
The MGT Disciple and Plus D PALS, finally unveiled V2.2

(Updated March 2024)

Background

One of the biggest mysteries of the Disciple and Plus D interfaces are the PAL20L8 ICs,
what they do, how to get replacements, and how to get the fusemap (jedec file /
equations) that they contain. I hope this document will answer all these questions, along
with a thorough explanation of each logic equation that these nice ICs contain in their
silicon make up.

2024 Update

Updated by original author to correct some typos (namely N1 and NREQ, should be M1
and MREQ) and to correct the interpretation of some equations (around Inhibit switch
operation and RESET behaviour). Added a section on the Plus D describing its PAL logic
(V2), a section explaining interface differences (V2.1) and included RAMSOFT Technical
Guide v8c text (bumped to version 9 as it adds information on Gotek usage) (V2.2).

Copyright

The copyright for all the equations in the PAL ICs is owned by Bruce Gordon, the
original Disciple & Plus D designer. From what I understand from reading some posts
on usenet, the original equations were on a disc that got lost, and remained unknown
for some time. I also have seen some posts from Bob Brenchley indicating that he was in
touch with Bruce, and if they were found, he would have no problem with the
distribution.

As these ICs have a protection bit which stops you reading their fuse map, which is
usually blown, finding out their contents and replacing them is difficult. Bruce, if you are
out there, thanks for a GREAT interface, and if you want me to pull this page, I'll be more
than happy to do so.

How did you figure it out then?

Fortunately, a nice Dutch man called Rudi Biesma placed his ICs in a high / low device
which sends every logic combination to every pin and produces a table of the outputs. It
then can produce a fuse map of the IC. With this lovely Jedec file from Rudy, I
disassembled it and obtained the equations using PALASM, and then set about figuring
out just what the heck was going on.

What is a PAL20L8?

A PAL IC is an older type of programmable logic IC. You can program it with Boolean
equations to give whatever outputs you want under certain input conditions. PALs were
later replaced by GALS (which can be programmed to act like a PAL) and now GALS
have been largely replaced by CPLDs. The PAL20L8 ICs in the Disciple & Plus D have
been out of production for many years now, and are increasingly hard to come by. Your
best bet is to search for obsolete electronic component suppliers on the web. They are
available, but can be pricey as minimum order quantities are required. The ones
normally found in a Disciple are manufactured by national semiconductor, and are of
the A variety (A is a speed rating A is the slowest). I have successfully replaced them
with MMI PAL20L8B ICs which are slightly faster, and are pin for pin compatible.
PAL20L8 ICs from other manufactures may be just as compatible, but it is well worth
checking as these things are expensive (around £10 each, plus the min order, which is
normally > £100). Rudi Biesma tried to replace his PAL20L8s with GALS but reported
no luck – this may be due to the RESET race condition described later in this document.

Where can I get fully programmed PALs for the Disciple or Plus D?

Either buy the ICs yourself and get someone with a programmer to program them, or if
you are really stuck I will supply both PAL ICs, fully programmed for £30 + postage.

The Disciple PAL ICs

The two PAL ICs (IC8 & IC9) in the Disciple do the following operations:

• Page out the Speccy ROM and enable the Disciple RAM / ROM when the Z80
accesses certain memory addresses (0x0001 (*), 0x0008, 0x0066, 0x028E)

• Page out Disciple ROM & RAM when a hardware reset is performed
• Page out Speccy ROM, enable Disciple ROM & RAM during network requests
• Holding the Speccy ROM out and the Disciple ROM & RAM enabled after they

have been brought in until they need to be paged out again
• Provide the IO decoding when a request is written to port 0x7B (reset / set boot ;

control of DOS needs to reloaded)
• Enable the WD1772 disc controller (IC4) when an IO request is written or read

at its' I/O ports (0x1B, 0x5B, 0x9B, 0xDB)
• Generate a clock pulse for IC5 flip flop when an IO write request is sent to the

Disciple control port (0x1F)
• Output a clock pulse to the printer port IC11 when data is written to port (0xFB)
• Enable the joystick controller ICs (IC1 & IC10) when an IO request is read from

the joystick ports (Kempston and Sinclair)
• Tell the spectrum to WAIT when data is being pushed out to the network
• Avoid paging out Speccy ROM or responding to IO requests when Inhibit switch

is pressed, or when Inhibited via an OUT instruction to port 0x1F, bit 4 (Note
Inhibit switch needs to be pressed for software control of it via this method to
work – check the circuit diagram)

(*) Except during a hardware reset cycle

You will see these IC's actually control most of the Disciple, and nothing works without
either one, as their logic equations are intertwined between them.

The Disciple PAL Equations explained

Please understand how Boolean logic symbols are represented in this document:

^ means active low (ie. ^RD means that if a read is happening, this line will be LOW)

/ means NOT

+ means OR

* means AND

^/ is seen when an active low control line is in the LOW state (i.e. active). Example:
^/MEMREQ means the MEMREQ line is LOW (active)

You will also need to have a rough understanding of how the Z80 works (what lines are
set when performing IO, memory fetches, read / writes etc) and a reasonable
understanding of the Disciple itself. The latter can be obtained from the
excellent Ramsoft "Disciple / +D Technical Guide", although please note it incorrectly
states the Disciple and Plus D are paged in at address 0x0000 which is incorrect for both
interfaces.

A short note about tristate. Some IC input / outputs can have 3 levels. These are logic
zero, logic one and disconnected (i.e. just floating). The third state is very handy when
you only want an IC to do stuff some of the time and pretend it's not there others. Just
like the disciple ROM / RAM. While physically connected to the address / data bus,
unless their Chip Enable (CE) pin is activated, their pins will be internally disconnected,
so won't interfere unless requested to.

It is also recommended you look at the Disciple circuit diagram to see how these ICs fit
together and link to other Disciple components.

Be aware that outputs O17 and O18 of IC9 feed into inputs I1 and I2 of IC8 and output
O22 from IC8 feed into input I14 of IC9, providing a logic link between all the equations
– this makes it slightly harder to understand what is going on.

In the equations I've substituted wherever possible the names of the signals on the
Spectrum bus the Inputs and Outputs are connected to. The references p8_022, p9_O17
and p9_O18 refer to PAL IC8 Output 22, PAL IC9 Output 17 and PAL IC9 Output 18
respectively.

Onwards with these equations. Each PAL equation is listed, with my explanation below
on the next pages.

http://www.ramsoft.bbk.org/
https://k1.spdns.de/Vintage/Sinclair/82/Peripherals/Disc%20Interfaces/DiSCiPLE%20%26%20Plus%20D%20(MGT%2C%20Datel)/Technical%20stuff/PALs%20-%20DiSCIPLE%20%26%20MGT%20Plus%20D/disciple_techguide.txt

CHIP DIS_ASM PAL20L8 (PAL IC8)

Pin Descriptions

PIN 1 p9_O18

PIN 2 p9_017

PIN 3 A10

PIN 4 A0

PIN 5 A4

PIN 6 ^RESET

PIN 7 ^WR

PIN 8 ^RD

PIN 9 ^MREQ

PIN 10 A12

PIN 11 A13

PIN 12 GND

PIN 13 A15

PIN 14 A14

PIN 15 O15 (/CE Disciple RAM)

PIN 16 O16 (/CE Disciple ROM)

PIN 17 O17 (/M1 & INHIBIT Switch)

PIN 18 O18 (NC – used as flip flop)

PIN 19 O19 (NC – used as flip flop)

PIN 20 ^ROMCS

PIN 21 O21 (NC)

PIN 22 O22 (PAL IC9, I12)

PIN 23 A11

PIN 24 VCC

Disciple IC8 EQUATIONS

O22.TRST = VCC

/O22 = /A4 * /^RD * ^MREQ

+ /A4 * /^WR * ^MREQ

+ /A10 * /A11 * /A8 * /A4 * /^RD * /^MREQ * /A12 * /A14 *

/A13 * /A15

Used as a partial equation to help form other equations in PAL IC9

O21.TRST = VCC

/O21 = ^ROMCS

+ /p9_O18* /^RD * O17

Used as a partial equation to O15, O16 and O20 (ROMCS). Condition met when
Spectrum ROM paged out.

When system is NOT inhibited – it will respond to an IN IOREQ to port 0xBB (page IN
Disciple) and memory reads from 0x0001 (except during a hardware reset), 0x008
(RST8), 0x0066 (NMI code), 0x028E (Key scan).

^ROMCS.TRST = VCC

/^ROMCS = /O17

+ O21

+ /^RESET

+ /p9_O18* /^WR

Pull speccy rom IN when Disciple Inhibited (/O17); hardware RESET or an OUT IOREQ
to port 0xBB (page OUT Disciple) and ignore memory writes to 0x0001, 0x008 (RST8),
0x0066 (NMI code), 0x028E (Key scan).

O19.TRST = VCC

/O19 = O18

+ /^RESET

+ /p9_O17* /^RD

Partial equation to O15 and O18 below. Condition met when a reset happens or an IN to
port 0x7B (set/unset boot flipflop), system reset or O18 below.

O18.TRST = VCC

/O18 = O19

+ /p9_O17* /^WR

Condition met when an OUT 0x7B (set boot flipflop) or O19 (IN 0x7B, reset boot flip
flop). Used as a partial to O16 and O15 below.

O16.TRST = VCC

/O16 = ^ROMCS * O18 * /^RD * /^MREQ * /A14 * /A13 * /A15

+ ^ROMCS * O19 * /^RD * /^MREQ * /A14 * A13 * /A15

O16 is the Disciple ROM CE line, so this equation controls when the Disciple ROM should
be paged in. Met when the Speccy ROM is OUT and we are reading from address < 8192
and the RAM flip flop is unset (Disciple ROM at 0x0000 – Disciple not boot strapped or
needing reloaded) OR if the address is < 16384 (Disciple ROM at 0x2000, system boot
strapped) and the RAM flip flop is not set.

O15.TRST = VCC

/O15 = ^ROMCS * O19 * /^RD * /^MREQ * /A14 * /A13 * /A15

+ ^ROMCS * O19 * /^WR * /^MREQ * /A14 * /A13 * /A15

+ ^ROMCS * O18 * /^RD * /^MREQ * /A14 * A13 * /A15

+ ^ROMCS * /^WR * O18 * /^MREQ * /A14 * A13 * /A15

O15 is the Disciple RAM CE line, so this equation controls when the Disciple RAM should
be paged in. Met when the speccy ROM is OUT and we are reading / writing from
address < 8192 (RAM flip flop set) or reading / writing from address < 16384 (RAM flip
flop not set).

Phew IC8 done. It was the hardest. Glad that’s over. Ready for IC9?

CHIP DIS_ASM PAL20L8 (Disciple IC9)

Pin Descriptions

PIN 1 A9

PIN 2 A5

PIN 3 A6

PIN 4 A7

PIN 5 ^WR

PIN 6 ^RD

PIN 7 ^IORQ

PIN 8 A3

PIN 9 A2

PIN 10 A1

PIN 11 A0

PIN 12 GND

PIN 13 NET

PIN 14 p8_O22

PIN 15 O15 (CLK Disciple IC5 flip flop, control port #1F)

PIN 16 O16 (/CS Disciple IC4 WD1772)

PIN 17 O17 (I2 PAL IC8)

PIN 18 O18 (I1 PAL IC8)

PIN 19 O19 (/CE Disciple IC1a joystick1)

PIN 20 O20 (/CE Disciple IC10a joystick2)

PIN 21 O21 (/WAIT)

PIN 22 O22 (CLK Disciple IC11)

PIN 23 ^M1

PIN 24 VCC

EQUATIONS

O22.TRST = VCC

/O22 = A5* A6 * ^M1 * A7 * /^WR * /^IORQ * A3 * /A2 *

A1 * p8_O22 * A0

Generate a clock pulse for the printer IC11 when an IOREQ write is sent to printer port
(OUT 0xFB).

O21.TRST = VCC

/O21 = A5* /A6 * ^M1 * /A7 * /^WR * /^IORQ * A3 * /A2 *

A1 * p8_O22 * A0 * NET

Tell the Speccy to wait while a network request is written to the network port (OUT
0x3B).

O20.TRST = VCC

/O20 = /A5* /A6 * ^M1 * /A7 * /^RD * /^IORQ * A3 * A2 *

A1 * p8_O22 * A0

IOREQ read of joy1 port (0x1F). Set CE on IC10

O19.TRST = VCC

/O19 = A5* A6 * ^M1 * A7 * /^RD * /^IORQ * A3 * A2 *

A1 * p8_O22 * /A0

IOREQ read of joy2 port (0xFE). Set CE on IC1

O18.TRST = VCC

/O18 = A5* /A6 * ^M1 * A7 * /^IORQ * A3 * /A2 * A1 *

p8_O22 * A0

+ /A5* /A9* /A6 * /^M1 * /A7 * /^RD * ^IORQ * A3 *

/A2 * /A1 * /p8_O22 * /A0

+ A5* /A9* A6 * /^M1 * /A7 * /^RD * ^IORQ * /A3 *

A2 * A1 * /p8_O22 * /A0

+ /A5* A9* /A6 * /^M1 * A7 * /^RD * ^IORQ * A3 *

A2 * A1 * /p8_O22 * /A0

+ /A5* /A9* /A6 * /^M1 * /A7 * /^RD * ^IORQ * /A3 *

/A2 * /A1 * /p8_O22 * A0

Partial equation to IC8. Take this one a line at a time:

IOREQ to port 0xBB OR

Memory Read location 0x0008 (RST8) OR

Memory Read location 0x0066 (NMI code) OR

Memory Read location 0x028E (Keyscan) OR

Memory Read location 0x0001; Note at hardware reset the logic for this does not
trigger, due to a presumed race condition on the RESET line and the Disciple logic to
page itself out on RESET. This was tested on real hardware (Disciple & Spectrum +2).

O17.TRST = VCC

/O17 = A5* A6 * ^M1 * /A7 * /^IORQ * A3 * /A2 * A1 *

p8_O22 * A0

Partial equation to IC8. IOREQ to port 0x7B (reset / set boot port)

O16.TRST = VCC

/O16 = /A5* ^M1 * /^IORQ * A3 * /A2 * A1 * p8_O22 * A0

This is CE for IC4 WD1772 disk controller. Condition met when any IOREQ to ports
(0x1B, 0x5B, 0xDB, 0x9B)

O15.TRST = VCC

/O15 = /A5* /A6 * ^M1 * /A7 * /^WR * /^IORQ * A3 * A2 *

A1 * p8_O22 * A0

This will generate a clock pulse for IC5 latch when data is written to the control IO port
(0x1F, 31 Decimal). IC5 is the physical implementation of OUT 0x1F :

Port #1F OUT:
B0 Drive Select
B1 Side select
B2 Single / Double Density
B3 ROM bank select
B4 Inhibit switch control
B5 Through Edge connector A30
B6 Printer strobe
B7 Network

The Plus D PAL Equations explained

The Plus D has one PAL IC, a 20L8, the same as used in the Disciple. The equations are
naturally different, the Plus D uses different IO ports and differs in some addresses being
paged in (notably address 0x003A – Spectrum maskable interrupt). I’ve also noticed that it
doesn’t have full decoding logic so some of the IO ports can be accessed on multiple
addresses. Some of the address line decoding logic is done by discrete logic (IC10A, IC10B,
IC10C and IC9D), the output of which is fed into pin 23 of the PAL IC. My reading of this
discrete logic says when all of the lines fed to the inputs are zero, the output will be 1. This
is primarily used to decode the high address lines when doing IOREQ operations (my guess it
avoids the need for another PAL IC).

Unlike the Disciple, the Plus D is NOT paged in at address 0x0001 or 0x0000 (as stated by
RAMSOFT guide). And again, unlike the Disciple it doesn’t have logic to do anything special
on a RESET.

; JED2EQN -- JEDEC file to Boolean Equations disassembler (Version V063)
; Copyright (c) National Semiconductor Corporation 1990-1993
; Disassembled from alice.dpl. Date: 10-17-101
chip alice PAL20L8

i1=1 i2=2 i3=3 i4=4 i5=5 i6=6 i7=7 A6 =8 i9=9 i10=10 i11=11 GND=12
i13=13 i14=14 o15=15 o16=16 f17=17 o18=18 o19=19 o20=20 f21=21
o22=22 i23=23 VCC=24

/o22 = /MEMREQ* //IOREQ * //WR * A6 * A5 * /A2 * A1
IOREQ write access to 0xE2,0xE3,0xEA,0xF3,0xFB - WD1772 /CS
 + /MEMREQ* //IOREQ * //RD * A6 * A5 * /A2 * A1
IOREQ read access to 0xE2,0xE3,0xEA,0xF3,0xFB - WD1772 /CS
o22.oe = vcc

/f21 = /MEMREQ* //IOREQ * //WR * A6 * A5 * /A4 * A2 * /A3 * A1
 + f17
IOREQ write access to 0xE6,0xE7 (missing A7 line decode) - page out +D
Spectrum /ROMCE - Pages out Spectrum ROM by setting F21 high (flipflop with F17)
f21.oe = vcc

/o20 = /MEMREQ* //IOREQ * //RD * A6 * A5 * A4 * A2 * /A3 * A1
IOREQ to port 0xF7 (missing A7 line decode) - Printer busy / strobe LS175
o20.oe = vcc

/o19 = /MEMREQ* //IOREQ * //RD * A6 * A5 * /A4 * A2 * A3 * A1
IOREQ to port 0xEF (missing A7 line decode) - Disk control (side, A/B) LS175 clk
o19.oe = vcc

/o18 = /MEMREQ* //IOREQ * //WR * A6 * A5 * A4 * A2 * /A3 * A1
IOREQ WR to ports 0xF6,0xF7 (missing A7 line decode) - Printer output LS374 clk
o18.oe = vcc

/f17 = f21
Flip flop

 + /MEMREQ* //IOREQ * //RD * A6 * A5 * /A4 * A2 * /A3 * A1
IOREQ read to 0xE6,0xE7 (missing A7 line decode) - page in +D

 + /A15 * /A14* /A13 * i23 * //MEMREQ* /IOREQ * //RD * /A6 * /A5 * /A4 * /A2
 * A3 * /A1
Memory read at 0x0008 (RST 8 instruction).
Note: i23 is given by discrete logic (IC9, IC10) outside of the PAL – simply put,
A0,A7,A8,lA9,A10,A11,A12 must all be low for i23 to be high.

+ /A15 * /A14* /A13 * i23 * //MEMREQ* /IOREQ * //RD * /A6 * A5 * A4 * /A2
 * A3 * A1
Memory read at 0x003A (Spectrum executing maskable interrupt)

 + /A15 * /A14* /A13 * i23 * //MEMREQ* /IOREQ * //RD * A6 * A5 * /A4 * A2
 * /A3 * A1
Memory read at 0x0066
f17.oe = vcc

/o16 = /A15 * /A14* A13 * //MEMREQ* f21 * //RD
MEMREQ <16384 read (if paged in) enable Plus D RAM
 + /A15 * /A14* A13 * //MEMREQ* f21 * //WR
MEMREQ <16384 write (if paged in) enable Plus D RAM
o16.oe = vcc

/o15 = /A15 * /A14* /A13 * //MEMREQ* f21 * //RD
MEMREQ <8192 read (if paged in) enable Plus D ROM
o15.oe = vcc
`

Differences between the Plus D and Disciple
Aside from the obvious hardware differences (lack of joystick and network ports) there are
subtle differences in behaviour between the interfaces.

Control Ports & Maskable Interrupt Address paging
The first thing that differs are the ports used to control the interface, these have different
addresses and the individual bits in these ports and what they control also differ (for
example the Plus D port 0xEF vs Disciple 0x1F which have similar functions, but bit order is
different). This is largely down to different hardware / circuit design, the Plus D being
simpler with only one PAL IC.
The addresses each interface are paged in during a Maskable Interrupt also differ (Plus D
0x003A vs Disciple 0x028E).

Reset /Initialisation Behaviour
The Disciple has logic in the PAL ICs which triggers on a RESET to page itself out, but also has
logic to page itself in when accessing location 0x0001. The Plus D has neither. The Disciple
does not page itself in at 0x0001 when a RESET is occurring meaning the initialisation code is
not executed (luckily this avoids issues on the 128K machines where the EDITOR ROM is
paged in at RESET). If the code in the Disciple at 0x0001 was to run, its code path would
execute the NEW routine on the 48K ROM, which would cause a system crash on the 128K.
The most significant thing the unused initialisation code does on the Disciple is to initialise
port 0x1F to zero. This has the effect of resetting all bits in Flip Flop IC3 to zero and clocking
the IC (initialising the floppy interface drive & side select, printer, software Inhibit control
and network). Fortunately, this not being done at RESET has no negative effect and the
Disciple works fine without this. The Plus D has no paging logic at RESET or address 0x0001.
Also, its hardware control port is implemented differently, via a 74LS175 IC which has a
/CLEAR line, directly connected to the Z80 /RESET line, the effect being at RESET all outputs
are zeroed. Note, in both Plus D ROM and Disciple ROM, the initialisation code exists at
location #0001 but is not used - both interface code paths end at location #11CB (start/NEW
in 48K ROM, which as stated above would cause a crash on the 128K models).
Both systems perform initialisation (e.g. printer, drive ID and side selection) as part of
system boot (i.e. on executing RUN) and further initialisation as part of Maskable Interrupt
handling, described below.

Hook Code 0x32 Difference
The treatment of hook code 0x32 differs on both interfaces. This is an Interface One hook
code to call any address in its ROM (in fact any address at all, including Spectrum RAM). The
address to call is placed in the system variable HD_11 (address 0x5CED).
On the Disciple calling this hook code simply executes a RET instruction (sensible as the
Interface One ROM has a completely different memory layout), but on the Plus D it will
jump to the address given in the DE register. This can create issues for Microdrive based
software. I noticed in Hisoft Gens it would crash when the CAT command was given in GENS
with the Plus D attached, and do nothing on the Disciple. This is because the GENS code calls
the Interface One ROM routine directly (there is no hook code for CAT).

Maskable Interrupt Behaviour
Both the Plus D and Disciple are paged in every 50th of a second when the Spectrum
performs a Maskable Interrupt (generated by ULA). This is done differently on both
interfaces, the Plus D being paged in at address 0x0003A (2 instructions after MI handling in
main Spectrum ROM) while the Disciple is paged in during the key scan routine at 0x028E.
Both interfaces do an immediate RET at 0x0038 (RST 38) the effect being to ignore a
maskable interrupt if they are already paged in. Both do different things when paged during
the maskable interrupt routine.
The Plus D checks to see if it has been initialised and if not, does some basic initialisation
(clears its 8K RAM, clears control and printer ports, sets default system variables), then
takes over the printer channel (#3) finally exiting to the Spectrum key scan routine. If it has
already been initialised it pages out and exits to the Spectrum key scan routine
The Disciple is more complex. If the system is initialised (RAM is at location #0000 - system
bootstrapped or acting as a pupil station), the maskable interrupt routines do some network
operations if the network is enabled (exiting immediately if network is quiet), take over the
printer channel (#3) and finally exit to the Spectrum key scan routine. If the system is not
yet initialised, (ROM is at location 0x000) the Maskable Interrupt behaves differently using
the ROM routine at 0x229D. This routine performs more complex initialisation (ROM/RAM
swopping as needed, system variables and control port initialisation).

Disciple ROM/RAM Swopping
This is best described by reading Rudy Biesma’s comments from the Disciple ROM
disassembly :

By examining the contents of #1DE4 when RAM is paged-in low, or #3DE4 when

it's paged-in high, this routine decides what has to be done:

- Whenever the power is turned on, the ROM resides low. #1DE4 contains #45,

so #3DE4 is examined which contains some random value (should that be #44,

the Spectrum will crash). Otherwise a 'minimal' system is created by

copying the first 2335 bytes of ROM to RAM and then setting RAM low. This

is indicated by #1DE4 containing #53.

- In case of a minimal system #1DE4 contains #53, and the routine returns

 immediately to the keyboard routine in 'main' ROM.

- By giving FORMAT nn (2nd n>=10) a minimal system can be changed to a

PUPIL system. This is indicated by a #4E value in #1DE4. In this case the

routine continues with scanning the network for activity.

- By giving RUN at a minimal system, the system file is loaded from disk.

If a system file has been loaded #1DE4 contains #44.

- To get rid of a system file the reset button has to be pressed twice or

IN 123 has to be given twice. After the first of these ROM resides low,

#1DE4 holds #45 so #3DE4 is inspected which holds #44. The contents of

#3DE4 are set to #00 and some DISCiPLE system variables are reset. Before

returning the RAM is set low again.

- When pressing reset or giving IN 123 for the second time, #3DE4 (RAM is

now high) holds #00. This means a minimal system will be created.

- By giving IN 123 or a reset once, a minimal or PUPIL system can be reset,

which results in a minimal system being created.

The Plus D does not do this.

Single Density Drive Support
The Plus D only supports Double Density drives (stated in manual and pin 26 of WD1772
wired to ground). The Disciple supports Single and Double Density drives.

Why did you do this you madman?

The first time round – 2003 - Amazing what'll you'll do to get your beloved disciple
working again after 10 years...... and my way of giving back to both the open source and
Sinclair community, as well as helping to fix other broken beautiful Disciple interfaces.

The second time round – 2024 – I was disturbed to find the Disciple was not working in
FUSE for the 128k models and was determined to find out why. This also led to me
decoding the Plus D PAL and revising the Disciple information.

You're wrong about something…

Tell me! This is my interpretation and may well have errors. Let me know, I'll check and
correct. Email me at alandpearson@gmail.com

I just want to program my PAL chips! Can I have the jedec source
files please?

By all means, download IC8 and IC9 for the Disciple and IC4 for the Plus D.

Okay what about the Plus D?

Hmm haven't got that far yet. The jedec source is HERE for the single PAL in it, but I
haven't dissassmbled or figured out it's equations yet. Someday. Done.

How can I thank you?

Thank Bruce Gordon for making such wonderful interfaces, and Rudi Biesma for
sending me the jedecs and the disassembly here.

And the Disciple circuit diagram / schematic?

Oh yeah, here you go.

Thanks to Rudy Biesma for supplying the Disciple fuse maps, and Ian Worsley for the
Plus D. Also thanks to Ramsoft for producing the Disciple/Plus D technical guide, and
the excellent realspec emulator.

Alan Pearson, (alandpearson@gmail.com) March 2024

mailto:alandpearson@gmail.com
https://k1.spdns.de/Vintage/Sinclair/82/Peripherals/Disc%20Interfaces/DiSCiPLE%20%26%20Plus%20D%20(MGT%2C%20Datel)/Technical%20stuff/PALs%20-%20DiSCIPLE%20%26%20MGT%20Plus%20D/palic8.jed
https://k1.spdns.de/Vintage/Sinclair/82/Peripherals/Disc%20Interfaces/DiSCiPLE%20%26%20Plus%20D%20(MGT%2C%20Datel)/Technical%20stuff/PALs%20-%20DiSCIPLE%20%26%20MGT%20Plus%20D/palic9.jed
mailto:https://k1.spdns.de/Vintage/Sinclair/82/Peripherals/Disc%20Interfaces/DiSCiPLE%20%26%20Plus%20D%20(MGT%2C%20Datel)/Technical%20stuff/PALs%20-%20DiSCIPLE%20%26%20MGT%20Plus%20D/alice.jed
https://k1.spdns.de/Vintage/Sinclair/82/Peripherals/Disc%20Interfaces/DiSCiPLE%20%26%20Plus%20D%20(MGT%2C%20Datel)/Technical%20stuff/PALs%20-%20DiSCIPLE%20%26%20MGT%20Plus%20D/alice4.jed
https://www.biehold.nl/rudy/index.htm
https://k1.spdns.de/Vintage/Sinclair/82/Peripherals/Disc%20Interfaces/DiSCiPLE%20%26%20Plus%20D%20(MGT%2C%20Datel)/Technical%20stuff/PALs%20-%20DiSCIPLE%20%26%20MGT%20Plus%20D/DiscipleInterface_Schematics.gif
https://k1.spdns.de/Vintage/Sinclair/82/Peripherals/Disc%20Interfaces/DiSCiPLE%20%26%20Plus%20D%20(MGT%2C%20Datel)/disciple-tech_v8.pdf
mailto:alandpearson@gmail.com

 RAMSOFT proudly presents:

 D I S C i P L E / + D T E C H N I C A L G U I D E

 Revision 9 (March 2024)

 SUMMARY:

 ========

 1 DISCiPLE/+D general features

 2 Memory layout

 3 I/O ports

 3.1 ... DISCiPLE port 7Bh (123 dec.)

 4 UFIA layout

 5 System calls (hook codes)

 5.1 ... Internal system calls

 5.2 ... Programming example: loading a file

 6 Disk layout

 7 Filesystem details

 8 File types table

 9 GDOS/G+DOS extended BASIC commands

 9.1 ... The network

 9.2 ... The snapshot button

 9.3 ... GDOS/G+DOS and UNIDOS error messages

 10 GDOS/G+DOS and UNIDOS system variables

 11 UNIDOS extended BASIC commands

 12 Connectors pinouts

 12.1 ... Connecting a PC 5.25" drive

 12.2 ... Using the Plus D / Disciple with a Gotek (Flash Floppy)

 13 VL1772 FDC programming info

 14 Credits and contact info

DISCLAIMER

==========

Although we have tried to be very accurate, this document may contain some

errors. The authors do not assume any responsibility for any loss and/or

damage directly or indirectly caused to your system by use of any

information reported here.

See the credits at the end of the document on how to contact the authors.

FOREWORDS

========

We (Ramsoft) have been using the DISCiPLE interface for a long time and

we have appreciated all the power of this disk system. We have spent many

hours trying to understand the smallest details to make full use of its

capabilities, and a lot still has to be known.

Now we have decided to release all the info we collected mostly ourselves,

in the hope that it may be useful to anybody and that it will encourage

the development of new programs and products for this wonderful system.

[A Pearson, March 2024] Very sadly, RAMSOFT appear to have disappeared from

the scene, so I’ve bumped the version number of this 20 year old document

and added a section about Gotek use and some small corrections to page-In

addresses for both interfaces.

COMMON TERMS

============

 DRAM - The sector buffer.

 RPT - A system variable which points to a byte in the DRAM.

 UFIA - User File Information Area, a 24 byte structure which describes

 a file for system calls.

 DFCA - Disk File Channel Area.

1. DISCiPLE / +D features

=========================

 8 KB EPROM (for disk BIOS)

 8 KB RAM

 NMI magic button (snapshot)

 Parallel port (not bi-directional)

 Floppy disk port (controlled by VL1772 FDC)

 High speed disk operations: load 128K in less than 7 seconds.

 DISCiPLE only features:

 Two ATARI joystick ports (Sinclair 1, Sinclair 2 / Kempston)

 Two network connectors (Interface 1 compatible, 3.5mm mono jack)

 Inhibit button (to lock out the interface)

 Throughout bus connector (to plug in other devices)

2. MEMORY LAYOUT

================

When the interface memory is paged in (see below), the first 16K of the

Z80 address space have this mapping:

 Address DISCiPLE GDOS DISCiPLE UNIDOS +D

 --

 0x0000 8K RAM 8K ROM 8K ROM

 0x2000 8K ROM 8K RAM 8K RAM

So, UNI-DOS memory mapping is the same as +D, even on DISCiPLE.

Read [3.1] to see how it is possible to swap ROM/RAM addresses on the

DISCiPLE.

3. DISCiPLE and PlusD I/O PORTS

===============================

NOTE: Joystick 1 is both Kempston (port 1Fh) and Sinclair 2 (keys

6,7,8,9,0)

 Joystick 2 is Sinclair 1 (keys 1,2,3,4,5)

 Network is an Interface 1 compatible net.

 DISCiPLE I/O ports:

 Port In Out Notes

 --

 1Bh FDC status FDC command See also section 13

 5Bh track register track

 9Bh sector regist. sector register

 DBh data register data register

 1Fh Joystick 1 control:

 b0 right drive select

 b1 left side select

 b2 down single/double density

 b3 up ROM bank select

 b4 fire Inhibit switch control

 b5 -- ext. select (?)

 b6 PRN BUSY printer STROBE

 b7 network network

 3Bh -- wait when net=1 (*)

 7Bh set boot reset boot see [3.1]

 BBh mem. page in memory page out (**)

 FBh -- printer data

 FEh Joystick 2 scanned as Sinclair joy.

 (*) Port 3Bh is used for network synchronization (same as bit 5 of

Interface One's port EFh). Any OUT to port 3Bh will halt the Spectrum until

the logic level on the network is 0. It is used to wait for the start bit

of a transmission frame. The network bus carries TTL logic levels (0 = 0

Volts, 1 = 5 Volts). The bit rate is 87.5 Kbps and data are exchanged in

packets of 256 bytes max using a simple data-link level protocol.

 (**) DISCiPLE memory is also paged in whenever the Z80 fetches an

 instruction from the following addresses:

 0x0000 0x0001, 0x0008, 0x0066, 0x28E.

 PlusD I/O ports:

 Port In Out Notes

 --

 E3h FDC status FDC command See also section 13

 EBh track register track

 F3h sector regist. sector register

 FBh data register data register

 EFh b0/b1 -- drive select

 b2 -- --

 b3 -- --

 b4 -- --

 b5 -- ext. select (?)

 b6 -- printer STROBE

 b7 -- side select

 E7h mem. page in memory page out (***)

 F7h b0/b6 -- printer data (8 bits)

 b7 PRN BUSY

(***) +D memory is also paged in whenever the Z80 fetches an instruction

from the following addresses:

 0x0000, 0x0008, 0x003A, 0x0066.

3.1 DISCiPLE PORT 7Bh AND MEMORY ADDRESSES

==

Port 7Bh (123 decimal) is available only on the DISCiPLE and has a flip

flop attached to it. It can be used to swap the RAM/ROM addresses in this

way:

Access ROM RAM Purpose

 IN 0x0000 0x2000 reset ff

 OUT 0x2000 0x0000 set ff

This feature is used by GDOS to know if it necessary to load the system

file from disk on boot or after two consecutive resets without any DOS

command between them; UNIDOS ignores this feature, so any swap attempt will

result in a system crash.

In GDOS there is a variable located in RAM at offset 0x1DE4 that is set to

0x44 ('D') after a BASIC syntax check (i.e. after a RST 08h with a code

lower than 1Bh) and after a bootstrap: this variable indicates that the DOS

services have been called almost once. Whenever the user resets the

computer, the flip flop attached to port 7Bh is reset, so the ROM will be

placed at 0x0000. When the first interrupt occurs, the keyboard scanning

routine is called at 0x028E and the DISCiPLE memory is automatically paged

in. At offset 0x028E in the DISCiPLE's ROM there's a routine that checks if

the variable we said above holds 0x44: if it's the case, then the same

routine puts 00h in there to say that DOS services haven't been called

since last reset; otherwise the routine sets the variable to 0x53 ('S') and

copies the first 2335 (0x091F) bytes of ROM in the RAM: in this case the

system file has to be loaded again.

When all is finished, the memories will be swapped again (i.e. the flip

flop will be set) by OUTing to port 7Bh, the DISCiPLE paged out by OUTing

to port BBh and the keyscan routine is finally executed.

INning from port 7Bh has the same meaning of a system reset for the DOS, so

after reading 2 times from port 7Bh without typing a DOS command between

them the system file needs to be reloaded.

NOTE that since all this is based on the keyscan routine in the Spectrum's

ROM, nothing will happen by INning from port 7Bh if the call is not

performed (i.e. if interrupts are disabled in IM 1 or we're not in IM 1 or

keyboard is scanned in a custom way); however the last operation with port

7Bh must be an OUT before the routine in the ROM is executed if you want to

keep the system safe by resetting once.

4. USER FILE INFORMATION AREA (UFIA)

====================================

This is a DOS structure often used by the kernel routines and usually

pointed to by the register IX.

 Offset Len Meaning

 0 1 Drive number (1, 2 or '*' (2Ah) for current)

 1 1 Program number (in the directory)

 2 1 Stream number

 3 1 Device density type ('d'=DD, 'D'=SD)

 4 1 Directory description (see below)

 5 10 File name (padded with spaces)

 15 1 File type (see below)

 16 2 Length of file

 18 2 Start address

 20 2 Basic length

 22 2 Autostart line

5. SYSTEM CALLS (both DISCiPLE and +D)

======================================

To invoke system services you must use the IF1 protocol:

 RST 8

 DB #service

All the functions return an error code into register A.

IMPORTANT NOTES:

You cannot perform RST 8 calls from within a routine located into the

interface's RAM.

You must not call ROM address 0x028E (keyboard scanning routine) from

within an interrupt routine, since this would crash the Spectrum when a

DISCiPLE/+D is connected; some programs crash due to this fact

(eg SoundTracker v1.1) - you may try to correct the problem replacing the

CALL 0x028E with a RST 0x38.

A few programs (like some games converted to disk) do not use the RST 8

mechanism but make absolute CALLs to the DOS or the BIOS routines instead -

a very bad practice!

This is the list of GDOS3 (G+DOS2) hook codes with input parameters:

Implemented Interface I hook codes:

 CONSIN (1Bh) - Console input

CONSOUT (1Ch) - Console output

 PRTOUT (1Fh) -

 KBDTST (20h) -

 SELDRV (21h) - Select drive

 OPTMPM (22h) -

 CLOSEM (23h) -

 ERASE (24h) -

 RDSEQ (25h) -

 WRREC (26h) -

 OPTMPM (2Bh) -

 DELBUF (2Ch) -

 UNPAGE (31h) - Unpage shadow ROM

 CALL (32h) - Call shadow ROM routine

GDOS3 (G+DOS2) specific hook codes:

 HXFER (33h) - transfer file description and header to the DFCA.

 IX = UFIA address

 OFSM (34h) - open file sector map with the info in the DFCA.

 The RTP is set to the beginning of the DRAM.

 HOFLE (35h) - open a file.

 IX = UFIA

 Combines the previous two functions.

 Sets the last 9 bytes of UFIA with the file header.

 SBYT (36h) - Save a byte to DRAM location pointed by RTP.

 A = byte to save.

 If the sector buffer is full, it is automatically saved

 to disk.

 HSVBK (37h) - Save a block of data.

 DE = start address of data.

 BC = number of bytes to save.

 CFSM (38h) - Close file sector map.

 Flushes DRAM, closes file and updates the directory.

 PNTP (39h) - Output a byte to the parallel port.

 A = byte to output.

 COPS (3Ah) - Copy the screen to printer.

 HGFLE (3Bh) - Get a file from disk.

 IX = UFIA

 The first sector is loaded to DRAM and RPT is set to the

 first byte.

 LBYT (3Ch) - Load the byte pointed by RPT.

 Returns A = byte read.

 If needed, another sector is read from the disk.

 RPT is updated consequently.

 HLDBK (3Dh) - Load a block of data.

 DE = start address (where the data will be put)

 BC = number of bytes to read

 WSAD (3Eh) - Write the DRAM to a sector in the disk.

 D = track

 E = sector

 RPT is restored to the beginning of DRAM.

 RSAD (3Fh) - Read a sector to DRAM.

 D = track

 E = sector

 Same as 3Eh.

 REST (40h) - Reset drive and seek track 0.

 Drive number is specified into the UFIA.

 HERAZ (41h) - Erase the file on disk identified by UFIA.

 IX = UFIA address.

 (42h) - Large screen dump

 PCAT (43h) - Disk catalogue

 It uses the information in the UFIA. Drive and stream must

 be set up.

 Offset +0Fh of UFIA may contain one of the following:

 02h for CAT !

 04h for CAT

 12h for CAT ! with a filename mask

 14h for CAT with a filename mask

 The filename must be stored starting at offset +05 of UFIA

 and may contain wildcards.

 HRSAD (44h) - Load sector

 A = drive number

 D = track number

 E = sector number

 IX = Address to load to

 HWSAD (45h) - Save sector

 A = drive number

 D = track number

 E = sector number

 IX = Address to save from

 (46h) - Open and close streams (how?)

 PATCH (47h) - Pages the shadow memory

 Returns HL=0 on DISCiPLE

 HL=1 on PlusD

 HL=2 on DiSCDOS

UNIDOS specific hook codes:

 (48h) - Load file

 (49h) - Verify file

 (4Ah) - Merge

 (4Bh) - Save file

 (4Ch) - Open file

 (4Dh) - POINT (see UNIDOS)

 (4Eh) - Flush buffers to disk

 (4Fh) - Close file

 (50h) - Clear channels

 (51h) - Rename file

 (52h) - Move stream

 (53h) - Move file

 (54h) - Select disk and directory

5.1 INTERNAL SYSTEM CALLS (both DISCiPLE and +D)

==

Here is the purpose of the RST commands when the DISCiPLE or the +D

memories are paged in.

RST 00h - Reset

RST 08h - Call system services; the required service code must follow

(1)(2)

RST 10h - Call in Spectrum ROM; the routine address must follow (3)

RST 18h - GDOS, G+DOS : reserved (for syntax check)

 Uni-DOS : low-level system services; the required service code

must follow

RST 20h - Print DOS error report : the error code must follow

RST 28h - Performs a RST 20h in the Spectrum ROM

RST 30h - Gets interpreter status : Z=0 if checking syntax, Z=1 if

executing

RST 38h - Enables interrupts

(1) = ROM 1 must be paged in Spectrum 128K

(2) = The interface is automatically paged in by the hardware

(3) = Be sure that the right Spectrum ROM is paged in

5.2 EXAMPLE: LOADING A FILE.

============================

Here is the simple loader that we have often used in our programs. It will

load a CODE file called "blk0.DF" in memory at its original start address.

This routine will work fine with DISCiPLE, +D and UNIDOS (all versions).

Note: no error checking is done.

 LOAD: LD IX,UFIA ; IX must point to the UFIA

 RST 08 DB 3B ; HGFLE: open the file

 LD DE,UFIA+0F ; the file header will be put here

 LD B,09 ; the first 9 bytes of the file

 L_HDR: RST 08 DB 3C ; LBYT: get a byte from the DRAM

 LD (DE),A ; store the byte

 INC DE

 DJNZ L_HDR ; fetch all the 9 bytes

 LD DE,(UFIA+10) ; get the file start address

 LD BC,(UFIA+12) ; get the file length

 RST 08 DB 3D ; HLDBK: load the whole block of

data

 RET ; finished!

Now the UFIA follows. Only the first 15 bytes must be preset by the user

before calling HGFLE.

The last 9 bytes are overwritten with the 9 bytes header of the file.

UFIA: DB 01, ; drive number ('*' for default)

 00,

 00,

 'd',

 04, ; file type 04 = CODE

 "blk0.DF ", ; file name (padded with spaces)

UFIA+0F 00, ; will contain the ROM-ID

UFIA+10 00, 00, ; will contain the file address

UFIA+12 00, 00, ; will contain the file length

 00,

 00,

 00,

 00

Note that loading address and length are read from the 9 bytes header of

the file itself. To force the file to be loaded at a different address,

simply change the LD DE,(UFIA+10) instruction (e.g. with a direct LD

DE,nn).

6. DISK LAYOUT

==============

The disk has 80 tracks of 10 sectors (512 bytes double density, 256 bytes

low density) each, for a total capacity of 800KB (DS/DD).

The first four tracks of the disk (tracks 0-3 side 0) are reserved for the

system and contain the disk directory, leaving 780KB available for user

data.

The directory consists of 80 consecutive file descriptors, each one taking

256 bytes; thus, the descriptor of file #48 resides in the first 256 bytes

of sector 4 track 2.

The directory has a fixed dimension and can only contain up to 80 files.

UNIDOS overcomes this limitation introducing subdirectories and allowing to

specify the maximum number of file entries for each directory.

Disks formatted with DISCiPLE or +D can be read and written by common PC

disk drives and viceversa.

7. FILE DESCRIPTOR FORMAT

=========================

Now we will see the details about a single directory entry.

NOTE: All numbers are in decimal.

General structure:

OFFSET MEANING

 0 File type (see FILE-TYPES table); 0 = erased (free entry)

 1-10 Filename (padded with spaces)

11-12 Number of sectors occupated by the file (in Motorola byte order)

 13 Track number of the first sector of the file

 14 Sector number of the first sector of the file

15-209 Sector allocation bitmap. Each bit corresponds to a disk sector.

 A bit is set if the corresponding sector belong to the file.

 Examples: byte 15, bit 0 corresponds to track 4, sector 1;

 byte 16, bit 3 means track 5, sector 2...

 IMPORTANT NOTE:

 The s.a.b. is used only during saving operations: the s.a.b. of

 all the 80 files are merged together (OR) so that the system

 knows which sectors are free (not allocated to any file).

 During loading a faster method is used: each sector contains

 only 510 bytes of data; the last two bytes contain the

 track number and the sector number of the next sector of the file,

 respectively. The last sector of the chain contains (0,0) as the

 last two bytes.

210-255 Depend on the file type.

BASIC (type 1)

211 Always 0 (this is the id used in tape header)

212-213 Length

214-215 Memory start address (PROG when loading - usually 23755)

216-217 Length without variables

218-219 Autostart line

NOTE: These 9 bytes are also the first 9 bytes of the file.

NUMBER ARRAY (type 2)

211 Always 1 (this is the id used in taper header)

212-213 Length

214-315 Memory start address.

216-217 Array name, probably ignored.

218-219 Not used

NOTE: These 9 bytes are also the first 9 bytes of the file.

STRING ARRAY (type 3)

211 Always 2 (this is the id used in tape header)

212-219 Same as for type 2

NOTE: These 9 bytes are also the first 9 bytes of the file.

CODE FILE (type 4)

211 Always 3 (this is the id used in tape header)

212-213 Length

214-315 Start address

216-217 Not used

218-219 Autorun address (0 if there is no autorun address)

48K SNAPSHOT (type 5)

211-219 Not used

220-255 Z80 registers (in words) in the following order:

 IY IX DE' BC' HL' AF' DE BC HL I SP (see below for R and AF)

 Register I is in the MSB of the corrisponding word (byte offset

239), so that it is loaded with:

 POP AF

 LD I,A

 The Interrupt Mode is desumed by the value of the I register: if

 it contains 00h or 3Fh then IM1 is assumed, else IM2 is set.

 The IFF2 status (IFF1=IFF2) is retrieved from the P/V bit of the

 flag register F.

 SP is actually SP-6, because the original stack is "corrupted"

 with the following 6 bytes (in ascending order):

 R AF PC (----> decreasing stack)

 | |

 SP SP+6 (original SP)

 (R is in the MSB of the corresponding word) so that the return

code

 could be something like this (actually it is a bit more complex):

 POP AF

 LD R,A

 POP AF

 RET

MDRV (type 6)

This is a microdrive cartridge image. Details omitted.

NOTE: UNIDOS mdrv files are completely different from GDOS ones.

SCREEN$ (type 7)

Same as type 4 with Start=16384 and Length=6912

SPECIAL (type 8)

211-255 Any meaning assigned by the programmer.

128K SNAPSHOT (type 9)

Same as 48K Snapshot. The first byte of the file is a copy of the page

register (port 0x7FFD), usually held in the system variable BANKM (23388).

The 8 RAM pages are saved in ascending order from 0 to 7.

OPENTYPE (type 10)

210 Number of 64K blocks in the file

211 Always 9 (not sure)

212-213 Length of the last block

214-255 Not used

NOTE: Opentype files can be more than 64K in length and are usually created

and handled with the stream-related BASIC statements, such as OPEN #, CLOSE

#, PRINT #, INPUT # and so on.

See chapter [9] for a brief description of these statements.

EXECUTE (type 11)

210-255 Same as CODE file (type 4), but Length=510 and Start=0x1BD6

implicitly(0x3DB6 for +D). The sector is loaded into the interface RAM and

executed (it should contain relocatable code!).

SUBDIRECTORY (type 12) - UNIDOS

210-212 Same as Opentype (type 10). This file is always held on contiguous

 sectors. The last two bytes of a sector do not contain the address

 of the next sector. The structure is the same as the root

directory,but the first entry contains the file header number of the

parent directory. The last two bytes of the last sector contain

0xFFFF.

213 Capacity (number of file entries allowed).

CREATE (type 13) - UNIDOS

210-255 Same as CODE file but the start address is ignored.

8. FILE-TYPES TABLE

===================

This table lists the various MGT file types with their correspondent ID's.

Where possible, it is also reported the file type ID used by the standard

Spectrum ROM in the tape header. The ROM-ID is part of the 9 bytes header

of the file (same as bytes 211-219 of the directory entry).

NOTE: under UNIDOS, add 128 for hidden files and 64 for protected files.

Code Type CAT string ROM-ID

 0 ERASED (free entry) (NA) NA

 1 BASIC BAS 0

 2 NUMBER ARRAY D.ARRAY 1

 3 STRING ARRAY $.ARRAY 2

 4 CODE CDE 3

 5 48K SNAPSHOT SNP 48k NA

 6 MICRODRIVE MD.FILE NA

 7 SCREEN$ SCREEN$ NA

 8 SPECIAL SPECIAL NA

 9 128K SNAPSHOT SNP 128k NA

10 OPENTYPE OPENTYPE NA

11 EXECUTE EXECUTE NA

12 (UNIDOS) SUBDIRECTORY DIR NA

13 (UNIDOS) CREATE CREATE NA

9. GDOS EXTENDED BASIC SYNTAX

=============================

GDOS extends the BASIC to provide support for disk operations.

When you switch the Spectrum on, you must initialize the system; to do so,

insert a disk containing the operating system file ("SYS*" on DISCiPLE and

"+SYS*" for +D) into the first drive and then enter "RUN".

The DOS also looks for the first file called "auto*" and runs it if found.

The "auto*" file is not searched for if the command "RUN boot" is entered.

NOTE: File names are case insensitive and may contain wildcards ('*' and

'?').

To show the disk contents, enter:

 CAT 1 (for drive 1) or

 CAT * (current drive)

You may also enter commands like these:

 CAT 1;"a*"

 CAT #3;1;"sys*"

 CAT 1!

 CAT #3;1!

so you can redirect the CAT output to any channel and you may specify a

file name which may contain wildcards to show only matching files.

If the command ends with a '!' then an abbreviated catalogue is shown,

containing just a list of (matching) file names.

To LOAD/SAVE a file:

 LOAD d<dn>;"filename" [CODE|SCREEN$|DATA|etc]

 LOAD p<fn>

 SAVE d<dn>;"program" [CODE|LINE|SCREEN$|etc]

 where <dn> is a drive number (1-2)

 <fn> is a file number (1-80)

You must specify 'S' to load a 48K snapshot and 'K' for a 128K snapshot.

Case of letters 'S' and 'K' is important.

Examples:

 LOAD d1;"screen" SCREEN$

 LOAD d*;"pippo" loads program pippo from the current drive

 LOAD d1;"snap128"K loads the 128K snapshot 'snap128'

 SAVE d2;"rom" CODE 0,16384 this saves the DISCiPLE memory!

Note: "d1" with lowcase 'd' refers to DS DD disks (80 tracks double sided);

in ROM version 3 the only difference seems to be that if you use 'D' a CAT

command is also performed after the operation.

Early versions of the OS used "D1" (capital 'D') for single sided disks.

This applies always when you have to specify the 'd<dn>' field.

Please use only DS/DD disks.

When saving CODE files, an autostart address can be specified as a third

parameter:

 SAVE d*;"runme" CODE 32768, 8192, 33000

so when you load it back with LOAD CODE, it will be automatically launched

with an implicit RANDOMIZE USR 33000.

Each file can be referred both through its name and its directory number,

so if file "screen" is listed as number 7 you may also enter:

 LOAD p7

Note that if you use the abbreviated notation, each file will be loaded

accordingly to its type (i.e. you can a CODE file will be loaded into

memory at its start address).

Of course MERGE and VERIFY are also available with a similar syntax.

To erase a file from the disk, enter:

 ERASE d1;"file2del"

 ERASE d1;"*" dangerous!

The ERASE command can also be used to rename a file:

 ERASE d1;"oldname" TO "newname"

To format a disk, use:

 FORMAT d1 double density (250 Kbit/sec)

or

 FORMAT sd1 single density

GDOS also extends streams, so that you can redirect a stream to a file and

vice versa. If you open a channel for writing to a disk file, then an

OPENTYPE file is created. Opentypes can be more than 64K in length.

Channels are accessed with the usual PRINT, INPUT, INKEY$, etc. commands.

Examples:

 OPEN #4;d1;"archive"

 OPEN #5;d1;"temp" OUT open for writing only

 OPEN #5;d1;"temp" IN open for reading

 MOVE #3 TO #4

 MOVE #4 TO d1;"temp1"

 MOVE d1;"temp2" TO #4

 CLOSE #4

Note that disk-mapped channels are buffered, so data is read/written to

disk only when the 512 bytes buffer is empty/full.

When accessing BASIC, CODE, DATA and SCREEN$ files through streams,

remember that these files start with a 9 bytes header and the actual data

starts at byte 10.

To copy a file into another, use:

 SAVE d1;"file1" TO d2;"file2"

Since the SAVE TO command uses all the RAM available, when it has finished

a system reset occurs.

You can LOAD/SAVE single disk sectors with this syntax:

 LOAD @d,t,s,address

 SAVE @d,t,s,address

where 'd' is a drive number (1 or 2)

 't' is the track number (0..79 + 128 if side 1)

 's' is the sector number (1..10)

 'address' is the address of the 512 bytes buffer

For example, you may read the first sector of the disk (which holds file

descriptors number 0 and 1) with LOAD @1,0,1,40000.

DISCiPLE GDOS recognizes the Microdrive syntax, so you can enter commands

like this:

 LOAD *"m";1;"pippo"

which will load the BASIC program pippo from drive 1. All your microdrive

programs should run over GDOS without modifications. Remember that PlusD

does not support the IF1 syntax.

9.1 THE NETWORK

===============

GDOS (DISCiPLE) implements an IF1 compatible network, with some

enhancements.

Up to 63 Spectrums can be connected together and share their resources

(files and printers) simply through a 3.5 mm mono jack cable.

Each station is given an unique station number ranging from 1 to 63.

The station number is assigned with the command:

 FORMAT Ns

where 's' is the station numer (1-63). This command can be entered even

without having the system file loaded (i.e. system not booted).

Station number 0 is reserved for broadcasting. If you enter FORMAT N0, the

network is switched off; type FORMAT Ns to switch it on again.

Station numbers are divided into four classes:

Number Purpose

--

 0 Broadcasting

 1 Master station

 2-9 Assistants (they load the system file)

10-63 Pupils or assistants (pupils do not load the system file)

The following network configurations are possible:

1. Shared Access Network

In this model, station number 1 owns the resources (disk drives and

printer)and acts as a master. The other stations are called pupils and can

access files which are onto the master's disks and print with the master's

printer. Only the master must load the system file. Since they don't have

to load the system file, pupils are identified with station numbers greater

or equal than 10. So, if you try to enter FORMAT N8 without the system

loaded, you get an 'Invalid station number' error message.

The master can send a file "pippo" to pupil number 16 with:

 LOAD d1;"pippo" first load the file, a Basic program in this

case

 SAVE N16 send it to station 16

Of course you can send CODE files, SCREEN$, etc. too!

You can send the file to all the stations using broadcast:

 SAVE N0 send to all

Station 6 can receive the program from the master entering:

 LOAD N1 receive from station 1 (the master)

Each station can receive a broadcast message with:

 LOAD N0

Pupils can also send broadcast messages with SAVE N0 and communicate with

other pupils in the same way.

The most interesting thing is that a pupil can enter disk and printing

commands as if the disk drives and the printer would be connected to it.

So, station number 6 can get the master's disk directory simply with:

 CAT d1

and load file "pippo" with:

 LOAD d1;"pippo"

Of course pupils can also save files onto the master's disk, and use its

printer with the common

 LLIST, LPRINT or COPY SCREEN$

commands.

The master has the ability to force data transfer from and to a pupil

station. On the master, if you type:

 LOAD F4 SCREEN$

then the Spectrum number 4 will stop and transfer its current SCREEN$ to

the master, which can therefore see what's going on at station 4.

Similarly, you can also enter:

 SAVE F8

which will force station number 8 to load the Basic program currently

loaded onto the master.

Again, any variation of the LOAD/SAVE commands will work (CODE,

SCREEN$...).

Of course the master can use the system normally.

2. Independent Station Network

It is very similar to the previous model, but now each station has its own

disk drives and printer. Of course all the stations must load the system

file in this case, and the FORMAT command must be issued after that.

For example, station 4 can send a CODE block to station 3 with:

 SAVE N3 CODE 32768, 16384

and station 3 will receive it with:

 LOAD N4 CODE

You can use station number 0 for broadcasting.

Note that the master station in the previous model is an independent

station.

Important note: only stations number 1 - 10 can be independent stations.

Stations 2 - 10 are called assistants (act like masters but cannot enter

SAVE F- and LOAD F- commands).

3. Mixed Network

It is possible to have a network with both pupil and independent stations -

the pupil stations being those without their own disk drives or printers.

In this way it is possible to have more than a master.

9.2 THE SNAPSHOT BUTTON

=======================

When you press the magic button, an NMI is generated and control passes to

address 0x0066 (102 dec.) of the DISCiPLE/+D memory. The consequent

behavior of the system depends on the particular System version loaded.

Under the standard systems (eg. systems 3a/3b/3d), you have to hold down

CAPS SHIFT while pressing the button and then colored stripes appear in the

border and five keys are active:

 1 = Dump screen to printer

 2 = Big screen dump (A4)

 3 = Save current screen to disk

 4 = Save a 48K snapshot

 5 = Save a 128K snapshot.

Snapshots are saved to disk with names like "Snap A" and subsequent indexes

depending on their position in the directory. When saving a 128K snap, the

system stops after creating the file and waits for the user to specify if

the screen has changed since the beginning of the operation; the user must

respond pressing either 'y' or 'n'. This happens because unlike Multiface

the DISCiPLE and the +D haven't got any flip flop to store the status of

port 0x7FFD bit 3 which tells which videoram is displayed. Before waiting

for the user intervention, the system pages the first videoram (0x4000 page

5), so if the image displayed changes then it means that the second

videoram was previously paged. Well, that's it!

After that, control is passed back to the interrupted program.

NOTE: The snapshot routine corrupts the stack with six bytes (PC,AF and

R+F).

This may cause some programs which use the stack in a particular way to

crash if the magic button is pressed at certain times (eg. Batman the

Movie).

See the snapshot section (file type 5) in chapter [7] for more details.

NOTE: The snapshot feature cannot be used while the network is in use.

9.3 GDOS and UNIDOS ERROR MESSAGES

==================================

Here's a list of the error codes for both systems available for the RST 20h

service.

Code | GDOS | G+DOS

 00 | Nonsense in GDOS | Nonsense in G+DOS

 01 | Nonsense in GNOS | Nonsense in GNOS

 02 | Statement end error | Statement END error

 03 | BREAK requested | BREAK requested

 04 | SECTOR error | SECTOR error

 05 | FORMAT data lost | FORMAT data lost

 06 | NO DISC in drive | CHECK DISC in drive

 07 | No "SYSTEM" file | NO "+SYS " file

 08 | Invalid FILE NAME | Invalid FILE NAME

 09 | Invalid STATION | Invalid STATION

 10 | Invalid DEVICE | Invalid DEVICE

 11 | VARIABLE not found | VARIABLE not found

 12 | VERIFY failed | VERIFY failed

 13 | Wrong FILE type | Wrong FILE type

 14 | MERGE error | MERGE error

 15 | CODE error | CODE error

 16 | PUPIL set | PUPIL set

 17 | Invalid CODE | Invalid CODE

 18 | Reading a WRITE file | Reading a WRITE file

 19 | Writing a READ file | Writing a READ file

 20 | O.K. GDOS 3 | O.K. G+DOS

 21 | Network OFF | Network OFF

 22 | Wrong DRIVE | Wrong DRIVE

 23 | Disc write PROTECTED | Disc write PROTECTED

 24 | Not enough SPACE on disc | Not enough SPACE on disc

 25 | Directory FULL | Directory FULL

 26 | File NOT FOUND | File NOT FOUND

 27 | END of file | END of file

 28 | File NAME used | File NAME used

 29 | Not a MASTER station | NO G+DOS loaded

 30 | STREAM used | STREAM used

 31 | CHANNEL used | CHANNEL used

 Code | UNIDOS

 128 | Nonsense in Uni-Dos

 129 | O.K Uni-Dos

 130 | Break requested

 131 | Corrupt sector

 132 | Sector missing

 133 | Check disc in drive

 134 | DOS file not found

 135 | Invalid filename

 136 | Invalid sector number

 137 | Invalid device/channel

 138 | Wrong stream type

 139 | Verification failed

 140 | Wrong file type

 141 | CODE parameter error

 142 | Directory not found

 143 | File has zero length

 144 | Reading a write file

 145 | Writing a read file

 146 | POINT outside file

 147 | Channel out of order

 148 | Illegal drive number

 149 | Disc write protected

 150 | Not enough disc space

 151 | Directory full

 152 | File not found

 153 | End of file

 154 | Filename already used

 155 | File still open

 156 | File in use

 157 | Channel already open

 158 | Protected file

 159 | Unavailable RST 8

10. GDOS and UNIDOS SYSTEM VARIABLES

====================================

GDOS and UNIDOS system variables are stored into the interface's RAM and

can be modified with the POKE command in the following form:

 POKE @var, value

where:

 var is a variable number

 value is the new variable value.

Actually, the '@' operator is interpreted as an offset into the interface's

RAM. The base addresses are the following:

 0x2000 UNIDOS and G+DOS (+D)

 0x0298 GDOS (DISCiPLE)

List of the system variables:

VAR# Description

--

 0 Flash border during disk operations. Set to 0 to leave the border

 unaltered. This byte is ANDed with the sector number currently

accessed and then sent to port 0xFE.

 1 Drive 1 capacity = number of tracks + 128 if double sided.

 2 Drive 2 capacity, same as above.

 3 Drive stepping rate. Set to 1 for the minimum (1ms).

 WARNING: Poking 0 here may lock your disk drive. It can be unlocked

 reinstalling the OS from tape.

 4 GDOS: disable Centronics printer port (0=enabled)

 UNIDOS: Enable BREAK key if set.

 5 Printer line length in number of characters (default 80)

 6 Printer control flag. If set the codes sent to the printer are not

 filtered (binary output). Necesssary to send control codes to the

 printer.

 7 Printer line spacing expressed in n/72 of an inch. It is sent to the

 printer before avery CR (default GDOS=12, UNIDOS=8).

 8 Number of line feeds after CR (default: GDOS=1 UNIDOS=0).

 9 Left margin for printing. This is the number of spaces inserted before

 the first character of a line (default=0).

 10 Printer flag.

 GDOS: if set then the printer driver generates the graphic

representation

 of 'œ' and ',' (default=1).

 UNIDOS: printer flag (default=0x80).

 11 GDOS: network station number (default=1).

 UNIDOS: Centronics enable, same as GDOS variable #4 (default=1).

 12 UNIDOS: printer column number (default=1).

 13 UNIDOS: CLS# screen color.

 14 Extended syntax address (2 bytes). This address is called on error

which

 are not related to hook codes and DOS syntax. Can be used to add extra

 commands. Ignored if 0.

 16 UNIDOS: Interrupt address (2 bytes).

 18 UNIDOS: Printer initialization codes (8 bytes). They are sent to the

 printer after a NEW or before pressing the 'P' key during a snapshot.

 26 UNIDOS: Set character pitch (8 bytes).

 34 UNIDOS: Set n/72 line space (8 bytes).

 42 UNIDOS: Set UDG bit graphics density (8 bytes).

 50 UNIDOS: Second initialise codes (8 bytes).

 58 UNIDOS: Codes for 'œ' (8 bytes).

 66 UNIDOS: Codes for '#' (8 bytes).

 74 UNIDOS: Codes for (C) (8 bytes).

 82 UNIDOS: Save SCREEN$ 2 parameters (7 bytes).

 89 UNIDOS: set dump graphics (8 bytes).

 97 UNIDOS: address of extra error messages (default=0x1C68).

 99 UNIDOS: error code

100 UNIDOS: address of LPRINT routine (default=0x34AA).

102 UNIDOS: DOS error return address (default=0x0000).

104 UNIDOS: snapshot workspace (20 bytes).

124 UNIDOS: called on reset (default=0x0000).

126 UNIDOS: called on boot (default=0x21A4).

7667 UNIDOS: set this to 0 to reset DOS.

11. UNIDOS EXTENDED BASIC SYNTAX

================================

UNIDOS is an advanced operating system which runs both on DISCiPLE and

PlusD and is available as an EPROM upgrade separately for the two

interfaces.

To install it, get the EPROM chip specific for your interface and replace

the GDOS ROM with it. Of course you also need the system disk which

contains the RAM resident portion of the DOS, a file called "Uni-Dos" which

is launched with the usual RUN command when the computer is switched on.

The system file is exactly the same both for the DISCiPLE and the +D (hence

the name UNI-DOS, I suppose).

It is 6654 bytes in length; the "missing" two bytes contain a checksum

which is constantly monitored by the DOS to detect system corruptions.

This mechanism works quite well and sometimes you'll see that the system

file is loaded without an explicit statement: just don't worry! :)

Also remember that in the DISCiPLE the RAM and ROM addresses are swapped

under UNIDOS. See chapters [2] and [3.1] for all the details.

The main UNIDOS features are powerful disk management with subdirectories,

excellent printing facilities and a lot more of professional touches that

you discover with use, making it extremely powerful.

UNIDOS provides a superset of the standard GDOS and G+DOS functions (some

of them have been changed, however), so read the related chapter first if

you don't know that already. Some parts are missing, such as the network

routines which have been suppressed for space reasons. Also the FORMAT

statement is no more part of the command set, but it is provided as a

separate program in the system disk.

First of all, files now have two attributes: hidden and protected. Hidden

files are not showed in the catalogue, while protected files are read-only.

Also, the disk is given a name (a string containing up to 10 characters)

during the FORMAT process.

As already said, UNIDOS introduces SUBDIRECTORIES. They work in the same

way as you'd expect, so whenever a filename has to be specified you may

use a complete path:

 "/dir1/dir2/file"

Note that the slash '/' is used to separate the directory names, just like

in Unix. Pathnames can be relative to the current directory or absolute

(i.e. relative to the root, starting with a '/'). There is no limit to

the depth of the directory tree. The root directory has a fixed dimension

of 80 file entries, while subdirectories may have any capacity.

If the string ends with the slash charachter, then it is a directory name.

The special directory names "." and ".." obviously refer to the current

and the parent directory, respectively.

The equivalent of the 'cd' (change directory) command is:

 IN d1;"pathname/"

with the ending slash in the pathname (because it must be a directory

name); this sets the current working directory and the current drive. You

may also use IN to set the current drive only, just omit the pathname and

the semicolon.

There are no standard commands to create and remove directories. See the

CREATE files paragraph later.

The LOAD and SAVE statements are unchanged; an extra abbreviated form has

been introduced for LOAD (and MERGE and VERIFY too, of course):

 LOAD p"filename"

which loads "filename" from the current disk.

EXECUTE files can be launched with:

 LOAD d1;"exe"X, <address>

In the SAVE statement you may specify the OVER keyword to avoid the

overwrite check:

 SAVE OVER d1;"program"

This will overwrite a previous file without asking for confirmation.

The ERASE command is unchanged. If NOT is added after the ERASE

statement, then no error is reported. You cannot remove a file if it is

currently open or it is protected.

The CAT statement has a new form:

 CAT d1

 CAT d1;"pathname"

You must now specify the 'd1' instead of just '1' as in GDOS. All the GDOS

variants are accepted.

If you add NOT after CAT, then it will list the hidden files too.

If you specify a directory name, CAT lists the directory contents.

Now it possible to MERGE CODE files too, but the only effect is that the

autostart is removed.

The MOVE statement works as usual (OVER allowed) and it can be now used to

copy one file to another, replacing the old SAVE TO in this way:

 MOVE [OVER] d1;"file1" TO d2;"file2"

 MOVE [OVER] d1;"file1" TO "file2"

MOVE can copy snapshots, MDRV and opentype files too, even longer than 64K.

It can copy entire subdirectories if a directory name (ending with '/') is

specified.

Unlike SAVE TO, MOVE uses only the memory between the BASIC area and the

machine stack, so it does not require a system reset when it has finished.

The CLS command can be used to reset the screen colors to those stored in

the system variable 13:

 CLS #

A great facility UNIDOS introduces are RANDOM ACCESS FILES, i.e. OPENTYPE

files which can be accessed in random way, not only serially one byte

after another.

To open a random file, the OPEN # statement is used in this form:

 OPEN #4;d1;"file" RND

If you specify IN instead of RND, the file is read only but still has

random access. Up to 16 channels can be attached to the same file at once.

This statement:

 OPEN #4;d1;"file" RND <length>[,<byte>]

creates the file of the specified length and fills it with the specified

byte (if specified!).

Remember to close or clear all channels before you remove the disk from

the drive, or else an error will be given when you enter DOS commands after

the disk swapping.

You can work with channels using the usual PRINT, INPUT and INKEY$ commands

with all the respective variants. However, some new commands are available:

 POINT #4, <offset>

will set the file pointer at the specified offset of the random access

channel #4. An error is given if the file boundaries are crossed.

The CLEAR statement has now two forms:

 CLEAR #

 CLEAR #*[<channel>]

The former clears all channels without creating an openout file, the latter

closes one or all the disk channels creating an openout file and flushing

the buffers.

You may flush the buffers only, without closing the file, with:

 OUT #<channel>

As we said above, a special care has been involved in the PRINTING section

of

UNIDOS. The LPRINT and LLIST commands work in the usual way, now redirected

to the parallel port of the interface.

You can print a screen dump with:

 SAVE SCREEN$ 1 or SAVE SCREEN$ 2

each using a different preset of parameters. The second preset can be user

defined, just alter the relative system variables. These are also the

routines invoked by the snapshot keys '1' and '2' (see later).

The most general and powerful form of SAVE SCREEN$ is the following:

 SAVE SCREEN$ #flag [,pass [,margin [,y [,x [,h [,w]]]]]]

where flag = horiz. magnification (0-7) + 8 * vert. magnification (0-7) +

 + 64 if you want color processing + 128 if you want sideways

 printing.

 A magnification of 0 actually means 8.

 pass = number of passes for a single printing line

 margin = left margin in characthers

 y & x = top left corner of the window to print

 w & h = width and heigth of the window to print

See the system variable list for more advanced settings which affect

printing.

An useful statement implements the ON ERROR GOTO mechanism:

 LINE 9000

enables error trapping; all errors but OK, STOP and BREAK are catched and

control is passed to the specified line, where the program can identify the

error type reading system variable 99 with (PEEK @99).

UNIDOS also implements new BASIC FUNCTIONS; they are all surrounded by

brackets, i.e. are in the form of (<function>).

We have just seen the:

 (PEEK @offset)

which reads a system variable (and in general the RAM location

offset+8192).

The length of a random channel is obtained with:

 (LEN #<channel>)

while:

 (POINT #<channel>)

returns the current file pointer (offset) or 0 if we are at the end of the

file (EOF).

A specified number of bytes can be read from any channel with:

 (IN #<channel>, <length>)

Lastly, you can check if a file or directory exists with:

 AT d1;"pathname"

which returns 0 if the file does not exist or its directory number if

found.

Now let's examine the last new file type introduced, CREATE files.

These are machine code programs (generally new commands or syntax

extensions)that are loaded between the channel area and the BASIC area, so

they are lost after a NEW or a reset.

You may LOAD and SAVE CREATE files with:

 LOAD d1;"pathname" USR

 SAVE d1;"pathname" USR <address>, <length>

You can load as many create files as you need (but the memory space is

obviously affected).

The system disk provided with UNIDOS contains two create files with the

following extensions:

 "ext_code" contains:

 FORMAT d1;"diskname"

 to format disks. The disk name is stored in the last bytes of

 the first root directory entry.

 (LINE)

 returns the current drive number + 128 if the disk is write

 protected and the value is negated if there is no disk in

drive.

 (STR$ #<channel>)

 return a null string if the channel is not open, 'd' if it is

an

 openout stream and 'D' if it is a random stream, or the

letter

 that the channel uses.

 "dir_code" contains:

 SAVE [OVER] d1;"dirname" CAT <capacity>

 creates a directory with a capacity of the specified number

of

 files.

 ERASE d1;"dirname" CAT

 removes the whole specified directory.

 (STEP [d<drive])

 returns the pathname of the last directory accessed or of the

 current directory (if the drive number is specified).

Now a few words about the SNAPSHOT. The active keys are the same as in GDOS

with the same meanings, plus the key 'x' to return to the interrupted

program and 'p' which sends the initialization codes to the printer.

If some error occurs during the snapshot saving, then control is passed

back to the snapshot menu and not to the interrupted program.

Note that on the +D the snapshot button is disabled during the processing

of a DOS command.

12. CONNECTORS PINOUTS

======================

The following pinouts are viewed from the back of the interface.

 DISC CONNECTOR

 ------------------------------------ 1-33 Ground (0V) 22 Write data

 | 33 3 1 | 8 Index 24 Write gate

 | o o o o o o o o o o o o o o o o o | 10 Disk1 select 26 Track00

 | | 12 Disk2 select 28 Write protect

 | o o o o o o o o o o o o o o o o o | 16 Motor on 30 Read data

 | 34 4 2 | 18 Step dir. 32 Side select

 ------------------------------------ 20 Step pulse

 PRINTER CONNECTOR

 ---------------------------- 1 Strobe 13 D5

 | 25 3 1 | 3 D0 15 D6

 | o o o o o o o o o o o o o | 5 D1 17 D7

 | | 7 D2 21 Busy (input)

 | o o o o o o o o o o o o o | 9 D3 2-22 Grounds (0V)

 | 26 4 2 | 11 D4

The parallel pinout allows direct connection to a Centronics connector

simply through a flat cable.

12.1 CONNECTING A PC 5.25" DRIVE

================================

Petri Andras sent an interesting document to explain how to connect a

common 5.25" (1.2 MB) PC disk drive to the DISCiPLE and +D. Although not

all drives are suitable for the purpose, the chances to succeed are quite

good; you can decide whether your drive will work or not with a simple test

described below.

Note that the procedure requires a certain experience, so you'd better

ask an expert friend if you are not familiar with such operations. Take

care, we are not responsible for any damage caused to your system.

SUITABILITY TEST. The floppy drive must be able to operate in "low density"

mode.

This is the crucial point, as the DISCiPLE expects a specific RPM from the

floppy drive; the PC floppy controller, however, handles different

densities without changing the floppy drive's RPM, by re-programming its

internal clock frequency. Therefore many PC floppy units, especially later

ones, do not support RPM changing at all. There is a line of the interface

for switching the floppy's RPM (Pin 2), but the floppy unit may ignore it.

This is the operative test: apply power to the floppy with the flat cable

removed, insert a disk into it, move the jumper to DS0 as described above,

short-circuit pins 11-12 and 15-16 (with two small alligator clamps on the

edge connector). Now the floppy LED will light on and you can hear the

drive motor running. Take a third alligator clamp or a piece of wire, and

short pins 1 and 2. If the RPM of the disk changes (the difference is

audible), then the floppy unit is OK.

If no change occurs, remove power, get a multimeter and search for a

jumper that is connected to pin 2 of the floppy's edge connector. If you

are lucky, you will find one; try to set it into a different position and

test again.

THE PROCEDURE. The floppy drive must be connected to the edge connector on

the PC floppy cable that is BEFORE the twist (where drive B: is connected

in a real PC). If the floppy cable has an old-style 5.25" edge connector

only after the twist (newer PC floppy cables), the edge connector must be

disassembled, the twisted wires of the flat cable must be straightened,

and the connector must be re-assembled to the cable. This operation

requires a little dexterity, but a real Speccy hacker surely has it ;-)

The floppy drive has a set of four jumpers somewhere, described as DS0,

DS1, DS2, DS3 (or something similar, numbered from 0 to 3). The jumper is

ALWAYS in the DS1 position in the case of PC floppies. This must be moved

to DS0 if you want to use it as Disk 1 on the DISCiPLE. (Disk 2 must have

this jumper on DS1).

Technical note: This jumper actually determines the Drive Select line

that activates the floppy unit. The original Tandon/Shugart floppy

interface supported four Drive Select lines and a common Motor Enable

line. The PC floppy interface uses DS1 and MotorEnable for disk selection

and motor enable for drive A:, and DS0 and DS2 for drive B:. The twist in

the floppy cable ensures that the two floppy units can be jumpered

identically.

12.2 Using the Plus D / Disciple with a Gotek (Flash Floppy)

===

CABLING: There are various ways of doing this, but by far the easiest

method is to use a straight floppy cable with no twists and close the Gotek

S0 jumper (Gotek drive id0; Shugart standard). If a second drive is to be

connected, it should be jumpered as drive B (most drives are by default)

and again connected to the same cable with no twists. As straight floppy

cables are harder to get in 2024, I found it easier to buy a small box of

IDC 34 way connectors and clamp them to an existing cable before the

twists. The Gotek will also work with a twisted cable, but will need drives

jumpered appropriately which can be difficult as some drives are missing

the drive select jumpers altogether now.

FLASH FLOPPY CONFIGURATION: You will need to create a flash floppy FF.CFG

file on the USB stick with the following config directive:

Index pulses suppressed when RDATA and WDATA inactive?

Values: yes | no

index-suppression = no

Both interfaces look for index pulses in their firmware, which the Gotek

suppresses; the Plus D in particular will fail to format disks and

sometimes write files if this isn’t done. This can be seen at Plus D ROM

address 0x06C5 (TRACK_0 routine) in the V2 ROM (G+DOS 2a). The ‘CHECK DISK

in drive’ message will be frequently displayed without this configuration.

13. VL1772 PROGRAMMING INFO

===========================

Here is the low-level technical information about the VL1772 floppy

disk controller. Some devices equipped with this component are MGT

DISCiPLE, MGT PLUS D, MGT SAM COUPE and ATARI ST. It seems to be almost

compatible with other FDC devices such as 1791 and 1793.

See section 3 for the port addresses of the FDC registers in the DISCiPLE

and the +D.

-COMMAND REGISTER (W)-

Commands are divided into four classes. The lower 4 bits of the command

byte have a different meaning depending on the command class; remember to

OR them with the command codes given below.

Type 1 commands:

 b0-b1 = Stepping rate

 00 = 6 ms

 01 = 12 ms

 10 = 20 ms

 11 = 30 ms

 b2 = Verify track

 b3 = Load/unload head at beginning

Command name Code Comments

-

RESTORE 0x00 Restore disk head to track 0

SEEK 0x10 Seek a track (send the track number to the DATA reg.)

STEP_NUPD 0x20 Step using current dir without updating track

register

STEP_UPD 0x30 Step drive using current direction

STEP_IN_NUPD 0x40 Increase track without updating track register

STEP_IN_UPD 0x50 Increase track

STEP_OUT_NUPD 0x60 Decrease track without updating track register

STEP_OUT_UPD 0x70 Decrease track

Type 2 commands:

 b0 = f8 (deleted dam) / fb (dam) if set in READ commands

 b1 = Enable side compare

 b2 = 15 ms delay

 b3 = Compare for side 1/0

Command name Code Comments

-

READ_1SECTOR 0x80 Read one sector

READ_MSECTOR 0x90 Read multiple sectors

WRITE_1SECTOR 0xA0 Write one sector

WRITE_MSECTOR 0xB0 Write multiple sectors

Type 3 commands:

 b0-b1 = 0

 b2 = 15 ms delay

 b3 = 0

Command name Code Notes

-

READ_ADDRESS 0xC0 Read address

 The controller reads the header of the first sector

 encountered and produces 6 bytes which must be read:

 track number, side number, sector number, sector size

 and a two-byte checksum.

READ_TRACK 0xE0 Read a whole track (including headers and control

data)

WRITE_TRACK 0xF0 Write a whole track (used to format the track)

Type 4 commands:

 b0 = Not ready to read transition

 b1 = Ready to not read transition

 b2 = Index pulse

 b3 = Immediate interrupt, requires reset

 b0-b3 = 0000 -> Terminate with no interrupt

Command name Code Notes

-

FORCE_INTERPT 0xD0 Force interrupt (stops the current command)

-STATUS REGISTER (R)-

Some bits assume a different meaning depending on the last command issued.

After a Type 1 command:

Bit Meaning Comments

-

 0 BUSY Wait BUSY=0 for a new command

 1 INDEX PULSE Index pulse

 2 TRACK00 Signals head on track 00

 3 CRC ERROR Sector corrupted

 4 SEEK ERROR Seek error

 5 HEAD LOADED Head loaded

 6 WRITE PROTECT Disk is write protected

 7 MOTOR ON Motor is on or drive not ready

After a Type 2/3 command:

Bit Meaning Comments

 0 BUSY Wait BUSY=0 for a new command

 1 DRQ Need to send or read data from DATA register

 2 LOST DATA Error (eg you did not respect I/O timings)

 3 CRC ERROR Sector corrupted

 4 RECORD NOT FOUND Non-existent track/sector or no more data to read

 5 REC.TYP/WR.FAULT Read: record type; Write: write fault

 6 WRITE PROTECT Disk is write protected

 7 MOTOR ON Motor is on or drive not ready

-TRACK REGISTER (RW)-

Contains the current track number.

-SECTOR REGISTER (RW)-

Current sector number for read/write operations.

-DATA REGISTER (RW)-

Here you may read and write the data to the controller. Check the status

register before reading or writing data.

14. CREDITS AND CONTACT INFO

============================

This document was written by Luca Bisti of Ramsoft.

Stefano Donati wrote chapters 3.1, 5.1, 9.3 and helped with errors

correction.

Thanks to Dominic Morris who provided info about hook codes 43h, 44h, 45h

and 47h.

Petri Andras sent the document reported in chapter 12.1.

Mario Prato found that the +D memory is paged in when address 0x3A is

fetched.

Version 9 was updated by Alan Pearson (not associated with RAMSOFT who seem

to have disbanded) which has corrections to the addresses where memory is

page in for both +D & Disciple as well as information on using a Gotek

floppy emulator. THANK YOU RAMSOFT IF YOU ARE OUT THERE.

You may contact these people at the following addresses:

* THE RAMSOFT STAFF:

 Ramsoft WHQ (WWR)... ramsoft@bbk.org

* Dominic Morris djm@jb.man.ac.uk

* Petri Andras petri@mit.bme.hu

You can always get the latest version of this tech at the RAMSOFT homepage:

 http://www.ramsoft.bbk.org (World Wide Ramsoft)

 -------------------------- --------------------

V9, March 2024 - Above link now defunct try here instead :

https://spectrumcomputing.co.uk/entry/1000117/Hardware/DISCiPLE_Interface

https://spectrumcomputing.co.uk/entry/1000117/Hardware/DISCiPLE_Interface

	The MGT Disciple and Plus D PALS, finally unveiled V2.2
	(Updated March 2024)
	Background
	2024 Update
	Copyright
	How did you figure it out then?
	What is a PAL20L8?
	Where can I get fully programmed PALs for the Disciple or Plus D?
	The Disciple PAL ICs
	The Disciple PAL Equations explained
	The Plus D PAL Equations explained
	Why did you do this you madman?
	You're wrong about something…
	I just want to program my PAL chips! Can I have the jedec source files please?
	Okay what about the Plus D?
	How can I thank you?
	And the Disciple circuit diagram / schematic?

