do with the editor - blocks.

Blocks are up to 4x4 chunks made up of characters that you can draw in one go. You can have up
to 64 of them (just one set this time), and they appear in whichever font is current. So, if you took
my advice and put similar characters in the same place in each of your fonts, you can change the
look of your blocks simply by switching font.

Otherwise, blocks designed with one font are going to look a mess in a different font. It's up to you
to decide which of your fonts to use with the block designer. You might want to make the blocks
work with three fonts for game levels, and use the fourth font for a title screen. Or just one font, as
in my examples. Just remember that you can't mix different fonts on-screen at the same time.

Now, you can use blocks for your background scenery, or for your scrolling fill-in function, or for
your game sprites. Whichever suits you best.

To draw a block at the current cursor position, there's another command:

 $X - draw block X, where X is a character [SPACE] 1-9 Ø A..Z a..z _

You use one of the printable characters [SPACE] 1-9 Ø A..Z a..z _ to say which block, as there
are also 64 of them.

Note that in a block, the zero character (SPACE) is never printed. If a block contains a SPACE,
then whatever was there before will show through. This allows you to define blocks that only print
2x2 or 3x3 characters, or sprites that have gaps in.

Also, when you print a block, the cursor moves over by two character columns - the minimum
you're likely to need. If you are printing 4x4 blocks and you want it to move over the full four, then
follow it with " ". And to move down four places, remember to use " ".

TIP:
As well as the empty SPACE character, you may want to define another character as empty and
set to your background colour, for use in blocks. Or you may just remember to clear the
background before printing scenery blocks on it.

TIP:
Remember that if you print blocks on the background, any SPACEs in the blocks act as
transparent. However, when you copy the background to the foreground, everything is copied over,
SPACEs and all - the foreground is completely wiped over with no 'transparent' characters showing
what was there before.

14 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

. . , , , ,

9. The Big Picture
Okay, one last big feature before we tackle the nitty-gritty. The Map function.

How does this work? Well, when I described scrolling, I said you copy one 32x32 screen to
another, with an offset. That's not really all that big, and you have to keep filling-in new scenery just
out of sight. What if you could have an area four times as big to scroll around? Well, you can. But
it's complicated.

First of all, the map function treats the background screen not as a set of 32x32 characters, but as
a set of 32x32 blocks, where each character represents its equivalent block. So, don't print blocks
on your background four characters apart; print the equivalent characters next to each other, and
the CharAde engine will expand them into blocks.

The " " offset function still works as before, but this time offsets the background in whole 4x4
blocks. There's a new command to fine-tune this down to individual characters and draw the map:

 ;VH - Fine-offset a block map and draw it on the foreground

This offsets the map by up to 3 characters in each direction (added on to the whole block offset
already defined by "$") and draws the part of the block map that covers the foreground. Note that it
does not fill the 32x32 foreground screen. It only draws just enough blocks to cover the visible
window. More on this later.

It also follows the rule whereby SPACEs in the blocks are skipped, so show through whatever was
there before. You could use this to make layers if you want to - have different layers of scenery in
different parts of your map, and draw one over the top of the other. If you don't want gaps, then
either make sure your blocks have no actual SPACEs, or remember to clear the foreground before
you copy in a chunk of the map.

So, this map now gives you a 128 x 128 background. Is that big enough? Well, it has one last trick.
Like the regular background, it wraps-around vertically. Horizontally, however, it wraps-around with
a half-map offset. So, if you go off the right of the top half of the map, you come on at the left of the
bottom half. And if you go off the right of the bottom half, you come back on the left of the top half.

This lets you treat the map as if it were a 256x64 background instead of 128x128, with the bottom
half of the map a continuation to the right of the top half.

Just remember that when actually printing characters (to act as blocks) this special wrap-around
doesn't apply. You must still treat the background as a 32x32 grid when printing the characters that
represent the blocks.

This special wrap-around only applies when you use the 'draw from the map' function " ".

15 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

:

:

How Multiple Copies of the Block Map Wrap-Around

TIP:
To avoid the wrap-around showing up when you don't want it to, you might want to add an empty
border, or a border of solid walls, two or three blocks thick around the edge of the map. That way, if
your character reaches the edge of the map, they won't be able to see the wrap-around to the
other side. Or, when you get near the edge of the map, stop scrolling, and move your character
around the screen instead.

16 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

Upper Half

Low er Half

Upper Half

Low er Half

Upper Half

Low er Half

Upper Half

Low er Half

10. Reading From The Screens
There are some ways to read back information from the CharAde engine, but you need to let it tell
you where to read from. So, capture the result of calling it to initialise it:

 LET pk = USR 604100

Now you can use that address for getting information back with a command:

 ? - Read a character code back from the cursor position

So, to read the character at a cursor position, first move the cursor to the foreground or
background with "@" or "&", then LPRINT the "?" command:

LPRINT "@C0?"

Now get the answer to your query with:

PEEK (pk)

Remember that what you'll get back is the code 0..63 for the character, not an ASCII code, nor the
character you originally printed.

There are also two commands to scan a small rectangular area, starting at the cursor position and
covering a certain height H and width W:

 +HW - find the largest non-zero character code within an area

 -HW - find the smallest non-zero character code within an area

Again, use PEEK (pk) to get the result - assuming you've set pk with the result of USR 54100
(okay, the value for pk should be 54200, but be careful, as this may change with updates to the
CharAde engine).

How useful is this? Well, let's say you're programming a shoot-em-up. You define the player ship
and shots in the lower number characters, the enemies in the higher numbers, and the scenery in-
between. The background is all SPACEs. Now, to do your collision detection:

i) Copy the scenery into the foreground

ii) Draw the enemies

iii) For each player shot, scan its area for the HIGHEST non-zero character. This indicates if
a shot has hit scenery or an enemy and needs to be deleted - but then draw the shot
anyway, this time.

iv) For each enemy, scan the area of its sprite for the LOWEST non-zero character.
Anything that's not zero but less than enemy and less than scenery must be a player shot
drawn over the top of the enemy, so mark that enemy as hit.

v) Draw the enemy shots

vi) Scan the player area for the HIGHEST character. Anything of scenery or higher means a
collision with something nasty.

17 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

vii) Draw the player ship.

viii) Copy the lot to the visible screen.

If you want to be lazy, or quicker, you can just give the player lasers that pass through everything
and don't stop, so skip the testing at stage (iii) and just draw the shots over everything.

And if your player only has one shot on screen, you can skip drawing the enemies at step (ii) and
just test the shot for collision with the scenery. Then draw your enemies just after their collision
checking at stage (iv). This will be quicker as you can do the scan, then draw them, without having
to reset the cursor position. Now you know if an enemy is destroyed, the shot is too.

Note you can read back characters from anywhere on the foreground or background screen, not
just in the visible area.

TIP:
Remember how when a map is drawn, only enough is drawn to cover the visible window of the
foreground? Well, don't go expecting to be able to read back scenery characters outside the visible
area if you're using the map-draw function.

However, remember you can still read back the individual block numbers that make up the map by
reading the characters that represent them off the background screen.

18 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

11. Control Inputs Made Easy
There are two input functions, which will decode either the keyboard (QAOP and N/M/[SPACE]) or
the Kempston joystick, to save you worrying about decoding binary and diagonals:

 < - Poll and decode the Keyboard

 > - Poll and decode the Kempston Joystick

To get the results, it's a PEEK again. The number read back is a 0 or a 1:

PEEK (pk+1) = Up

PEEK (pk+2) = Down

PEEK (pk+3) = Left

PEEK (pk+4) = Right

PEEK (pk+5) = Fire

There's also a result at:

PEEK (pk+6) = Tap-Fire

This indicates that the FIRE key/button is newly pressed since last time you asked.

It only occurs once, if FIRE is being held down, then this goes back to 0 the next time you query
the controls.

It will only go to 1 again if you poll the controls and Fire is released, then you poll again and it is
pressed again.

Note that the CharAde engine is not constantly scanning the controls using interrupts or anything.
You have to keep polling yourself with LPRINT "<" or LPRINT ">" to keep this updated.

But it does work independently for keyboard and Kempston, so you can use it in a 2-player
scenario.

19 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

12. The Last Round-Up
Finally, a few special codes that have escaped our attention so far:

 / - Upward Newline

This works in the same way as printing a " ", it just moves the cursor up a line instead of down. So
you can print multi-line characters from bottom-to-top instead of top-to-bottom, if you prefer.

 * - Copy background character to foreground at cursor

This just copies one character from background to foreground. This lets you delete a foreground
character by replacing it with something from the background. This also takes into account the
scrolling offset.

 %NRC - Set cursor Row/Column behind foreground characters <= N

This is a tricky one to grasp but can be very useful. It places the cursor effectively 'behind' the
foreground screen. You give it three parameters; mask character N (N is typically zero, so use a
SPACE), Row and Column.

What happens then is when you print a character, it will only be displayed if what's on the
Foreground screen is an empty cell (a SPACE itself). If there's already something there, it won't be
printed. In this way, whatever you're printing appears behind anything that's already been drawn.

If you specify a higher value of N, then only character codes equal to or less than N get replaced.

So, for example, your first ten characters ([SPACE] 1..9) could be various distant background
features - empty space, sky, stars, clouds, a path or road, and the rest could be used to draw game
characters, buildings, trees etc.

If you set the cursor with % and give N a value of "9" then anything you print will be drawn over
those bits of space, sky, path etc., but will go behind everything else.

TIP:
For a semi-overhead view game, where you can go behind some buildings, keep the characters for
drawing open spaces and pathways in the lower numbers, and solid scenery in the higher
numbers.

First use the "?" or "+" command at your character's feet to see if the ground they're standing on is
obscured by solid scenery. If not, use @ to draw them over the top of everything (remember you
can use "/" to draw them from bottom-to-top).

If their feet are obscured, use % to draw them behind the solid scenery, but over the top of
anything else (should their head or body still stick out somewhere visible).

20 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

,

 "RC - Set cursor Row/Column on actual display screen

This is a not-so secret command left in from testing that lets you print characters and blocks on the
main display screen. That way you can go outside the normal 24x18 viewing window and display
your graphics in the surrounding area. The editor uses this feature to display the results of your
editing.

Note that you could use ordinary BASIC UDGs for drawing the area around the display window.
The editor does this too.

Remember that to type a character you have to enter it twice, for example:

LPRINT """12HELLO"

And finally:

 =NCFM - Redefine characters N..(xC) as font F character M..

This last function is provided for animation. You may have been tempted to use the multiple fonts
for animation, but don't. Switching between them is too slow. Instead, use the "=" function. This
redefines characters in the current font by copying them from others, or from characters in another
font.

Note that the effect is temporary - as soon as you use "#" to select any font, it will be restored to its
original definition.

Now the four parameters are going to take some explanation:

N - Start with this character

C - This many characters affected, e.g. 1

F - The font set to copy characters from, 1 2 3 4

M - The character in that font to start copying from

For example, Font #1 in the example set contains only letters and numbers, so for this exercise
we'll re-select that one and clear the screen:

LPRINT "#1!)"

And if we print characters ABC and DEF we just see those letters:

LPRINT "@BDABC,DEF)"

But if we were to grab the six characters that make up the Spec-Spiker spaceship image from Font
#3 using the command:

LPRINT "=A63a"

All we have to do is re-display the foreground screen again with LPRINT ")" and we see the
spaceship instead; those six characters have been redefined using images from another font. And
a quick re-select of Font #1 with LPRINT "#1" will change them back again.

21 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

"

13. Honestly, The End
Did I say 'finally'? I meant, 'penultimately', of course. As there is one very last trick, but this isn't
handled by a control code character.

Way back at the beginning, you were told to initialise the CharAde engine using the command:

LET pk=USR 54100

You can, if you prefer, use the command:

LET pk=USR 54101

What this does is initialise the engine but with one small difference. Now when you use the
command, instead of a 24x18 character display, you only get a 24x16 character display.

What use is this? Well, it means that you can use the 32x32 Background as two separate
background screens (each 32x16 characters), with different scenes in the upper and lower half.
Use the scroll offset command to set the vertical offset to either (32-4) = 28 or (16-4) = 12 to bring
the particular half of the background level with the top of the viewing window on the Foreground:

LPRINT ":R " LPRINT ":B "

Some ideas of what this could be used for:

• Simple two-frame animations in your background - moving conveyor belts, spinning fans,
flames, gears, or whirling blades.

• Two states of scenery - light and dark, on and off, triggerable by user actions or lighting
effects.

• Perhaps copy the dark half of the Background to the Foreground, then change the scroll
offset and use " " to copy a halo of characters from the light version of the Background
around your character. And copy the light version in momentarily to simulate a flash of
lightning.

• Design half your background graphics with a 4-pixel offset, then have two frames of
scrolling in the two halves, for half-character horizontal scrolling.

22 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

)

*

14. Control Code Summary:

 ! - Clear all screens

 ' - Clear foreground

 (- Copy background to foreground

) - Render foreground to screen

 #N - Load character set N

 @YX - Set cursor Y/X on Foreground screen

 %NYX - Set cursor Y/X behind foreground characters <= N

 &YX - Set cursor Y/X on Background Screen

 "YX - Set cursor Y/X on display screen; Y= row, X=column

 [SPACE] 1..9 Ø A..Z a..z _ - Print a graphic at the cursor position

 $N - Draw block N, move cursor 2 characters to the right

 . - Skip one character place

 , - Newline to character below last cursor placement

 / - Newline upward

 * - Copy background character to foreground at cursor

 :YX - Offset background relative to foreground. Y/X moves UP/LEFT

 ;YX - Set block sub offset Y/X and paint foreground from map

 ? - Read character at cursor

 +YX - Scan Y/X area for highest character code

 -YX - Scan Y/X area for lowest non-zero character code

 =NCFM - Redefine characters N..(xC) as font F character M..

 < - Parse Keyboard QAOPM/N/SPACE

 > - Parse Kempston joystick

23 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

14. New UDG Character (or Block or Data Value) Codes:

 00 = [SPACE]

01..09 = 1 2 3 4 5 6 7 8 9

 10 = Ø

11..19 = A B C D E F G H I

20..29 = J K L M N O P Q R S

30..31 = T U

32..36 = V W X Y Z

37..39 = a b c

40..49 = d e f g h i j k l m

50..59 = n o p q r s t u v w

60..62 = x y z

 63 = _

24 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

Part B - Using The Graphics Editor

1. Loading
Load the editor by first ensuring CAPS-LOCK is off, then type:

LOAD ""

It loads in three parts - the BASIC program, and then two blocks of code. It will take a few seconds
to initialise, then display the main menu.

2. Editing In An Emulator
You might wonder why I've coded the editor in Sinclair BASIC, when in this day and age you'd
expect a PC editing suite. Well, if you follow these suggestions, you'll find this just as fast. I'm using
ZX Spin, and these notes apply directly to that. In your emulator of choice, you'll have to find the
equivalent settings.

• I strongly urge you to turn off auto-tape loading. It's all too easy to lose your work by
inserting a virtual 'tape' for saving or loading, only to have the emulator immediately reset.
Remember you'll have to manually type LOAD "" to start.

• Set the emulated processor speed to 14 MHz (4x normal speed) for a satisfactory
response.

• Enable Kempston Mouse support. If you've never done this before, it can be a little
disconcerting as the application steals the mouse cursor and stops you moving it outside
the emulation window. Remember you can always use you keyboard's START MENU key
to return the cursor to the desktop, or the HOME key in ZX Spin. Because your desktop
cursor does not line up with the emulated cursor, it's best to select the option to hide it.
Note that you won't see a cursor on the editor main menu, only when editing. And you must
select mouse control yourself.

• You can use the Main Menu options to save and load data to virtual 'tapes', or you can load
and save binary data directly from the emulator menu using the code size displayed. If you
do this, always return to the Main Menu before loading or saving binary data. This is
because some small changes are made to the data whilst editing, which are then revoked
when returning to the menu.

25 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

3. Ye Menu

Press "1" to change the control type on the edit screens (Keyboard, where the keys are QAOP and
M N or [SPACE] to select; Kempston Joystick; or Kempston Mouse).

Press "2" to swap between editing on a light background (black on yellow) or editing on a dark
background (yellow on white).

Press "L" to load some previously saved data, or to load the example data file.

Press "S" to save the current data to tape. Note that this saves a complete working block of code
and graphics, that you can load into your BASIC program as described at the start of the
Programming Guide.

Press "Ø" to enter the editor. Note that to return to this menu, you'll need to move the cursor to the
bottom-right of the editor screen and select the [Menu] option.

26 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

4. The Character Editor

The 8x8 grid in the top-left of the screen represents the pixels of the current character. Click within
the grid to draw or erase. With the mouse, the left button is draw while the right button is erase.

The bars in the top-middle of the screen are used to select the INK, PAPER, BRIGHT and FLASH
attributes of the current character. Again, click on each box to change. A preview of the current
character, in colour, appears to the right of the editing grid.

The centre band of the screen shows all 64 characters in the current font. Click on any one to
select it for editing. Under Joystick or Mouse control, you can also press the relevant keyboard key
(with or without [CAPS-SHIFT]) to select the character. Use [SYMBOL-SHIFT] and 9 or Ø to
select the first and last characters in the font. If you selected keyboard control, you must use
[SYMBOL-SHIFT] and a letter to select the lower-case characters.

When editing, you can click [Restore] to revert any changes back to when you selected the
character for editing.

Click [Copy] to make a copy of the current character. You'll notice the [Restore] option changes to
[Paste]. You can then select another character and click [Paste] to paste the copy.

Note that whilst you have a character in the [Copy] buffer, the [Restore] function is no longer
available. To get it back, click on [Cancel] to cancel the character in the copy buffer.

The grid in the top-right is a 6x6 character sketchpad. Click within it to draw the current character.
You can use this to draw arrangements of characters for checking sprites, tiles, patterns, etc. Note

27 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

that with the mouse, you can also right-click to erase with the SPACE character.

The sketchpad has four separate pages, selectable by the tabs just below it. Also you can click and
hold on the double arrows to cycle through the four pages, to test out animations. Note that the
number in the top-left of each page is not permanent, and can be drawn over. The contents of the
sketchpad is not saved between sessions.

At the bottom of the screen are more options to click on. The first four (e.g. [Set 1]) select a
different font set for editing. Also, pressing [SYMBOL-SHIFT] and a number 1 2 3 4 will switch font.

[Block] switches to the Block Editor, and [Menu] returns to the Main Menu.

28 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

5. The Block Editor

The Block Editor works much like the sketchpad in the corner of the Character Editor.

At the top of the screen, ten blocks out of 64 are shown. And below those, all 64 characters of the
current font. Characters may be selected by clicking or pressing the relevant key (see Character
Edit guide).

You can then paint with the character on any of the ten visible blocks. If using a mouse, you can
also right-click to erase with the SPACE character.

Beside the blocks which appear at the ends of each row are their number (1-63) and the
corresponding character to print with a $N command, or to print on the background as a map cell.
Note that you may not alter the empty Block 0, the equivalent to the SPACE character.

The[++] and [--] controls on the left move forward and backward five blocks (one row) at a time.
The[+] and [-] controls on the right move forward and backward one block at a time.

The controls at the bottom of the screen select the font set, [Chars] returns to the Character Editor,
and [Menu] returns to the Main Menu.

TIP:
If your blocks come up and look all wrong, think: have you selected the same font set that you
designed them with? (The blocks in the example graphics were designed with font set #4).

29 doc-v.20 / code-v.B29 / edit-v.34 / chars-v.10

