
M A N U A L

FOR

ASSEMBLER-FORTH-DEBUG

I N I T I A L I S I N G M I C R O S O U R C E .

Microsource automatically links Into the Spectrum's operating system on start
up but when used with Interface 1 a Basic 'error' must be caused Ceg. type In
RETURN and ENTER) to correctly link up Microsource,Interface 1 and the ZX
Spectrum. This operation must be performed after every power-up or NEW.

M I C R O S O U R C E O P E R A T I O N - G E N E R A L

Microsource Incorporates two languages and a Debug aid which are all 'Invoked'
by the use of Basic 'reserved variables'. The reserved variables which affect
Mtcrosource's operation are given below. You should not use any of these
variables in a program other than for invoking Microsource's facilities.

Reserved Variable

Assemble
Forth
Loader
Debug
Forsv1
Forsv2

• • • Assembler • • •

Operation

Invokes Assembler
Invokes Forth
invokes object code manipulator
invokes Debug aid
Forth stack pointer
Forth stack pointer

Microsource's Z-80 Assembler Is Invoked by LET assemble = 1. The assembler
scans the user's Basic program for valid assembly language lines, which are
held in REM ! statements as follows: (the exclamation differentiates the
Assembler lines from other types of comments).

10
20

LET
REM

assemb 1 e
!

= 1
org 8000h

30 REM ! code 1 d a, 2
40 REM ! out (254), a
50 REM ! ret

Microsource, when invoked, assembles the code Into memory (or outputs it to
Microdrive, ZX Net, etc.) and produces a formatted listing showing object code
etc. The listing may be directed to the Screen, ZX Printer, Microdrive, ZX Net
etc.

Microsource automatically creates new Basic variables corresponding to the
labels the user has defined in his assembly language program.Thus In the above
example, RANDOMIZE USR code will run the assembled machine code program,
located in memory at 8000 hex.

1

A S S E M B L Y L A N G U A G E S T A T E M E N T S S Y N T A X

An assembly language program consists of labels, opcodes, operands, comments
and pseudo-ops In a sequence which defines the user's program.UsuaI Iy a source
program begins with an ORG pseudo-op (which tells the assembler where to start
puttlnq the assembled code), otherwise It defaults to a starting address of
OOOOH.

Every line of assembly language has the form:

XX REM ! label opcode operand; comments

Where: XX Is a Basic line number.
REM Is the Basic REM Keyword.
! Is the assembly language statement marker,
label Is an optional label. The label, if used,

must start immediately after the '!' and
can be any continuous string of alphanumeric
characters. Spaces in labels are not allowed.

opcode Is a Z-80 opcode. The opcode must have at
least one leading space between it and the
'!' (or the label preceding the opcode)
otherwise it will be taken to be part of
the IabeI .

operand Is the operand required after some opcodes.
; starts a comment. Comments are ignored dur

ing assembly.

A typical line with one statement is shown below:

10 REM Hoop Id hi, 1234h ; load hi with data

Note that the '!' marker can be used to terminate one assembler statement In
a line and begin another, making mu 111-statement lines possible. This program:

10 REM !loop Id hi, 1234h
20 REM ! Inc hi
30 REM ! ret

may be rewritten as:

10 REM !loop Id hi, 1234h! Inc hi! ret

Note that with every new '!' the syntax has to be obeyed all over again, hence
the leading spaces before Inc hi and ret.

UPPER/L0WER CASE

Microsource Assembler does not differentiate between upper and lower case in
labels, opcodes or operands. Comments are treated as a string and are repeated
Identically In the listing. In general, Basic keywords are not allowed, the

2

exception being in arithmetic expressions where they constitute a valid mathem
atical function (see "expressions"). The = and = symbols must be typed out
in full as the = = keywords are not allowed.

LABELS

A label is composed of a continuous string of one or more characters, and only
the alphanumerics are allowed (ie. 0-9 and A-Z). Labels may be of any length.
Examples of allowable labels are:

label 5 transferthedata lopt99 P
loop dontreturnfromhere e5 Z1044

Labels may be declared as Basic variables (eg. LET
"imported" into an assembler program. Thus Id hi,
led as "load register pair hi with 30000". For this
are generated if a label Is declared twice or more,
of a label sets the value during the rest of assemb

datablock = 30000) and
datablock would be evalua-
reason no error messages
and the first declaration
I y.

Labels are evaluated to addresses by
variables area as integer variables,
portion of a machine code routine by

the assembler and stored in the Basic
This allows a Basic program to call any
simply referencing the label.

EXPRESS IONS

An expression is an operand entry consisting of one or more terms that can be
evaluated to a valid assembler operand. Microsource's assembler differs from
most other assemblers as regards expressions by allowing any Basic expression.
For instance:

Id A, 2 + (3*5)
would be evaluated as Id A, 17.

Where the expression evaluates to a value with an integer and fractional part,
only the integer value is taken. For instance;

Id A, SIN 2 (NB use ttie SIN keyword)

would be evaluated as Id A, 0. Where constants are required in an expression,
they can be declared as Basic variables and imported as such:

Id A, datablock * offset value

Expressions may include labels declared in the assembly language program. This
Is useful in accessing lists of data eg.

Id hi, datablock + 2

NUMBER BASES In EXPRESSIONS

Decimal, hex and binary numbers are allowed in expressions in the form:

Hex numbers (ending in •h') eg. iOFFh

3

Binary numbers (ending In 'b') eg. 10110011b
Decimal numbers eg. 1234

Hex numbers beginning with a letter (eg. FFh) should be preceeded by an 'O'
(eg. OFFh) to avoid confusion with labels. Note that the Basic BIN notation
for binary numbers Is not accepted.

Number bases may be mixed In expressions eg. Id a, 12*12-l0h+101b.

STRINGS In EXPRESSIONS

A 1 character string in single or double quotes will be evaluated to Its
ASCII value eg. 'k’ and "k" both evaluate to 6BH.
String expressions can be of the form 1 xxxxxx.. .xxx' or "xx>fx.. .xxxx". These
will be evaluated to the sequence of ASCII bytes corresponding to the string

Note that the ! character cannot be used in a string as It starts an assembl
language statement - it would have to be entered as DEFB 33 (see Pseudo ops)
or imported as a Basic string variable.

Any Basic string variable can be Imported and will be evaluated as a string
expression. The following are examples of valid string expressions:

a$ 'hello' "don't say that" 'p'

The following are examples of Invalid expressions:

"good grief!" '!' "mixed delimiters' 'no delimiter

When subsequent sections refer to -expression-, simply refer back to this
section to find out what constitutes a valid expression.

ASSEMBLER PSEUDO-OPS (Assembler Directives)

There are 14 pseudo-ops which the assembler will recognise. These assembler
directives, although written much like processor Instructions (and entered
in the opcode field) are commands to the assembler instead of to the proc
essor.They direct the assembler to perform certain tasks during the assembly
process but have no meaning to the Z-80 processor.

ORG -expression- Sets address reference counter to value of the -express Ion-
eg. ORG 8000h or ORG CODE

LIST -expression- Listing from here on is sent to channel specified by
expression as follows:
Channel 0 = No listing although errors are still reported.
Channel 2 = Normal screen (the default)
Channel 3 = ZX printer
Channels 4-- 15 = Any opened channel, eg. Mlcrodrlve data

fIle/RS232/ZX Net. Note that channel
MUST have been opened from Basic before

the assembler is invoked.

4

OBJ -expression- Object code is sent to channel specified by expression as
foI Iows :
Channel 0 = No object code generated.
Channel 1 = Into memory directly (the default)
Channels 2-- 15 = To relevant stream, which MUST have been

opened from Basic before Assembler is
invoked. Code sent to channels 2-15 has
'headers' proceeding blocks of code.
See 'object and list files'.

OPT -expression- Various options may be specified. The expression should
evaluate to a number between 0 and 127 and alters all 7
options. Each option is represented by one bit as follows:

OPT I ON
1 Turn error checking off for assembly Into protected

areas of memory.
2 List the symbol table after assembly.
4 Wait for 'symbol shift' or 'break' on encountering

an error.
8 Suppress macro expansions in listings.
16 List output In normal printer (ie.80 column) format.
32 List an object code map at the end of assembly (up

to 8 blocks will be listed).
64 Terminate program on error to prevent accidental

'run' of faulty program.
EG. 10 REM ! OPT 2+8+32 -will list the symbol table,

suppress all macro expansion
and list the object code map.

DEFW -expression- Defines the contents of the two-byte word at the current
address reference counter to be the byte specified by the
expression. The least significant byte Is located at the
address reference counter while the most significant byte
is located at the reference counter plus one. Note that
DEFW can usefully be assigned to a label eg.

DEFW code
DEFW 1020H
DEFW 5H (evaluates to 0005H)

DEFI3 -expression- Defines the content of the byte at the current address
reference counter to be the byte specified by the expr
ession. The expression must evaluate to a single byte.

eg.DEFB 's' or DEFB 32h or DEFB 10101010b or DEFB 30h,31h,33h

DEFM -string expr- Defines the contents of n bytes of memory to be the ASCII
representation of a string, where n Is the length. The
expression must be a valid string expression (see expr
essions). The string must not exceed 255 bytes in length.

DEFY -string expr- The string expression Is parsed Into allophones in
standard CURRAH uSPEECH format eg. DEFV 'he(I I)(oo>'.
Intonation changes with upper/lower case. See CURRAH

5

uSPEECH programming manual for full list of allophones
a I I owed In str i ng.

DEFS -expression- Reserves n bytes of memory starting at the current address
reference counter. The counter is incremented to step over
the reserved area. This ts useful for reserving areas of
RAM for data, system variables etc.

EQU
Format:
-label- EQU -express Ion-

Equates a label to be equal to the expression eg. code
EQU 1234H. Similar in principle to Basic LET command.Note
that the expression is always evaluated to be 16 bits.

MACRO
Format:
-name- MACRO (— parameters —)

Begins a macro definition. An ENDM MUST end a macro defln
Ition. Macros cannot be defined Inside other macros. See
'Macros'. Parameter list must be enclosed in brackets.

ENDM Ends a macro definition. No expressions allowed.

ASIF -expression- Assembly Is turned off If the expression evaluates 'false'
When assembly is turned off, only ASIF and END pseudo ops
are recognised. This conditional assembly is very powerful
and allows overlays etc. (See 'Conditional Assembly').

END Terminates a block of code subjected to conditional
assembly. No expression follows.

MACROS

Macros provide a means for the user to define his own opcodes. A macro defines
a body of source text which will be automatically Inserted In the source
stream at each occurence of a macro call. In addition,parameters may be passed
to the macro, providing a cpabllity for making limited changes at each macro
call.
Macros can be used by the programmer to handle repetitive Instruction
sequences where only certain parameters are changed with each repetition.
Macros offer the advantages over recoding each instruction sequence of simp
lified program coding and reduced chances of error.
The main disadvantage of macros In comparison with subroutines Is that the
amount of code generated can be significantly increased.
The ideal use of macros Is in conjunction with subroutines; a call to the
subroutine can be included in the body of the macro, whereas the mechanics of
picking up the parameters and storage of results can be handled by the macro.
There are two elements in the utilisation of macros. Definition, where the
body of code to be generated each time the macro is called Is defined, and
invocation, when the macro is called.
A macro definition consists of the block of code required, set between a MACRO
pseudo-op(to start the definition)and an ENDM psuedo-op(to end the definition)

- 6 -

Each statement between the MACRO and ENDM is part of the macro body. These
statements are placed in a macro file for use when the macro is called. At
expansion time an error will be generated if another macro is defined within
a macro.No statements are assembled at definition time including any Assembler
psuedo-op within it.
A parameter may exist anywhere in the macro body and for any statement field,
Including labels, opcodes and comments. A parameter Is an unknown quantity at
definition time which is assigned a quantity or value at macro call time. A
parameter is denoted by a hash (#) followed by any character from A to Z. 26
parameters can thus be referenced in a macro definition. For instance, id a,
#B at definition time would be expanded to Id a, c at call time if the #B
parameter was assigned the value 'c' when the macro was called. As another
example, DEFM '#R' at definition time would be expanded to DEFM 'this is a
message' at expansion time if #R was assigned to be 'this is a message'.
For every macro definition there is an Internally defined macro parameter $n.
This parameter may be used usefully to generate local labels and control
recursion within the macro body but should not appear in the formal parameter
list in the definition. When the macro is called, each occurence of $n is
replaced by a string representing a number between 001 and 255. This string
is constant over a given level of macro expansion and Increases by one for
every macro call.
A typical use of the $n string Is to provide unique labels to a macro that is
expanded multiple times to avoid duplicate label problems.

% r 0
L O O f ‘W \ - U s MACRO DEFINITION

>SA
A macro may be defined in the following format:

-name- MACRO (— parameter list—)

block of code

ENDM

WHERE: -name- Is the name of the macro. Any further use of this name
will cause an expansion of the macro. The name follows
all the usual rules for labels.

MACRO Is the 'macro' pseudo-op.
(-parameter list-) is the list of all the parameters that will be needed

inside the block of code, enclosed in brackets, eg. if
the macro definition includes parameters #A, #B end #Z,
then the list MUST be (#A,#B,#Z). Do not reference $n
In this list.

MACRO CALL

A macro may be called^gft^^ it has been defined in the following format:

-name- -actual parameters-

The (name) is placed in the opcode field (preceded by a label,if desired) and

7

the actual parameter list In the operand field. Parameters are supplied to
the macro as a list, separated by commas. Do not enclose the actual parameter
list in brackets. Where the parameter is a string, it must be enclosed In
delimiters (or). Whatever lies between the delimiters will be passed
as a string. A single outer level of quotes acts as a null parameter.
Any parameter not supplied at call time will be set to blanks.
Symbols that are passed as parameters are passed by name and not by value. In
other words the parameters are not evaluated until the expansion is produced-
the process Is simply one of character substitution.

An example of a macro definition and its call and expansion are shown below.

DefIn itIon
Moveblock Macro (#A,#B,#C)

Id hi, #A
Id de, #B
Id be, #C
Idle
ret
Endm

Macro Cal I
Move 99 Moveblock 1000H, 2000H, 256

Macro Expansion During Assembly

Move 99 Moveblock 1000H,2000H,256
Id hi, 1000H
Id de, 2000H
Id be, 256
I d I r
ret

Note that the Macro call line does not generate any code. Parameters must be
supplied in the order they are given in the formal parameter list and if a
parameter is to be deliberately omitted, a null parameter ("") should be used
to ensure that the order Is not changed.

Recursion may be employed to generate multiple calls of a macro:

Def initlon
Borderpaint Macro (#A)

asif $n #A
call fI ash
borderpaInt
endm

- 8 -

Cal I

Expansion call fI ash
call fI ash
call f1 ash

CONDITIONAL ASSEMBLY

bo r d e r p a I n t 3

Conditional assembly allows blocks of code to be assembled Into memory when a
certain condition Is "found". The block of code which Is under conditional
control Is enclosed by the AS IF -expression- and END pseudo-ops, and Is not
assembled if the -expression- evaluates 'false'. For example:

as If b = 1
Ida, 3
caI I rewind
ret
,end
as i f b = 2
Ida, 2
call fastforward
ret
end

Here the first block of code will be assembled If b = 1 and the second if b=2.
b could be a Basic variable or even the Address counter $. Conditional
assembly is extremely useful In a macro:

moveblock macro (#A, #B, #C, #S)
aslf #S ""
push hi! push de! push be!
end
Id hi, #A! Id de, #B, Id be, #C
aslf §S ""
pop be! pop de! pop hi
end
ret
endm

Here all the registers are pushed on entry and popped on exit if the fourth
parameter is present. When register preservation is required the macro call
could thus be:

moveblock 1000H,2000H,256,SAVE

The fourth parameter could be missed off from the macro call if register
preservation was not important. When used with conditional assembly macros
can, if used intelligently, generate very readable listings and yet generate

9 -

no more object code than if it had been done longhand. Sometimes, macro
expansions are not desirable on assembled listinqs and they can be suppressed
with OPT 8.

ASSEMBLER OPERATION

Microsources Z-80 assembler is Invoked from Basic by the command:

LET assemble = 1

Actually any number can be substituted for the as it Is the action of
creating the variable which invokes the assembler.
The assembler, on Invokation, tries to make room for its work space (about
1100 bytes) which it borrows from the machine stack. If there Is no room the
assembly will be aborted with the error 'M Out of Memory'. If all is well,the
assembler scans the program, from start to end, looking for assembly language
lines, and assembles them as instructed by the various pseudo-ops and condit
ional directives. If Basic variables are to be imported Into the assembly
language program, they must be declared by LET statements before the Assembler
is invoked.
Note that during assembly, BREAK can be pressed to abort altogether or caps
shift can be pressed to pause the listing. Symbol shift can then be pressed
to continue, or BREAK to abort.
The Assembler works In two passes:

PASS 1 generates values for all labels and assembles them into a symbol
table, which In fact is the Sinclair's variable area. All symbols can
be accessed from Basic after assembly is complete.

PASS 2 performs the actual assembly. Object code is generated, expressions
are evaluated and the various options take effect. Macros are also
expanded. The object code is sent to memory or to the various streams
specified in the OBJ pseudo-op and a listing Is generated. The
listing Is provided so the user can see which bytes have been assem
bled where and various list options provide symbol table dumps etc.
During Pass 2, any errors which may have occurred are also reported.
If OPT 64 is specified, the assembly will automatically abort with
Error X 'Program Terminated' If an error Is found. Note that LIST 0
still allows errors to be reported.

Once assembly is over and the listing etc output If required the assembler
terminates and returns control to the next Basic line after the Assembler
Invokation. If the Assembler was Invoked from a directly entered line, then
control will be returned to the user as normal, or the next statement If it
was a multi-statement line.

The various object code and list file formats are specified next.

10 -

OBJECT CODE FORMAT

By default, object code !s assembled Into memory, starting at the assembly
program address counter set by ORG and defaulting to 0000H. If code Is
attempted to be assembled between 0000H and 3FFFH, then none Is actually sent
as this area Is ROM. This only applies to assembly directly into memory.
OBJ 0 prevents any code from being assembled, although a list file may still
be produced.
OBJ 2— 15 assembles the code to the relevant stream, which MUST have been
opened from Basic prior to the assembler invocation. When code Is sent to any
of these streams it Is sent In blocks of code preceded by 'headers' as follows

Header hi Block of Code H Header hiNext block

The block length Is variable and a new block Is begun every time a fresh ORG
is encountered. In other words, every block represents one contiguous block
of machine code, so many programs may only require one block.

The header for each block consists of five bytes:

A marker byte set to OFFH
Load address lo__________
Load address hi__________
Length io________________
Length hi

When all the blocks have been sent, a header Is output with its length bytes
set to zero. This marks the end of the object code output.

AUTO LOADING of OBJECT FILES

Object files down loaded In this format (eg. to a Microdrive data f!le,ZX Net
etc.) may be automatically loaded by the command:

Let loader = -stream-

Where -stream- is a number corresponding to an input stream, which MUST have
been opened from Basic before invoking the loader. Microsource automatically
handles the removal of the headers and places the incoming code in the correct
place in memory. For example, suppose that an object file has just been
assembled to a Microdrive 2 data file called "object" and the output stream
has been closed. Then: *

OPEN #4; "m"; "object"
LET loader = 4
CLOSE #4

This will automatically load the incoming data into the correct place in
memory. System error "W, Bad Stream or Data" will be reported at the bottom

- 11 -

of the screen if the Input stream has not been opened or If the Incoming data
Is not a Microsource object file.

PROTECTED AREAS etc.

Microsource will normally not generate any object code for assembly into
0000H - 3FFFH, as this Is ROM In the standard Spectrum. Error messages of the
form 'Bad Org' will be Issued and no code generated if code is attemted to be
assembled Into the following areas:

4000H - 5800H (the Screen RAM)
5801H - 5B00H (the Atrlbutes RAM)
5B01H - 5AE9H (the Basic System Variables)

In addition, the Interface 1 'extra' System Variables and the Microdrive
Channels and Maps are 'protected' when they are present. Microsource also
'protects' its own system area which It .steals from the machine stack.

Note that the above does not prevent you from writing and running a machine
code program which alters where the stack Is although If you wish to return
to Basic afterwards you will have to restore the stack pointer.

In certain circumstances the user may require all the protection features
turned off; this may be done by specifying OPT 1. This option may be required
for sending code to another Spectrum or for users who simply want to be
awkward. But beware! If you overwrite the Basic system variables or Microdrive
maps, then on exit from the Assembler you may find that Basic will crash, or
you may be left with an unclosed file on your Microdrive.

LIST FILES

Unless directed otherwise by the LIST pseudo-op, the assembled listing will
be sent to the screen. A typical listing is shown below. The normal listing
format has been optimised for the Spectrum screen :

10 8000
Org 8000h

20 8000 3E AF
plxad Id a, Oafh

30 8000 90
sub b

40 8003 C9
ret

0 tota 1 errors

Each line of listing occupies two lines to make It clearer. The format is:

SIgnon message

Basic line number Assembly address Object code

Label Opcode Comments

12

WHERE :

Bosic line number

Assembly address

Object code

Labe I
Opcode
Comments

Is the line on which the code was written. The line number
Is simply repaeted where multi statement assembly lines
are employed. Note that multi statement source lines are
separated automatically In listings.
address at whtch code Is to be placed If code Is generated.
It Is also the current address of the ORG counter. Unless
an ORG Is specified, It starts off at 0000H.
the hexadecimal representation of the machine code which
each line of assembly language generates,
as source text,
as source text,
as source text.

Note - Microsource Will try to make the listing neat even when long lines
are encountered. This is particularly useful In DEF'M statements where a lot
of object code Is generated.
Using the LIST pseudo-op, the list format may be redirected to another device
or stream. LIST 0 prevents any listing from being produced. Errors are,however
reported. LIST 2 sends the listing to the screen. You will need to specify
LIST 2 if you have directed the first half of a listing to the printer, say,
and wish to view the last half on the screen. LIST 2 Is the default if no list
is specified. LIST 4— 15 will output the list file to the relevant channel,
which MUST have been previously opened from Baste. You can send the list file
to a Microdrive data file if you wish, using this command. Do not forget to
CLOSE the stream after you have finished with It.

The listing may be modified by use of the OPT pseudo-op (see under pseudo-ops)

0!JI 2 Lists the symbol table after assembly. Note that LIST 0 wl I I suppress
OPT 2. The symbol table is a list of all the labels and their assigned
values, and is very useful in debugging a program.

OPT 4 Halts the listing every time an error is encountered and allows the
user to examine what has gone wrong. The listing can be resumed by
pressing 'symbol shift' or the assembly aborted altogether with a
'break '.

Of'T 0 Suppresses all macro expansions in listings. The macro will still be
expanded Into object code but will only appear as its source statement
in the listing. This prevents listings being cluttered with repetitive
chunks of code.

OfM 16 Outputs the listing in a format suitable for an 80 column printer. If
you have an 80 col.printer attached to the RS232 output of your

Spectrum you can use this option to obtain a professional listing.
OPT 32 Outputs an object code map at the end of assembly. This map tells the

user where the blocks of code start and how long they are. This Info
rmation is provided in both hex. and decimal. This map will be useful
for users with a tape-based system who wish to save their machine code
or tape using the SAVE CODE command, which expects a start
address and a length.

13 -

AUTO ABOR T

In some circumstances It may be desirable to prevent an assembled program
with errors from being automatically run. For instance, this program will
crash the computer:

10 LET ASSEMBLE = 1
20 REM ! org 8000h
30 REM ! crash rubbish
40 RANDOMIZE USR crash

The assembler will obediently try to assemble the source, report the errors,
and then drop back Into Basic, which will promptly crash when the USR call is
made.
OPT 64 will automatically abort a Basic program if an error Is detected In
assembly, and the error message "X : Program Terminated" will be Issued. For
instance, if OPT 64 is specified In the above program, the program will
generate a listing and terminate as follows:.

20 8000

30 8000
org 8000h

crash rubbish
no such macro
1 total errors

X : Program Terminated, 10 : 1

Z - 8 0 A - C P U

ASSEMBLY LANGUAGE MNEMONICS

The Assembler follows standard Zilog mnemonics with no departures from the
norm for opcodes or operands.

, EXAMPLE ASSEMBLY LANGUAGE PROGRAMS

Some examples are given in the final manual of programs to handle pixel
plotting, text handling and sound output. The following example makes a "zap"

1 e for game
10 LET assemble = 1
20 REM I org 32000
30 REM ! zap Id be, 16
40 REM ! zp 1 xor 16
50 REM i push be
60 REM ! del djnz de 1

14

70 REM ! pop be
80 REM ! out (254
90 REM ! djnz zpl
100 REM ! ret
110 RANDOM 1IZE USR zap

NOTES FOR USERS OF TAPE BASED SYSTEMS

It is not possible to download assembled object code directly to tape during
the assembly process In a format suitable for direct re-loading and execution
on the Spectrum. The programmer must assemble the object code Into memory,then
save It onto tape using the SAVE ... CODE command. OPT 32 should be used to
devise an object code map for use with this command.

NOTES FOR USERS OF MICRODRIVE SYSTEMS

Microsource is fully compatible with Interface 1. However before invoking
Microsource, the user MUST cause a Basic error (eg. type in RETURN and ENTER)
This is to ensure that the 'shadow' system variables (see p.45 Interface 1
manual) are set up and Microsource correctly linked into Interface i's error
handling mechanism.
Note that this only applies after a power-up or a new. You don't have to do
it at all if you are using the Microdrive's auto-run facility.

ASSEMBLY TIME ERRORS

Assembly errors are printed out in the list file output to the stream spec
ified by the LIST pseudo-op. When LIST 0 Is specified, the errors are output
fo the screen, along with the offending line.
There are 3 assembler errors possible. These are:

ERROR CAUSE

Bad expression

No such macro

Bad operands
No room
Bad allophone
Out of range

Bad org

Bad macro

An expression doesn't have the correct number of brackets or
couldn't be evaluated eg. if a variable is referenced which
is as yet undefined.
Couldn't find the macro; possibly a bad label or a mis-spelt
opcode.
Wrong operands for that opcode.
Assembler has run out of memory space.
Illegal mnemonic for allophone in DEFV pseudo-op expression.
A number in a relative jump, restart, IN or OUT Instruction
is out of the allowed range.
The current address of the ORG pointer would result in Basic
or Assembler workspace being overwritten.
OPT 1 can suppress this.
A bad macro definition or call eg. if too many parameters are
specified In a macro call.

15

In addition to those assembly-time errors which are reported In the list file
there are two system errors which cause Microsource to abort. These are
reported at the bottom of the screen 11ke a Basic error - (n, m are the line
and statement numbers where the errors ocurred, just like a Basic error).

W Bad stream or Data, n:m - will be Issued by LET loader = n command If no
stream opened or iIf Incoming data In stream I s
not a Microsource object file.

X Program Terminated, n:m - will be issued if OPT 64 Is spec i fIed and an
error Is found.

[E N D of S E C T I O N]

••• Forth

FORTH - AN INTRODUCTION

Forth Is a stack-orientated language which utilises words to manipulate
Information held as I terns on the stack. Words may be built up out of other
words and compiled Into the central Forth "dictionary". Once In the dictionary
Forth will respond to the new words as If they were an Innate part of the
language.
The user In effect writes his own language as he goes on, defining new words
to perform specific functions. Over 70 words and 6 control operators are
Instantly available to the user as they are held In Microsources ROM. The
users dictionary is built up In RAM and linked to the ROM dictionary and
various Forth words allow the user dictionary to be saved, reloaded and linked
to existing dictionaries or back Into the ROM dictionaries.

USE OF WORDS

A word Is Invoked simply by placing It In the string of Forth words following
the Invocation LET forth = l . Words are separated by a space between each word.
Numbers are entered in a similar way In either decImaI,bI nary,or hex; when
Forth encounters a valid number It simply places it on the stack.The following
sequence of Forth words places the number 19 on the stack and performs the
three Forth words DUP, +("add") and .("dot"):

19 DUP + .

- 16 -

F ORTH I N V O C A T I O N

Microsource Forth is invoked by LET forth-1. The forth scans the users Basic
program for valid Forth lines, which are held i n REM # lines as follows: (the
hash differentiates Forth lines from other types of comments).

10 LET forth=1
20 REM # 1 2 1 2 DUP * + . CR

Forth, when invoked, interprets all the Forth lines It finds following the
invocation. As many Forth blocks as you want may be used inside a program, as
long as each block Is preceded by a LET forth=i statement, to invoke the
Interpreter. As soon as the interpreter finds a line which does not start
with REM # the Forth execution is terminated and control returned to Basic.

The following program, for instance, has two Forth blocks and three Basic
bIocks:

10 LET forth=1
20 REM if 1 DUP DUP DROP DROP DUP .
30 REM # DUP SWAP + DUP ,
40 LET a=2 : REM forth is terminated now
50 LET a = a+1
60 LET forth=1
70 REM if DUP * .
80 PRINT a

Use of Forth in this manner allows Forth blocks to be integrated and run with
Basic either as large units or many separate portions. Forth words allow Basic
variables to be "transported" between Basic and Forth, so parameters may be
passed to and fro.
Forth may be used in 'direct mode' just like Basic by preceding with an
I avocation:

LET forth=1 : REM # 1 2 1 2 # .

Upper and Lower Case.
Microsource1s Forth, unlike its Assembler, Is 'case-

dependent', that is, It is fussy about whether you use upper or lower case.
All ROM-defined words (ie.the words that are in the system at power-up) must
be invoked In UPPER CASE eg. DUP, ROT, SWAP, etc. All user-defined words (the
ones you build up yourself) are defined and Invoked In LOWER CASE eg.stop, go,
printmyname, etc. Although this Is not standard, It allows the user to quickly
spot his own words in a program and differentiate them from the system's.This
greatly improves the readability of long programs.
Like the Assembler, the symbols > =, *C= and O must be typed out In ful I
ie.less than or equal to, (rather than by using the keywords ie. < = }

THE STACK

Forth supports a parameter stack which should not be confused with the Z-80
's machine stack. A stack Is a 'first in last out' buffer which holds items
pushed onto It. The Iast item to be pushed onto the stack will be the fIrst

17 -

Item to be popped off It. All numbers, addresses, data etc. In Forth are held
on the stack and various stack operators may be invoked to manipulate items
on the stack. Arithmetic is also performed on the stack, for Instance, the
word + ("add") pops the last two items off the stack, adds them together, and
places the result back onto the stack.
A consequence of this Implicit use of the stack is that Forth uses POSTFIX or
Reverse Polishtas it is often known) notation for all its sequential oper
ations. The sequence PRINT 2+3+4 in Basic is equivalent to the Forth 4 3 2++.
A pleasant consequence of using Postfix as opposed to Infix notation is that
brackets and precedence rules are redundant, although the programmer has to
think harder when doing the ordering operation.
There is also a return stack which Is similar in operation to the parameter
stack but which is solely concerned with handling internal loop and control
Indices. The return stack is manipulated implicitly by the forth control op
erators and explicitly by the return stack operators. Unless mentioned
otherwise all reference to the stack refer to the parameter stack. Note that
the stacks are not cleared by LET forth=l but are cleared by Basic RUN and
CLEAR.

FORTH and NUMBERS

Microsource Forth supports 16-bit Integer numbers and depending on which
words are employed to operate on the stack, numbers can be treated as either

unsigned 16-bit integers or signed 2's complement numbers. For a review
of 2's complement arithmetic, refer to Fig. 3.
This topic can cause newcomers to Forth considerable confusion as numbers
popped off the stack which are greater than 32767 mysteriously appear as
-32768 when printed using . ("dot"). The word U. ("U-dot") is used to print
out a number which is a 16-bit Integer and this simple example shows that the
representation of signed and unsigned numbers is not Inherently different -
whether a number on the stack is considered to be unsigned or signed depends
on the conversion routines applied to It.
When transporting variables to and from Basic careful attention should be
paid to the number format when using GET and PUT. (This does not apply to
COPY). The range for GETing variables from Basic and transferring them to
Forth is -32768 to +32767. Numbers outside.this range are still transferred
but their representation will be wrong and it will be easier to use COPY.When
Forth transfers the top of the stack to a Basic variable, it Is always trans
ferred as an unsigned integer ie. as a number between .0 and 65535 and will
be stored accordingly in the Basic variable. A signed 2's complement number
therefore needs special treatment If it is negative. In the manual, the
notation £ is used for signed 2's complement numbers and û for unsigned
16-bit Integers.
Microsource Forth does not support floating point arithmetic - If floating
point calculations are required then either scaled Integer arithmetic may be
used or the Spectrum's floating point calculator may be called from a machine
language program (see Example Assembler Programs) and parameters passed using
the USR word.

Fig. 3 REVIEW OF TWO'S COMPLEMENT ARITHMETIC

When using unsigned arithmetic all values are positive and the maximum
value allowable depends on the number of bits. In 16 bits the lowest
vaIue i s:

0000000000000000
which equals zero. The highest value Is:

1111111111111111
which is equivalent to decimal 65535 (ie. 65536 numbers, Including 0).

When using signed 16-bit arithmetic,on the other hand,the number of
values that can be expressed is still 65536 but the range here is -32768
to +32767.
In signed 16-bit arithmetic the highest value (32767) is represented in
binary form as:

0111111111111111 (1 zero and 15 ones)
whereas the lowest value (-32768) appears in binary as:

1000000000000000 (1 one and 15 zeros)
The high-order bit called the "sign-bit" is zero for positive numbers and
one for negative numbers.
It is Important to realize that the representatIon of signed and unsigned
numbers is not inherently different. That is,

1000000000000000
represents either -32768 or +32768 depending on the context. Whether a
binary number is considered to be signed or unsigned Is a function of the
conversion routines applied to It.
The computers representation of negative numbers is called "two's com
plement arithmetic". To understand two's complement think about what
happens when you exceed the limit of 16-bit arithmetic. The highest
(unsigned) value is 65535. If you add one to It, you need a 17-bit value
to record the result:

1 0000000000000000

To the computer the one in the seventeenth place would be lost and the
"result" would be zero. If you had added a two the result would be one,
and so on. In effect the 65535 acts as if it were -1. In 16-bit signed
arithmetic the value represented by 65535 Is called the two's complement
of one (-1); 65534 Is the two's complement of two (-2), etc. All negative
two's complement numbers have a one In the most significant bit (the sign
bit) because their unsigned equivalents exceed 32767.

NUMBER BASES

Numbers may be passed to the Forth stack In the Input word string as Decimal,
Binary, or Hex In the forms:

Note that you cant place a negative number directly In the input string,
ie. use NEG after a number to Input It and negate it eg. 123 NEG will result
In -123 on the stack.
Numbers may be printed out from the stack to the current stream In Decimal or
Hex form using the . , U., and C. words. Output in the other number bases
(eg. Octal) may be handled quite easily - see Example Forth Programs for a
suggested way to do this.

New words may be defined In forth by invoking the Forth compiler.The compiler
Is Invoked from within Forth by the % symbol and the new word definition
terminated by ; (semicolon). The % sign for opening a word definition Is not
standard (the colon is usually used) but is unavoidable as the colon forces
the Spectrum into K mode.
Suppose you wanted to define a new word CUBE which takes off the last number
on the stack and replaces it with its cube.
The way to perform this operation in Forth is DUP DUP * *. So the new word
CUBE would be defined like this.

Once a word has been compiled it will be recognised as a valid Forth word as
it has been Iinked Into the dictionary. Forth may be terminated, Basic
resumed, and Forth re-invoked and still the new word will be recognised. The
only way the definition is lost is when a RUN or CLEAR is executed (this
clears the variables area and resets the Forth stacks) or when the Forth words
FORGET and EMPTY are Invoked. Note that LET forth=1 does not clear the stacks
or lose any definitions.
The Forth dictionary may be saved to tape or Microdrive cartridge as a block
of code using the Basic SAVE ... CODE command. The address and length inform
ation for the dictionary is obtained using the HERE and LAST words (see Saving
and Loading Dictionaries) and the code block may be reloaded from Basic. The
first words in any Forth program to use a reloaded dictionary should be STACK
and LINK, to link up the code so that all the previously defined words may be
used.
Note that whenever a RUN is executed, any dictionary in existence is not
actually destroyed It Is just the linking pointers which have been reset.
Providing the user has previously recorded the values for the start and end of
the dictionary he will be able to relink an existing dictionary in with LINK.

Hex numbers (ending in h)
Binary numbers (ending in b)
Decimal numbers

eg. 103Bh
eg. 10101101b
eg. 1028

COMPILING NEW WORDS

10 LET forth=l
20 REM # $ cube DUP DUP * * ;
30 REM # 3 cube .

20

SAVING and LOADING DICTIONARIES

Since a dictionary Is just a contiguous block of memory.lt can be saved using
the normal SAVE ... CODE commands, given the start and end.

A dictionary starts at parameter stack top +1. Thus If you have used the STACK
word, It will be at the number you gave, plus one. eg. after STACK 33000 then
the dictionary start will be at 33001. If you have not used the STACK word at
the start of your Forth program then HERE U. will Iprint out the required
value. You must use HERE U. at the start of your program (before any def
initions) .

The dictionary end can be found by Invoking HERE after all your words have
been defined.

So if the start was 33001 and the end 33087, then the dictionary may be saved
to tape or Microdrive using the Basic command SAVE "name" CODE 33001, 87.

Three values are vital for a dictionary to be reloaded. They are the start
and end of the dictionary and also the pointer to the last word. This can be
found by using the word LAST after all your words have been defined.
As an example:- assume that LAST . returns the value 33070.

Given these three numbers - 33001, 33087 and 33070 - your dictionary may be
reloaded and linked. This is achieved using the STACK and LINK words.
After loading the code back into memory using LOAD ... CODE the first line of
your Forth program should read:

10 LET forth=l
20 REM # STACK 33000 33087 33070 LINK

Which will link In the dictionary. The STACK word takes the number 33000 and
relocates the stack here; then LINK takes the two numbers on the stack (33087
and 33070) and uses them as dictionary end and last word pointers.
Note that you must always use the STACK word when reloading dictionaries
although It can be omitted if you are not loading a dictionary and you are
happy with the default value when Forth Is first invoked (see Fig.4)

RECURSION and WORDS WITHIN DEFINITIONS

If you think about It there is nothing to stop you from defining a word which
contains other user defined ones, providing they are already compiled and in
the dictionary. For Instance, a Forth word called driveoff might be defined
as:

% dr Iveoff get!near shutdoor startengine putingear brakeoff;

WHERE: getlncar, shutdoor etc. are all words which have been defined earlier.

You cannot open a new definition (le. use a %) Inside a definition, or use
the words CONST, VAR and '. Comments may be used Inside definitions but they
must NOT be the final word - le. avoid these -) ;
However one of the things you can do Is use the word which you are defining,

- 21 -

inside Its own definition. This apparant paradox can be explained by
considering the way in which the compiler builds up the word definition.
Consider the following:

10 LET forth=1
20 REM if % loop DUP DROP loop ;
30 REM if loop

The compiler starts by setting up the word loop in the next free cell in the
dictionary. It then considers what is Inside the definition and finds "loop".
Since "loop" by now is set up, Its name Is recognised as beingvalld and so
the compiler places its address in the code field along with the addresses of
DUP and DROP. When the word "loop" is invoked DUP and DROP are executed, then
DUP and DROP, and the operation repeats without end. Left to itself this word
would recurse Indefinitely until the computers memory had run out. However
, if used carefully, recursion can be used to great advantage. The key to
writing recursive definitions Is to always ensure that the recursion will
close ie.stop recurslng at some point. As an example, consider this. A

word fact! Is to be defined which will generate the factorial of a number
on the stack and leave the factorial on the stack. The word definition could
be:

% f DUP DUP I^WAP tf > R * R > f ELSE DRCF DROP THEN;
% fact! DUP 1- f ;

The word 1f' is the recursive bit and performs the successive multiplication
of the components of the factorial. The IF ... ELSE ... THEN clause tests to
see If the calculation is complete each time and if not calls 'f' again to
perform the next multiplication. When the multiplier is 1 the recursion
ceases.
The word 'fact' sets up the conditions for the recursion.

ERRORS in FORTH

Forth error
similar way
the message
stopped due

messages are given at mn-time at the bottom of the screen in a
to Basic errors. They conform to the same format - a code letter
itself, and the line and statement number where the program
to the error. The messages are:

S Bad Forth Word

T Bad Structure

U Transfer Error

V Out of Stack

This could be caused by a misspelt word, spaces being
omitted between words or using a word which has not yet
been defined. System words will not be recognised unless
they are In upper case - see 'Upper and Lower Case'.

This error is flagged by the compiler if definitions are
left unclosed or control structures Incorrectly specified

Caused by referencing a Basic variable which does not
exist.

Stack empty when an Item was attempted to be removed.

All Forth control structures may be broken out of (once compiled) by pressing
BREAK, as for Basic.

22 -

F i g . 4 : F OR T H MEMORY A L L O C A T I O N

nnn Initially
set to default
vaIue of:

(SP-stkend)
2 +stkend

Where SP=m/c stack
ptr and stkend =
system variable

BASIC PROGRAM
VARIABLES

etc.
growlng
upwards

- 23 -

F i g . 5 : D I C T I O N A R Y C O N S T R U C T I O N (f o r o n e w o r d)

THE WORD cube IS USED AS AN EXAMPLE

BYTES USED PURPOSE

2 Pointer to previous word

Length of the word (=n)

C S

n <
U

> characters of the word
B

E J
There then follows the code for executing the word. This
is normally (Forth-79) a series of addresses pointing to
the constituent words. Microsource Forth is different In
that the addresses It holds here, are actual call
addresses to the required routines, ending with a RET.
This has the advantage of greater speed in executing and
is called directly threaded code.

1 RET (C9H)

GLOSSARY OF FORTH WORDS

It is beyond the scope of this preliminary manual to give full explanations
of all the Forth words embodied in Microsource, especially where these words
are standard Forth-79. The words are therefore presented in the form of tables
with brief explanations and longer explanations where appropriate.

24 -

DIFFERENCES BETWEEN MICROSOURCE FORTH and FORTH-79

(Table references refer to Tables 1 - 9)

STACK MANIPULATION OPERATORS (See Table 1)

SWAP, DUP, ?DUP, DROP, OVER, ROT as standard
PICK (new word) enables selective picking of any item off stack.
RP (new word) enables selective picking of any item off return stack.

OUTPUT OPERATORS (See Table 2)

as standard but no trailing spaces printed.
Outputs 16-bit no. as hex digits.
Outputs 8-bit no. as hex digits,
as standard,
as standard.
as standard (SP = Forth-79 SPACE)

AR 1 T H M E T 1C and LOGICAL STACK OPERATORS (See Table 3) ■

+ 9 ■", 1 +, 1-, 2*, 2/, *, /, MOD, /MOD, NEG, MAX, MIN, ABS, AND as standard.

OR, XOR (new words) like Z-80 OR and XOR, but operat
on last two stack items.

ing

RL, RR (new words) Bitwise left and right rotate
of last item on stack.

ADDRESS OPERATORS (See Table 4)

!1 +»1 I • y C@, Ci, ' as standard.
CONST same as Forth-79 CONSTANT.
VAR same as Forth-79 VARIABLE

• 9 ?, U
H. (new word)
C. (new word)
TYPE
."XXX"
EMIT, CR, SP

COMPARISON and TESTING OPERATORS (See Table 5)

= , .£> , , 0 <^, NOT as standard. 0 = is not Included.
>=, o ,

RETURN STACK OPERATORS (See Table 6)

I. > R- R > as standard.

RP (new word) enables selective picking of any item
off return stack.

25

C O N T R O L O P E R A T O R S (S e e T a b l e 7)

(only usable within definitions)

IF xxx ELSE yyy THEN zzz
DO ... LOOP
DO ... +LOOP
BEGIN ... UNTIL
BEGIN xxx WHILE yyy REPEAT
ABORT (new word)

as standard,
as standard,
as standard,
as standard,
as standard.
forces exit from Forth, whether
in loop or not.

DICTIONARY OPERATORS (See Table 8)

HERE, ALLOT
9

c,
H (different to Forth-79)

FORGET xxx, EMPTY
LAST (new word)

as standard,
as standard,
as standard.
places address of dictionary end pointer
onto stack,
as standard.
Pushes current pointer to last
word to be defined onto stack.
Used in load Ing/saving dictionaries.

SPECIAL OPERATORS (See Table 9)

ABORT Forces an exit from Forth or Forth loops.
(new word) Used in changing output stream.
STACK, LINK (new words) Used In moving stack area and re

linking dictionaries loaded from
tape or Microdrive.

(XXX ... XXX) Start and end a comment.

The special operators USR GET PUT COPY and TOK deserve special mention as
these are radical departures from the normal Forth. USR enables a call to a
previously assembled machine code routine and a parameter may be passed to It
in the BC register pair. On return the BC register pair Is pushed onto the
stack. This enables the Forth to use the full power of Microsource Assembler.

GET and PUT enable variables to be taken from Basic, placed on the Forth stack
used In a Forth program, and passed back to any Basic variable. Care should
be exercised in the use of these words to pass negative numbers between the
two languages because of the different Internal representations of numbers in
the two languages. (See 'Forth and Numbers')

The following program will GET two variables from Basic, add them together
and pass the sum back to a Basic variable for Basic to print:

26 -

10 LET numberl = 10 r let number2 = 20 : let result = 0
20 LET forth=1
30 REM # GET numberl GET number2 + PUT result
40 PRINT result

The new word COPY works In a similar way but is more flexible as It copies
the ADDRESS of a variable and the ADDRESS and LENGTH of a string onto the
Forth stack. This enables easy manipulation of strings and complex operations
on Basic variables, whilst they are still in the variables area.

Note that GET PUT and COPY only apply to single variables or single strings,
- DO NOT TRY TO REFERENCE ELEMENTS OF ARRAYS -

T0K allows the user to access some of the symbol tables held In Microsource's
ROM and Is useful for anyone writing a disassembler or even (cheek!) another
assembler. T0K pops the last Item off the stack and prints out a character
string to the current channel if the number is 114 or less.The tokens printed
out, are as follows:

0=LD 1 =ADC 2=ADD 3=AND 4=CP 5=0R 6=SUB
8= INC 9=DEC 10=SBC 11 =JP 1 2=JR 13=DJNZ 14=CALL
15=RST 16=RET 17=P0P 18=PUSH 19=BIT 20=RES 21=SET
22=RLC 23=RRC 24=RL 25=RR 26=SLA 27=SRA 28=SRL
29=EX 30= IN 31=0UT 32= IM 33=CCF 34=CPL 35=DAA
36=D 1 37=E 1 38=EXX 39=HALT 40=NUP 41=RLA 42=RLCA
43=RRA 44=RRCA 45=SCF 46=CPD 47=CPDR 48=CP1
49=CP 1R 50=1ND 51=INDR 52=1N 1 53=INIR 54=LDD
55=LDDR 56=LD1 57=LD1R 58=NEG 59=0TDR 60=OT1R
6!=0UTD 62=OUT1 63=RET1 64=RETN 65=RLD 66=RRD
67=0RG 68=MACRO 69=DEFB 70=DEFW 71=DEFM 72=DEFS
73=E0U 74=DEFV 75=L1 ST 76=0PT 77=0BJ 78=AS1F
79=ENDM 80=END 81=?PC 82=F 83=B 84=C
85=D 86=E 87=H 88=L 89=(HL) 90=A
91 =AF 92=BC 93=DE 94=HL 95=SP 96= IX
97= IY 98= (IX 99=(IY 100=NZ 101 =z 102=NC
103=C 104=P0 105=PE 1 06=P 107=M 108=(BC)
109= < DE) 110=(SP) 111 = 1 112=R 113=AF 114=(C)

27

TABLE 1 : S T A C K M A N I P U L A T I O N O P E R A T O R S

WORD STACK ACTION

SWAP
DUP
?DUP

DROP
OVER

ROT
PICK

RP

(n1 n2— ^n2 nl) Reverses the top two stack items,
(n— -p> n n) Duplicates the top stack Item.
(n -- >n n) or Duplicates only if n Is non zero.
(n -- > n)
(n— ^>) Discards the top stack Item.
(nl n2-^nl n2 nl) Makes a copy of the second Item and

pushes it on top.
(nl n2 n3 — > n2 n3 nl) Rotates the third item to the top.
(n— ->n) Picks n'th item off the stack and

copies It to top of stack.
Like PICK, but operating on Return
Stack. See Return Stack Operators.

KEY Stack Notation:- (before-- >after); top of stack on right
n, nl, ... 16-bit signed numbers.

WORD

?
U.
H.

C.

TYPE

." XXX"

EMIT
CR
SP

TABLE 2 : OUTPUT OPERATORS

STACK ACTION

(n — $>)
(addr -— ?.)

<u-

(u ■

Prints the signed 16-bit number.
Prints the contents of the address.
Prints the unsigned 16-bit number.
Prints the unsigned 16-blt number as hex
digits.
Prints the least significant byte of 16-bit
number as hex digits. The most significant
byte is discarded.
Types the string of u characters, starting
at addr.
Types out XXX. The character " is the
deli m i ter.
Prints the ASCII character.
Performs a carriage return.
Types out one space.

KEY Stack notation:- (before-- > after); top of stack on right.
n, nl, ... 16-bit signed numbers c ASCII character value,
u, ui, ... 16-bit unsigned numbers addr. 16-bit address.

28 -

Table 3 : ARITHMETIC and LOGICAL STACK OPERATORS

WORD

+

1 +
1-

2*

2/
*

/
MOD
/MOD
NEG
MAX
MIN
ABS
AND
OR
XOR
RR
RL

KEY

WORD

+<>
><
0 <
NOT
> =
< =

STACK ACTION

(n 1 n2— >n-sum)
(n 1 n2— > n-dl f f)
(n — =»n + 1)
(n — > n-1)
(n — > n*2)
(n — *n/2)
(n1 n2— >n-prod)
(nl n2■— > n-quot)
(nl n2 — n-rem)
(u1 u2— > u-rem u-quot)
(n — ^ -n)
(n 1 n2— ^ n-max)
(n 1 n2— > n-mi n)
(n — > /n/)
(nl n2— >n1 © n2)
(nl n2— ^nl A n2)
(nl n2— >nl n2)
(n-- ^n)
(n— > n)

Adds.
Subtracts (u1-u2).
Adds one.
Decrements by one.
Multiplies by 2. (arithmetic Iett shift).
Divides by 2. (arithmetic right shift).
Mu 111pIles.
Divides (n1/n2).
Returns module (Ie.remainder from division)
Divides. Returns remainder and quotient.
Changes sign.
Returns the maximum.
Returns the minimum.
Returns the absolute value.
Returns logical AND.
Returns logical OR.
Returns logical XOR.
Rotate right, bit 0 — > bit 15.
Rotate left, bit 15— >bit 0.

Stack notation (before-— >after); top of stack on right.
n, nl, ... 16-bit signed numbers,
n, u1, ... 16-bit unsigned numbers.

Table 4: COMPARISON and TESTING OPERATORS

STACK ACT I ON

(nl n 2 — > f)

(nl n 2 — > n - d ! f f)

(nl n2 — > f)

(nl n2— 5>f)

(n — > f)

(f — > f)

(nl n 2 — ?-f)

(nl n2 — ^ f)

Returns true
Returns true
If n1 and n2
Returns true
Returns true
Returns true
Reverses the
Returns true
Returns true

If nl = n2.
(le.the non-zero difference)
are not equaI.
If n1 > n2.
If nl < n2.
if n Is negative.
result of the previous test.
If nl > = n2.
If nl < = n2.

29 -

KEY Stack notation:- (before— rafter); top of stack on right,
n, nl, ... 16-bit signed numbers,
f Boolean flag (true = non-zero).

Table 5 : ADDRESS OPERATORS

WORD STACK ACTION

@ (addr— => n) ■

! (n addr -— t)

+ ! (n addr -— >)

C@ (addr — •tb)
C! (b addr -— >)
XXX (— — >addr)

CONST XXX (n— >)
XXX: (— >addr)

Replaces the address with its 16-bit
contents, ("fetch")
Stores a 16-bit number into the
address, ("store")
Adds a 16-bit number to the contents of
the address ("plus-store")
Fetches an 8-bit value from the address.
Stores an 8-bit value Into the address.
Finds the address of word XXX in
dictionary and places it on stack.
Creates a constant called XXX with value
n; the word XXX returns n when invoked.

VAR XXX (--->)
XXX: (— > addr)

Creates a variable called XXX; the word
XXX returns its address when invoked.

'XXX (-- >addr) Finds address of XXX in dictionary.

KEY Stack notation:-
n, nl, ...

u, ui, ...

(before— >after); top of stack on right.
16-bit signed numbers 8-bit byte (stored as 16

bits; most significant 8
bits set to zero).

16—bIt unsigned numbers addr 16-bit address.

Table 6 : RETURN STACK OPERATORS

WORD STACK ACTION

I (--> n) Copies the top of the return stack with
out affecting it. Used to obtain current
loop Index.

'I (— >n) Copies second item of the return
without affecting it.Used to obtain
inside a loop.

stack
limit

J (-— >• n) Copies the third item of the return
without affecting it.Used to obtain
of next outer loop from within
(nested) loop.

stack
! ndex
i nner

30

> R (n— ^) Pops a value off p-stack and pushes
It onto r-stack.

R ^ (— >n) Pops a value off return stack and pushes
It onto p-stack.

RP (n — ^n) Picks n'th element from return stack and
copies it to p-stack. (1=1RP,1'=2RP,J=3RP)

KEY Stack notation: (before — -=>after); top of stack on right.
n, nl ... 16-bit signed numbers,
f Boolean flag (true = non zero)

Table 7 : CONTROL OPERATORS

The stack operation refers to the parameter stack. All these words must be
used inside definitions.

WORD(S) STACK ACTION

IF xxx
ELSE yyy
THEN zzz

DO ... LOOP

DO ... +L00P

BEGIN ... UNTIL

BEG IN xxx
WHILE yyy
REPEAT

IF: (f-— » If f is true execute xxx; otherwise
execute yyy; then continue with zzz rega
rdless. The phrase ELSE yyy is optional.

DO: (end start— »
LOOP: (---»
DO: (end start— 5>)
+L00P: (n — >)

Sets up
range.

a finite loop, given the index

Like DO ... LOOP except adds the va 1 ue
of n (instead of always "1 ") to the
Index.

UNTIL Sets up an indefinite loop which ends
when f is true.

WHILE: (f— >) Sets up an Indefinite loop which always
executes xxx and also executes yyy if f
is true. Ends when f Is false.

ABORT See special operators.

KEY Stack notation:- (before— Rafter); top of stack on right,
end limit of loop
start start of loop (initial value of index)

Table 8 : DICTIONARY OPERATORS

WORD STACK ACT I ON

H (n) Places address of dictioary and pointer
on stack. This Is thus a pointer to the
4th byte of the value of variable forsv2.

HERE (— -^h) Pushes the contents of h onto the stack.
ALLOT (n Leaves a gap of n bytes in the dictionary.
, ("comma") (n -— >) Compiles n into the next available cell

in the dictionary. Increments h by two
bytes.

31

C, (b --^) Compiles an 8-b!t value into the next
available byte in the dictionary. Incre
ments h by one byte.

FORGET xxx (— - t o Forgets all definitions back to and inc
luding xxx.

EMPTY (■— - 0 Forgets the entire contents of the user
partition.

LAST (■>addr) Pushes current pointer to last word onto
stack. Necessary when saving/loading diet.

KEY Stack notat Ion:- (before — >after); top of stack on right.
n, nl, 16-bit signed numbers addr address
b 8-bit byte (stored as 16-bit byte with most

significant 8-bits set to zero)

Table 9 : SPECIAL OPERATORS

WORD STACK ACTION

MOVE (from to u-- >)

ABORT (---»

(n--->)

STACK n (--- >)

(<-->>

USR (n1 n2• >n3)

GET xxx (— ^n)
(Input range)

(-32768 to +32767)
PUT xxx (u — >)

Copies a region of memory u bytes long
(from, to). Similar to "Idir" on Z-80.
Forces an exit from FORTH (whether in loop
or not). Return stack cleared, parameter
stack NOT.
Changes output stream to n.AII output will
now go to strean\ n (3=pr inter etc.) Note
that for streams 4-- 15 the channels must
be opened first from Basic.
Moves stack and dictionary compilation
area. Value must follow eg.STACK 8000h.
This is so that no memory is corrupted
should this be the first command.
Start a comment. ')' ends it. A comment
must end in the same contiguous block of
Forth and cannot be the last text within a
definition or a contiguous block.
Call machine code routine, nl is forced
into BC register pair; n2=call address.On
return, BC is pushed onto stack. No regis
ters preserved.
xxx = name of single Basic variable. Value
of variable pushed onto stack,
eg. GET number.
xxx name of single Basic variable. u is
stored In value field of variable.Variable
must exist or error U generated.

IMPORTANT GET PUT and COPY only apply to single variables or single strings
DO NOT TRY TO REFERENCE ELEMENTS OF ARRAYS.

- 32

COPY xxx xxx numeric: (— >n) If xxx numeric, addr of value field
xxx string: (-^n1 n2) pushed onto stack. If xxx a string,

then addr(n1) and length pushed. Thus
COPY a$ TYPE wiI I print aS.

Links In a reloaded dictionary nl is value
of HERE and n2 value of LAST for dictionary
being Iinked.
Prints taken off stack If n 114 or less,
eg. 0 TOK will print out LD. Useful for
disassemblers etc.

KEY Stack notation:- (before— >after); top of stack on right,
n, nl, ... 16-bit signed numbers
u, ul, ... 16-bit unsigned numbers

LINK (n1 n2— >)

TOK (n— >)

[E N D of S E C T I O N]

••• Debug •• •
INTRODUCTION to the DEBUGGING AID

Microsource's DEBUG AID may be used to step through any machine code program
held in the Spectrums ROM or RAM. (note that you cant step through the
Microsource's ROM or the Interface 1 ROM !!) It is an essential tool for
developing a machine code program as machine code does not usually generate
error messages when a problem Is encountered - it either "hangs" or "crashes"
and finding out what went wrong is very difficult without a debug-facility.
The Debug Aid is effectively an emulation of what is going on inside the Z-80
and when first invoked displays a 'front panel' of the Z-80's internal regis
ters and memory. The user can single-step auto-step examine and modify mem
ory contents and set up 'trace masks' to display selected registers during
debugg i ng.

DEBUG INVOCATION

Debug is invoked by typing LET debug= -expression- where -expression- eval
uates to an integer number which represents the address where you would like
to start debugging.
Type in LET debug=0 (and ENTER). You will see the 'front panel' display
appear. This is a representation of the state of the Z-80 before It embarks
on executing the code at memory location zero.
The display is largely self-explanatory but a few points should be noted.

- 33 -

Where 16 bit registers or register pairs are shown their current value is
indicated and the contents of memory at that point is shown as hexadecimal
bytes.

The user Is now ready to enter debug commands.

DEBUG COMMANDS

GENERAL

Debug commands are entered by pressing the appropriate key, and, in the case
of expressions, ENTER as well. Some keys operate as soon as they are pressed.
These are denoted in the command list. The command is acknowledged as it is
entered in the bottom left hand corner of the screen.

S (SINGLE STEP) Immediate action when pressed

Single step, when initiated, causes the opcode pointed to by the PC to be
"executed". All registers and memory contents affected are altered and the
display updated.

X (EXIT) Immediate action when pressed

Exit from Debug, back to Basic. Unless Basic's variables or workspace have
been tampered with (eg.by single-stepping through the NEW routine!) normal
program/line execution will resume.

E (EXCHANGE) Immediate action when pressed

Display the alternate register bank. AF,BC,DE and HL are swapped with their
alternate pairs. The front panel display will show 'ALT' if the alternate
pairs are the ones currently in use.

ENTER (Display Front Panel) Immediate action when pressed

Displays the front panel. Useful after a memory dump to restore the front
panel display.

G (GO) Immediate action when pressed

Repeat single-stepping from the current PC until a breakpoint has been
encountered (see B) or BREAK is pressed. Note that the display during the GO
command depends on the 'call levels' set with the 'L' command (see below). By
default, only the topmost level is displayed.

C (CALL) Immediate action when pressed

The opcode pointed to by PC is examined and unless it Is a CALL or RST it is
executed as a single-step (see S command). If It Is a CALL or RST the entire
call is single-stepped, only displaying when finished. This is useful if you
dont want to know what happens in a call but only want to know what happens
at entry and exit. If a breakpoint is encountered during the call or BREAK
is pressed, then Debug will halt in the call and display the front panel
showing the condition at that time.

34

D (MEMORY DUMP) Immediate action when pressed

Memory contents Is displayed around the value of M (the Memory Pointer), as
hex bytes. When Debug Is first Invoked, M Is set to 0000, but It can be
modified (see U below).

$ (ASCII) Immediate action when pressed

GO Into memory dump, as above, but bytes are displayed as ASCII characters.
A '?' Is printed If the byte Is not a printable ASCII character.

0 (BACK) Immediate action when pressed

Decrement the memory pointer by 00B0H - useful for stepping through memory -
memory dump Is modified automatically if In D mode.

A (FORWARD) Immediate action when pressed

Increment the memory printer by 00B0H. Else similar to Q above.

COMMANDS REQUIRING ARGUMENTS

B nnnn (BREAKPOINT)

Set a breakpoint at nnnn, where nnnn is a decimal or hex number. Press ENTER
to set the breakpoint. Only one breakpoint can be set, and it will be active
until you use the B command again. Both C and G commands cease single-stepping
on encountering a breakpoint.

J nnnn (JUMP)

Causes Debug to temporarily suspend and allows the processor to do a direct
JP to nnnn, where nnnn is a decimal or hex number. Press ENTER to Initiate
the jump. If the code "Jumped-to" ends with a RET, Debug will be re-entered
(but PC will still show the same value as on exit).
This feature allows the user to execute code directly whilst still in Debug.

0 nn (OUTPUT)

Change display stream to nn, where nn is a number coresponding to a channel,
eg. 03 will direct output to the ZX printer. If the stream is directed to
Microdrive/ZX Net/RS232 then these channels must previously have been opened
from Basic. Press ENTER to inttiate the change.
Note that 00 supresses all display but Debug will still respond to commands
eg. 02 will restore the display stream to the screen. 01 directs the display
to the bottom half of the screen, resulting in rather a strange display which
scrolls up and then disappears, but Debug will still respond to commands as
norma I.

UPDATE COMMANDS

All of the commands In this class require a pseudo-assignment. In the pseudo
assignment -reg- can be any of:-

35

A B C D E H L PC SP IX IY BC DE HL
Updates are entered by pressing 'U
by ENTER to perform the update eg.
lator to contain 3D hex.

followed by the pseudo-assignment,followed
U a = 3Dh ENTER will update the accumu-

-reg- = nnnn

Alter register or register pair eg. U a = 3Dh or U be = 1234 h or U sp = 0001H
nnnn can be a decimal or hexadecimal number. Note that If a 16-btt value is
attempted to be assigned to an 8-bit register, the least significant 8 bits
will be used eg. U a = 1234h results in the accumulator being loaded with 34h

Alter byte of memory at nnnn to contain mm, where mm Is an 8-bit value,
eg. U 8000h = 32h.

?nnnn

Alter word of memory at nnnn and nnnn+1 to be mmmm (lo, hi), eg.
1234h will place 34h in 8000h and 12h in 8001h.

U 8000h

-reg- = nnnn

Alters byte at which the register pair points to nnnn. eg.
#HL = 5Dh will load 5Dh Into location 8000h.

If HL is 8000h then

e -reg- = nnnn

Alters word pointed to by the register pair to nnnn (lo hi), eg.if BC = 5C30h
then U SBC = 1234h will place 34h In location 5C30h and 12h in lacation 5C31h.

nnnn = mmmm

Alters the byte pointed to by the word stored In location nnnn, nnnn+1 to
mmmm. eg. If memory at 9000h holds 12h and 9001h holds 34h, then U #9000H =
52h will place 52h in location 3412h.

@ nnnn mmmm

Alters the word pointed to by the word stored in loaction nnnn, nnnn+i to
mmmm (lo hi), eg.If memory at 7EAFh holds 17h and 7EB0h holds 19h, then
U @7EAFh = 3637h will place 37h in location 1917h and 36h In location 19!8h.

The last two commands in particular are rather complex and
them out to see their effect.

M = nnnn

you should try

Alters the memory pointer M (which acts as a pseudo-register) to nnnn. On
entry to Debug, M is set to 0000, but U M = 1234h will alter M to 1234h, and
pressing D wiI I display a memory dump of the region round 1234h. M is also
altered by the 0 and A commands detailed In the previous section.

R (repeated alteration to memory)

36

R (repeated alteration to memory)

When R Is pressed Debug waits for a byte to be Input and places It at the
memory location pointed to by M. eg. R : 12h (ENTER). M Is then automatically
updated and the R : prompt given again so that the next location can be up
dated. In this way repeated alteration to an area of memory can be made.
Pressing ENTER when the R : prompt Is given leaves R mode and returns to the
front panel.

TRACE MASK COMMANDS

Debug allows a trace mask to be set up so that the user can observe the
effects of a program on a specific set of registers or memory locations etc.
To set up a mask, enter M followed by a series of pseudo-assignments separated
by one or more spaces, specifying what is to be displayed. The pseudo-expres
sions are the same as in the Update command section, so

M: PC #PC HL A 28000h

will set up a mask to print:

PC - The contents of PC.
#PC - The byte PC points to (ie.the first byte of the

next instruction)
HL - The contents of HL.
A - The contents of the Accumulator.
?8000H - The contents of location 8000h, 8001h

(Note: all word prints are in order hi, lo)

The M command automatically turns the mask display on, and lists a first line
showing the state of the register etc. specified.
Subsequent S and G commands will now cause new mask lines to be printed. C
and J commands can also be used.
Masks are useful because you can step through a program much faster than with
the front panel, and information which you do not require is suppressed. To
leave mask mode, simply press ENTER to return to the front panel.

K (RETURN TO MASK)

K wiI I return the user to mask mode from the front panel display. If a mask
has not yet been defined then blank lines will be printed, otherwise the first
line of the mask is printed as before.

CALL SUPPRESSION

In complex machine code routines, calls to nested sub-routines may be tedious
to step through using S or G commands. The C command allows you to skip
through a call and the J command to allow the Z-80 to execute it directly,but
these commands actually require you to spot that a call is about to be made.
The H and L commands allow nested calls to be processed more effectively.

37

H nn

Single-step, not displaying until nn levels of returns have been encountered
(nn max 255). eg.H 1 (ENTER) will single step (not displaying) to the end of
a routine and stop after the RET. This command Is very useful for emulation
of message printing.

L m, n

The L command sets 'upper and lower' call levels specified by m and n (upper,
lower). Initially m and n default the zero. These control the display during
the G command only. Thus L 0, 0(the default) means that a trace or display Is
only displayed at the top-most level. L 0, 1 would display at the top level
and at one level of call; L 2, 2 would display at call level 2 only.
The L command, when used In conjunction with a trace mask,the G command and a
breakpoint, Is a very powerful debugging tool.

HOW DEBUG WORKS

Debug Is a virtual machine that Is, It Is a piece of software which sim
ulates the action of the Z-80 processor. To do this, It basically saves the
status of the processor somewhere on the stack, extracts the opcode from
memory and allows the Z-80 to execute It. The Z-80 Is then halted and the new
status displayed. This allows a constant display of what the Z-80 Is doing
but the Z-80 actually executes the code, so you have to be careful !!
A classic example Is a machine code program which zeroes the memory (an exam
ple of this Is to let Debug GO from 0000). Since the Z-80 actually does this,
the memory, Including the stack, will be wiped, resulting In Debug crashing.
Similarly the execution of stack manipulation Instructions will cause problems
although Debug does Its best to anticipate these and only the more complex
stack Instructions will cause It to crash.
An Important point to note If you desire to return to Basic after using Debug
Is that If the Baste system variables area has been corrupted the computer
may crash on exiting from Debug. A more frequent problem may possibly be the
appearance of spurious error reports on exiting.
It Is therefore GOOD PRACTICE to use the B command to set a breakpoint where
possible to prevent Debug executing too much code.

38

QUADHOUSE COMPUTERS (UK)

REGENT HOUSE
V ICTORIA ROAD
MIDDLESBROUGH

CLEVELAND
(0642) 221102

