
UltraCoder VI.1
By Trevor Terns

(c) 1963 Efiipps Associates
This compiler for the ZX Spectrum offers as much compatibility as
possible with interpreted Basic, within the limitations of small
memory requirements, so that programs can be tested initially
using the standard Basic in ROM, then subsequently compile to
produce compact, efficient and fast code.

The main objectives in producing the compiler were:-

- allowing integer arithmetic throughout, since most games
programs rarely need the power of 5-byte floating point
precision.

- to offer additional commands suited to fast program
execution.

- to allow quick development of new games by a small team of
programmers.

The fact that you are reading this document means that you have
been chosen to produce games using UltraCoder - in the short
term, it will not be available on the commercial software market.

Phipps Associates reserve all rights on any programs produced
using UltraCoder, and their express permission must be granted in
writing if a program is intended for marketing through any other
software house.

We sincerely hope that UltraCoder offers better facilities than
any other compiler for the Spectrum, and that our concessionary
royalties of 2.5% are lower than any other software house. (As a
comparison, PSS require a minimum of 5% for the use of MCoder).

If you feel that UltraCoder could be improved in any way, then we
would like to hear about it - several improvements are already
being considered, and these are listed later on.

1

COMMANDS SUPPORTED BY ULTRAOODER

The following list shows all commands, functions and operators
that UltraCoder will accept. Some of these are additional
commands which will be explained later.

BEEP INVERSE REM LET DRAW
CIRCLE OUT FOR PAUSE RETURN
INK PRINT NEXT POKE COPY
PAPER LPRINT STEP PLOT REM *b
BRIGHT STOP GOTO RANDOMISE REM *c
FLASH BORDER GOSUB IF REM *d
OVER DIM INPUT CLS REM *i
REM *k REM *s REM *t CODE INKEY$
SGN ABS PEEK IN USR
CHR$ NOT END POINT SCREEN?
ATTR BIN AT TAB
, 1
/ 9 # = < V A V A II >= AND OR

COMMAND SYNTAX

Command formats are identical to that required by the interpreter
(including the use of complex expressions to replace items - e.g.
BORDER x*2+PEEK 23681).

Multi-statement lines are allowed, and these may additionally be
used in conjunction with IF statements, e.g.:-

2370 IF x=5 THEN GOSUB 5000: LET x=0: PRINT "Hi there"

COMPILING A PROGRAM

A program is entered into the Spectrum in the usual manner. It
can be tested in this way (see "Incompatibilities" below) then
the compiler can be loaded by:-

CLEAR 59999
LOAD "ULTRACODER" CODE 60000

When the program is ready, carpile it by entering:-

RANDOMIZE USR 60000

UltraGoder will respond with the message:-

Enter target address:

You should now enter the address in memory where you want the
resulting code to be placed. Normally, this would be above RAMTOP
but below UltraCoder, so that prior to compiling, you would use
the "CLEAR xxxx" command to create sufficient space for your
purposes.

2

If you wish to place the compiled code below the program area,
then prior to compiling, you must move the program area up by
using the method shown in Appendix A. This method creates a gap
above the system variables but below the program, and UltraCoder
will place all code there. Ensure that the CLEAR command is not
used while this space is allocated. Once compiled, the program
can be saved as bytes in the usual manner.

ULTRACODER MESSAGES
During compilation, UltraCoder reports on errors on the screen,
showing an error letter code and the Basic line in question. At
the end of compilation, a total error count is given and the
complete program size shown. This size should be retained for use
when saving the code as bytes. The starting address is as you
have initially given to UltraCoder as the "target address".

Error codes

3 Array already dimensioned
A Syntax unacceptable (usually with REM * ccrnnands)
B BIN expression error
C Nested expression error (" " " ")
K User defined graphic character error (A-U)
L Undefined line nurrber
M Multi-dimensioned array
N Array not dimensioned
U Undeclared data - should not normally occur.
X Invalid item separator (usually a comma)

If the program contains errors, it will give spurious results if
you attempt to run it.

It is not possible to predict in advance the amount of memory
required for compilation, but on balance, the compiled program
will occupy roughly the same amount of memory as the original
Basic source program providing that none of the usual "memory
saving" techniques have been adopted.

INCOMPATIBILITIES WTIH INTERPRETED BASIC

The following list shows all areas where a difference occurs -
study it carefully

- String variables not allowed (to be rectified in V2.0)

- Integer arithmetic means that maximum range of values for
any variable is -32768<x<32767

- Expression evaluation has no priority, so brackets must be
used to indicate the order of evaluation. This is also true
for conditional expressions. See examples later.

3

- multi-dimensioned arrays are not allowed, although 26
arrays (A-Z) can be declared in the usual manner. The base
subscript for arrays is 1 (as in the interpreter).

- variable names are significant in the first two letters
only, so variables BALL and BAT are considered identical,
while BL and BT are independent. Array names are independent
of the simple variable of the same name.

- DRAW carnmnd does not accept "arc" parameters.

- CHR$ can only be used within* PRINT and LPRINT oorrmands.

- INPUT command cannot display variable data, although it
can use a text prompt. E.G. INPUT "Enter level";sk is
acceptable, but INPUT ("Enter level ";x)?sk is not.

- GOTO and GOSUB may not use computed values (e.g. GOTO x*2)

All normal stream usage is acceptable (e.g. PRINT #1;AT 1,0), but
Microdrives are not supported in VI.0.

ADDITIONAL COMMANDS

These commands extend the Spectrum capability to suit a compiled
environment: -

REM *b - check to see if the BREAK key is
pressed and reports BREAK error code if
so, otherwise execution continues.

REM *c attr,mask - "colour wash". This command requires
two parameters. The first identifies the
value to be inserted into every attri
bute screen position. The second param
eter gives a "mask" to indicate which
values of the attribute character are to
be altered. So, for example, REM *c 2,7
will change all ink on the screen to
red.
REM *c y,56 will change all paper to the
colour code given by variable Y at
runtime. You can additionally use this
command to change the entire status of
'bright" and "flash" if you wish.

REM *d nnnn This is equivalent to the PAUSE Basic
command, except that the pause is not
terminated when a key is pressed. This
command allows you to slow down a
program which is operating too fast,
without the delay being stopped by the
player pressing a key interactively.

4

REM *s time,freq This command drives the beeper directly,
allo«in^ ound effects to be produced by
experiment. The first parameter gives
the time required in l/256ths of a
second. The second gives a sliding
frequency value, where a high figure
gives a low tone. REM *c 256,1638 is
almost equivalent to BEEP 1,0.

REM *i hh hh .. Inline hex coding. The code is converted
and included in the program at the
appropriate place.

REM *k "x",1,2,3,4,5,6,7,8
Define user graphic character "x" with
the eight rows that follow. All eight
rows must be present and they may not be
canputed data.

REM *t n Toggle compiler switch n. Compiler
switches affect the wa in which
UltraCoder generates its runtime coding.
All switches are initially set off (n=0)
and can be set on by using the command
once. If the command is issued again,
the switch will be set off. In this way,
portions of the program can be compiled
in different ways. Current switches are:
REM *t 7 - switch on/off BREAK enable.

If on, the BREAK key is
enabled at the start of every
line, and when pressed, the
line number will be shown in
the report message. If off,
BREAK is disabled, and a STOP
command will jam the machine.
Useful When testing.

REM *t 6 - switch on/off line tracing.
REM *t 7 must also be on be
fore this switch has any ef
fect. It forces the compiler
to generate run-time code
which displays each line num
ber in the bottom right-hand
corner of the screen. This
also slows down execution
quite considerably. Portions
of a program can be traced by
putting a "REM *t 6" command
either side of the section to
be monitored.

5

Enhancements to other ocmnands:

- the BEEP command is implemented to use the floating point
calculator in the ROM to evaluate the duration and pitch
parameters. However, since all expressions must use integer
arithmetic, the equivalent of BEEP 0.01,6 would be coded as
BEEP 1/100,6 where the duration is written as one integer
value divided by another. Any paranthesised sub-expressions
will be treated as strictly integer, so for example BEEP
(x*3/10)/100,6 would evaluate "x*3/l0" in the normal integer
manner before being passed to the floating point calculator.

- the expression RND on its own generates a random number
between 0 and 32767. However, you can write RND*nnnn (nnnn
can be any expression) to give a random number between 0 and
(nnnn-1). So LET x=RND*6 will give x a value from 0 to 5. In
order to allow compatible testing with the interpreter,
always write in the form LET x=INT(RND*n). The compiler will
ignore the INT function (since all arithmetic is integer
anyway!) and give the identical result to the interpreter.
You must note, however, that RND*n is NOT the same as n*RND.
- a RETURN command at the highest level (i.e. with no
corresponding GOSUB) will cause a return to the standard
ROM. E.g.: 10 FOR x=l TO 20: PRINT "Hello!": NEXT x

20 RETURN
This small program will print as directed, then return to
the standard ROM for more commands.

CODING EFFICIENCIES

The following list shows some general guidelines to producing
efficient and compact compiled code. Use them when speed or space
become at a premium, otherwise write your code as normal.

- FOR/NEXT loops generate more coding than the equivalent
LET/IF...IHEN commands. This is purely because the compiler
does not know to whereabouts it must jump back when
generating the code. So, for example:-

10 FOR x=l TO 23 STEP 2
20 PRINT "Line ";x
30 NEXT x

...is more ineffiec,ient (in memory requirements, but
not necessarily speed) than...

10 LET x=l
20 PRINT "Line ";x
30 LET x=x+2: IF x<23 THEN GOTO 20

- The expression PRINT CHR$ 65 is more efficient in memory
than PRINT "A". The trade-off occurs when a string of more
than two characters is to be printed. Exanple:-

6

10 PRINT CHR? 65;CHR$ 66; is efficient
10 PRINT "AB"; is inefficient

10 PRINT CHR? 65; CHR? 66; CHR? 67 is inefficient
10 PRINT "ABC" is efficient.

- GOTO and GOSUB generate three bytes of run-time code, and
thus are very efficient. Use GOSUB frequently to replace the
lack of DEF FTST/FTST expressions. A GOSUB is nearly always more
efficient than two similar LET statements.

MISCELLANEOUS INFORMATION

1. Every compiled program has a basic overhead of approximately
750 bytes. Adding "REM *t 7" to a program causes an addi
tional 6 bytes per line to be generated. "REM *t 6" causes
another 3 bytes per line to be included.

2. String functions INKEY$ and SCREEN$ can only be used in
conjunction with the CODE function, e.g.:

IF CODE SCREEN?(y,x)=65 THEN ...
CHR? function can only be used within PRINT/LPRINT commands,
so in order to print copy the character on screen position
(0,0) to position (21,31), you would write:-

100 PRINT AT 21, 31;CHR$ CODE SCREEN? (0,0);
Although it looks cumbersome, it generates very efficient
code!

3. CIRCLE and BEEP commands use the ROM's floating point cal
culator and are thus intrinsicly slow. The BEEP oommand can
be speeded up by using REM *s instead, but CIRCLE usage
should be kept to a minimum.

4. As supplied, UltraCoder has room to compile a program which
contains a combination of 512 program lines (not statements)
and independent variables. An array is counted as one item.
This should be sufficient for most purposes, but note that
UltraCoder V1.0 has no memory overflow checks and thus it is
important to be aware of this limitation in very large
programs.

5. AND and OR act as Boolean operators, so that (21 AND 15)
gives the result 5, while (21 OR 15) gives the result 31. In
this way, you can avoid the "issue 3 Spectrum" problem
associated with the IN function by masking out the lower 5
bits supplied by the keyboard:-

120 IF (IN 65278 AND BIN 00011111)<>31 T H E N ---

6. The previous example shows a very important point: since
expression evaluation is strictly "left-to-right", you must
use brackets to surround priority expressions. This is par
ticularly true when using AND or OR within IF statements.
Consider the fol lowing :-

7

50 IF x>l AND x<5 THEN GOTO 100

If x contains 0, then this would give a "true" result, since
"x>l" gives the result 1, "1 AND x" gives the result 0, and
finally "0<5" gives the result 1 (i.e. "true"), therefore
the program would continue at line 100. You must always
enclose such expressions within brackets to enforce the
correct priority (c.f. line 1090 in BREAKOUT game)

50 IF (x> 1) AND (x<5) THEN GOTO 100
EXAMPLES OF USE

The first program is a demonstration of the effect of the
extended carmands

10 FOR y=0 TO 7
20 REM *c y*8,BIN 00111000
30 FOR x=50 TO 250 STEP 12
40 REM *s 10,x
50 REM *b
60 NEXT x: NEXT y
70 RETURN

30

The second is a complete BREAKOUT game for the Spectrum! The
program was originally written to run in normal inpterpreted
Basic, and I have merely added and altered where necessary to
suit the compiler (this explains the cumbersome line numbering).
The resulting program generated just less than 3900 bytes of
code! Not bad, eh?

1 R E M
.. ____ _10 RRNDOMIZE 20 LET »ax=^90 30 DIM b C160)4-0 LET high =0 50 Pft'PER 560 REM *K "Q“ , 60.. 126,255^55,25 .255.X 2 B , 60100 IF CODE INKEV* THEtf.GQ TO X 0 * 'J * ^ Z *P R I H T A T & a'■ini B O R D E R 4: CL 3 ------3 ; ̂ I N U E R j E ^ L " * * B R £ » R O U T f* -• « T"© XBQO P h i p p s A s s o c i a t e s ’ RT 21,5; "Press any key. to staj t
102 LET y=© _
104 j p ^ C O D E * INKEV‘$ T H E N G O T O 1

L10S F O R X =0 T O 4.00 S T E P 4.1S6 REM *S2,1280-x u>7 T107 NEXT X: LET y=>J+l: TF y>/ T
iZN -GO T O 102
?■?! C?ST ° P R I N T TflS 0; I N V E R S E — S R E R K O U T a " (J N U E R 5 S 0; use the cursor Keys to stove you bat and control the bait. The nbject of the game is to rem o v e all the bricks! P o i n t s are s c o r e d a c c o r d i n g to^the row being Knocked do urn.

ITS I N P U T “EhT e r skit X t eve t tX
‘IS©' OR S H U 5 T « E N CO T O
115 ^ _
14© F OR i =1 T O X&&: L E T
1^0T LET X=0: F O R i =1 T O IS: L E T
K =Sf C2 * i) _ _._Tirr -r.m v 4,

i i r
X! 4 i H i.!$ 5 = 0 : * GO S UB BMW.-. .G O S U
3 6 1 0 02 5 0 LET. bl=3

8

iRND±13y60© LET bat=3 610 LET y0 =XNT
III FOR J?06TO 17: PRINT RT J,©

3^;CHR* 32: NEXT .j* &30^FOR ja7 TO 9: PRINT INK 3 ;R T j?0;CHRJ 1«: NEXT j _6£0 LET Ji r--XNT WND#3J -1 6*5 PRINT PRPER *; INK 0,«T 20, a;blj" balls left."64? PRINT # 1 ;-press any Key to
start. . - : .p a u s e 0

it!! fET^bP*®: IF XS>1 THEN GO T
1 B 1 0 5 IF BBS (y 0 - ba ? :• 1 THEN GO T
3 3000
1020 IF dVf=-2 THEN LET" 4i f =INT
1030*IF+dir(0 THEN LET dir=2 - lIN T f RMD *2? .* fdi r *2.* .*1040 GO TO 1200 __1050 IF X 0 < 31 THEM GO 7 D ' ■£*$£-„ 1060 GO SUB 7000: IF dir—2 THEN
s e t difs-INT t«ND*3J-1 _IOT0 IF dif>0 THEM LET dif~-2+tI *T C RND 4r2 } # 12 -d i r .U 1088 GO TO 12001339 IF CX0<10) OR 1X0>23? -HEN 30 TO 12001035 IF *INT IX0/2)*2J f>x0 THEN GO TO 1200
|!I! ^ F h' } ^ x- ! r f i ^ 0 +i>=a t h e n
U i 0OGO2Iue 7000: LET h (tn-1) fl8
fy0 + l) =01120 LET s=s+n' 1 3 0 xr s=a-a>: t h e m g o to 0 0 0 0
1 135 GO SUB 60001140 IF flB'5 dir 0 2 THEN Gu Tu 11
1150 LET dirsl-SGN dir?ai1 +INT t
RND*33)
1170 LETTdi r=(-SGN di D J f (BBS di
1200*GOT5 U B ^ 5 S 0 0 I F y©>0 THEN G -i TO 12301210 IF BBS d i f >1 THEM GO TO 12S
1220 GO SUB 7000: LET dif=dir*3:
f30TJF1y0?i7 THEN GO TO 1250 240 JF RBS di f <3 THEN GO TO 125
1245 GO SUB 7000: LET dir^SGN di
1553 LET X1=X0+5GN dir 1260 LET yl=y0+(RBS dir-2? TM* 1270 PRINT RT y0,X©;L-HRS 32, INK

5 ;RT yl/XljCHR4 160 1230 REM *dsk „ ̂k1230 LET X0=Xl. LET y0=yl 13©0 GO SUB 5500• S00 GO TO 1000

3000 BEEP 50,103310 LET bUfci-i 3320 IF bl>© THEN SG TO OOO 3325 IF S<high THEN GO TO 0070 3030 LET highrS3060 PRINT RT 21,©;" Score: ‘*;s; CHR$ 32;CHR$ 32; FLASH 1;" NEU H IGH SCORE FLRSH ©3070 IF S < M a X THEN GO TO 3©9© 3S80 PRINT RT 20,0; FLRSH 1;“ CO NGRRTULRTIONS - HSXiftUtt score" 3090 p r i n t n l; “Rnother yai«e? **; 3095 LET X=CODE IMKEY*: IF (X < > 1 21) AN D (x H 1195 THEN GO TQ 3305 3100 IF X =121 THEN GO TO 100
3120 RETURN 5000 RETURN5500 LET X =CODE INKEV*5510 LET pl = Cx=54? - IX *55? . LET b l=b3 t +pl553© IF CbKll DR f bl ;* IS? THEN L ET P 1=05540 IF pl=0 THEN RETURN 5550 PRINT RT ba t-p1,0;CHR$ 32 5560 LET batsbdt+pl5570 PRINT INK 3;RT bat*p1,©;CHR $ 1435560 RETURN5030 PRINT ftT 21,S;*;CHRf 32 6010 RETURN5133 PRINT RT 21,2S;hi9h 6110 RETURN7000 IF bp = 1 THEN RETURN 7010 B E E P 10.20 7020 LET bps!7030 RETURN

APPENDIX A - Program relocator

The following program relocates the entire program space up by an
amount specified by the INPUT command. The actual routine that
performs this task iss-

LD HL,(PROG)
DEC HL
LD BC,nnnn
CALL 1655h
RET

42,83,92
43
1,FN L(bytes),IN H(bytes)
205,85,22
201

You can POKE this above RAMTOP and use it independently of the
program below, by substituting the appropriate values into the
third line (ID BC,nnnn).

9

1 REM Program retocator2 REM ©1963 Phipps Associates3 REM By Trevor Toms1© DEF FN h<X)*INT (XX256J 20 DEF FN l(X)=x-256*FN hCXJ 30 INPUT "How many bytes to be reserved? bytes 4-0 LET address=FE£K 23635+256* PEEK 23636100 DRTR 42,83,92,43,1,FN t (byt es),FN h (b y t e s) ,205,05,22,201 120 LET raw top =1+PEEK 23730+256 *PEEK 23731130 FDR X=r3J»tOp TD jrdJftl O P +10: READ n : POKE X ,n : NEXT X 14-0 RftNDOMIZE USR raid top
2 0 0 p r i n t "Task complete - ";by tes;" b y t e s " *"reserved starting at a d d r e s s a d d r e s s

APPENDIX B - Suggestions for V2.0

1. Strings to be implemented as arrays only. They will be
DIMensioned in the usual manner, and string slicing
would be allowed. The LEN function, however, would only
return the length as DIMensioned.

2. Linking of several modules of compiled code to allow
larger routines to be compiled. This would involve the
use of "REM *j nnn" command, where nnnn gives the
number of the module to be "jumped" into. At the start
of compilation, you will specify which module number is
being compiled (default is module 0 which contains the
750-byte overhead).

3. Memory protection to safeguard against corruption by
large programs.

4. Relocation of UltraCoder to the screen area to allow
even larger programsI

5. Operator priorities to conform to Sinclair "standards".

10

