The ZX PROGRAMMERS' COMPANION
 John and
 Catherine Grant

The $\mathbf{Z X}$ PROGRAMMERS' COMPANION

 John and Catherine Grant

Cambridge University Press

Cambridge

London New York New Rochelle Melbourne Sydney

Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP
32 East 57th Street, New York, NY 10022, USA
296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia
(C) Cambridge University Press 1984

First published 1984
Printed in Great Britain at the University Press, Cambridge
Library of Congress catalogue card number: 83-23967
British Library cataloguing in publication data
Grant, John, 1984
The ZX Programmers' companion.

1. Sinclair ZX81 (Computer)--Programming
2. Sinclair ZX Spectrum (Computer)-Programming
I. Title II. Grant, Catherine
001.64'2 QA76.8.S625

ISBN 0521270448

CONTENTTS

Authors' note
Part I What is a computer?
1 Anhistorical introduction 1
2 What can a personal computer do? 25
Part II Writing programs
3 Storing and using data 45
4 Input and decisions 67
5 Arrays and strings 83
6 Programs for others to use 99
Part III Example programs
7 Graphical presentation of data 119
8 Statistics 141
9 Accounting 159
10 Keeping records 181
11 Keeping score at games 203
12 Board games etc. for two players 215
13 Animation 241

AUTHORSI NOTE

The programs in this book are written for the $Z X$ Spectrum or the ZX81 computers. Each program is written for one of the computers, and an indication given of how to convert it into the form required for the other. In many cases only small changes are needed to convert the program for other microcomputers that support BASIC.

The Timex/Sinclair TS1000 is the North American version of the ZX81, and the TS2000 is the North American version of the Spectrum. References to the ZX81 or Spectrum shouid be understood to apply also to the corresponding North American version.

The differences between the ZX81 and the Spectrum are firstly that the TV picture is made up in rather different ways in the two machines, and secondly that the Spectrum's BASIC is an 'extended' version of the ZX81's. On the Spectrum the state of each point on the screen is stored separately, so that high-resolution graphics pictures can be drawn; on the ZX81 only text and low-resolution graphics are available. Also, of course, the $Z \times 81$'s picture is in black and white whereas the Spectrum produces a colour picture (although the colour information is to a rather lower resolution than the graphics) and even on a monochrome TV set will produce several different shades of grey. Apart from the additional commands etc. to support its graphics facilities the Spectrum's BASIC provides the additional commands BEEP, DATA, DEF FN, MERGE, OUT, READ, RESTORE, and VERIFY, and functions FN, IN, and VALS as well as lower case letters, the 'colon'
separator which allows several commands to be put on one line, and extra facilities in commands CLEAR, INPUT, LOAD, and SAVE. The ZX81 commands FAST, SCROLL, SLOW and UNPLOT are not included in the Spectrum's BASIC because it does not have separate 'fast' and 'slow' modes and scrolling and unplotting are done in a different way.

There are some differences in notation between the two BASICs; the same notation has been used throughout the book regardless of which version of BASIC is being used. Lower case letters have been used for the names of variables (to distinguish them from the 'tokens' which are in capitals) although on the ZX81 only capitals are available. The following tokens have different spellings on the two machines:
ZX81
CONT
GOSUB
GOTO
RAND

Spectrum
CONTINUE GOSUB GOTO RANDOMIZE
\uparrow

Used here
CONTINUE GOSUB GOTO RANDOMIZE \uparrow

PARITII

WHAT IS A COMPUTIER!

A computer is a machine which is used to store and process information, and which is controlled by a 'program' stored in the machine along with the other information. In Part I we look at just
what this means in practice.

AN HISTORICALL INTRODUCTION

The most direct I ne of descent to present-day m.crocomputers probably starts with the mechanical caicu ators first developed by Pascal in the 17th century. The important difference between computers and mechanica ca culators lies n the ability of a computer to be 'programmed' to carry out a sequence of calculations. The calcu ator nas to be made to perform each operation separately (by pressing a key or turning a hand e), wa ting until one operat on is done before going on to the next, but once the 'program of operations is stored in the computer's memory it can work through the sequence over and over again at its own speed.
n the 19th century, Charles Babbage tried to bu ld a programmable mechanical calcu ator wh.ch he called the analytıcal engine but the task proved to be mpossible with the mechanica engineering technology avai able at the time (t is thought that using modern materials ana more accurately machınea parts a working analyt cal engine could now be built.)

The first working computers were built in the 1940 s using thermion c valves (called 'tubes' in North America); these machines are now referred to as 'first generation' computers (see Fig 1 1). The 'second generation' computers of the ear y 1960 s used transistors, and the third generat on used 'integrated circuits' in which a dozen or so transistors were comb ned on a single si icon 'chıp' Each cnip was a bulld ng block performing a s mple function
(such as amplifying a signal or combining several signals into one) whicn previously had to be done by a crrcuit using severa separate transistors and other components. The fourth generation, which includes microcomputers, uses 'large scale' integrated c rcuits, LSI for short, in wnich the ch p contains tens of thousands of trans stors The pattern of FIG 1.1

Small-scale integrated circuit (SSI) - third generation.

Large-scale integrated circuit (LSI) - fourth generation
transistors and the connections between them on an integrated circu t is created n a similar way to the pattern of connections on a printed c rcuit board, but on a much smaller scale.

The invention of LSI circuits can be likened to the invention of the print ng press Before there were pr nting presses every copy of a book had to be written out by hand but with the printing press a whole page (once it nad been typeset) coula be pr nted in a single, quick operat on.

The difference between solder ng .ndividual components onto a circuit poard and producing an LSI chip s very s mi ar.

Al the first four generat ons of computers have the same basic structure snown in Fig 1.2(a), which was first described by Jonn von Neumann in the early 1940s. The memory can be thought of as a huge bank of sw tches, each of which can be erther on or off. the switches are grouped into 'words', and each word in the memory contains the same number of switches Each word has is own 'adaress' which is simply a number that identifies that part cular word, rather in the way that each house .n a street has ts own number.

The 'central processing unit' or CPL, is ab e to look at, or 'read', any word in the memory; it can a so attempt to wr te' any word (i e to set up a new pattern of ons and offs on the switches) but with some kinds of memory. called 'read-only' memory or ROM for short, th s attempt will not succeed.

When we wisn to store numbers in the memory, the onioff state of each switch is used to represent either 0 (in one state) or 1 (n the otner); these are cal ed 'binary dig ts' or 'bits' or short On most present-day computers a word contains 8 bits and is ca led a 'byte'. There are 256 different
F7 And '1. Cen refor either to a piece of hurdwep ect the the
Costreot To' or '1' stete tored in it

Ic)
combinations of 1 s and 0 (cal ed bit strings') that can be stored n a byte 00000000, 00000001, 00000010, 00000011,00000100 and so on $u p$ to 11111111 A par of bytes (containing a tota of 16 bits) wi I hold one of 65536
different bit strings We talk further about represent ng data by bit strings in Chapter 3.

The CPU used in the ZX computers is the $\mathbf{Z 8 0}$ which uses 8－bit woros stored in separate memory cnips with a total of up to 65536 different addresses．There are a further e ghteen 8 －b t words and four 16 －bit words that are siored in the CPL ch p itself and are called＇registers＇．The CPU sometimes uses two 8－bit woras to make up a 16－bit word As with all CPUs，the apparently complicated tasks it performs are composed of large numbers of simple steps ca led＇machine cycles＇It performs about a mi lion machine cycles every second

The f rst macnine cycle that the CPU performs reads a byte from the memory，this byte is called an operation code，or＇op－coce＇，and represents one of 256 possible operations that the CPJ can perform The CPJ then performs the indicated operation if it is something s mple like copy ng the bit str ng stored in one register to another（so that，as it were，the switches that form the

```
DT क⿴囗十|
```



```
ogother) diterent postible patterne of is mades
REGISTER - haroweve lor storing a bi string of a fixed lengch.
```



```
So bo callod 'location'thetendt)
MACHINE CYCLE - a distmct Operation pertormed by the
```



```
irstruction code, or stoyng dala in memory, A simpite instrc-
```



```
maybe haif a dozen
```

second register are set to the same states as those for the first) it is completed during the same macnine cycle and the next mach ne cyc e reads the next op-code from memory reading t from the next adaress in sequence. Other possible operations include reading data from the memory writing to the memory, deriv ng a new bi string from existing ones and storing it in a regıster or in the memory, and jump' operations that change the address from wh ch the next op-code will be read.

A computer is not much use unless it can communicate with the outside wor d. The ZX completers do this chief y through the keyboard and the TV picture, but inputs can be taken from anything that produces a measurable electrica s gnal and outputs can go to anything that can be electrica ly controlled. The CPU reads the inputs in much the same way that it reads the memory however the bit string it rece ves is not someth ng that was previously stored but rather an indication of the present state of sometning outs de the computer The Z80 uses a completely separate set of aadresses for input/output from that used for memory, but some otner CPUs Just have one set of addresses

In the ZX computers there s an address such that five of the bits in the byte read from t correspond to five of the keys on the keyboara, each peing a 0 if the corresponding key is pressed and a 1 if it is not, seven other addresses sim larly sense the states of the rest of the keys The CPU reads these eight addresses in turn to discover which of the 40 keys on the keyboard are pressed, and is thus ab e to see when the user presses a key and react according y. Another bit enab es it to see whetner the s gnal
from the cassette tape s at a high or low vo tage, this bit being used during LOAD.

The CPJ also writes the outputs in mucn the same way that it writes the memory but the bit string, instead of be.ng simply storea so that it can be read back, is used to contror something outs de the computer. In the ZX computers this includes the signal recorded on the cassette tape during SAVE and the electr ca s gnals that control the printer.

Sometımes bt strings are copied directly from an input to the memory, or from the memory to an output as in Fg $12(0)$ This is called aurect memory access' or DMA The Spectrum uses DMA for the TV picture; a part of the memory is set aside for it, into which the CPL writes the appropriate bit strings to produce the required effect on the screen The DMA c rcuitry copies the data to the part of the electronics that generates the video signal The ZX81 Jses its CPL to output the video signal, and the CPL cannot do th s at the same time as runn ng the BASIC program, the user is therefore given the choice of SLOW mode, in which

[^0]the BASIC only runs during that part of the TV signal that does not conta n any data, and FAST moce, in which no TV picture s generated whie the BASIC is running

Other CPU types differ from the 280 in the operations they can perform the way these are represented by op-codes, the wordiength of the memory, the number of different addresses in the memory, and other detalls. But all have the basic cycle of
read an instruction from the memory
obey t
reac the next instruction
obey it
and so on Because the instructions are obeyed na sequence one after the other conventional computers are cal ed 'sequential' machines

Japan, the JK, and tne EEC have announced projects to develop 'fifth generat on' computers which would be able to perform a arge number of operat ons at the same time these compsters are expected to be mucn better at tasks that invo ve looking at a lot of data simultaneously than the present sequential computers, th s s covered more fully in Cnapter 2. Whether the computer ndustry can break out of the stral 1 -jacket of the von Neumann design rema ns to be seen

WHAT DO COMPUTERS DO?

Electronic computers (and calculators) work much faster than mecnanical calculators, so that the typical present-day comp.ter spends much of its time walting for a human operator to give it a command (usually by typing on
a keyboard) even though each command will probably cause the computer to perform severa thousand indiv dual operat ons. For example entering the command

PRINT $417 / 23$

nto a $\angle X$ computer requires the computer to cent ty that it is to print sometning out, to convert the dig ts 417 into the bit string that represents the number 417 n the memory, to ident fy that one number has to be d vided by another, to convert 23 into the relevant bit string, to do the d vision (wh ch is ise f bu lt up from addition and subtraction operations) convert the resu t back into decimal digits, and arrange for these digits to be added to the picture on the TV screen. The speed with which th s s done, however, makes t appear almost instantaneous.

This example raises a number of important points: a even apparently 'primitive' operations $s\rfloor c h$ as d vision are Dult up from simpler operations, because the computer can only do very simple operations, but it does them so quickly that a large number of them can be used,

$$
\begin{aligned}
& \text { SEGUENTIAL MACHINE - a machine coniruled bxa clock }
\end{aligned}
$$

$$
\begin{aligned}
& \text { machine doed a srigie uperation: } \\
& \text { FIFTL GENERATION - Me next generamion of comoirers. } \\
& \text { Whash mo interded there mary of the sidfe the pooplo hav. } \\
& \text { such as being abie to uncerwand spoken English Such a } \\
& \text { fomputer would res be seingle sequentiol machisu (ov), bu }
\end{aligned}
$$

$$
\begin{aligned}
& \text { fogether }
\end{aligned}
$$

b much of the work aone by the computer is concerned with putting things into a convenent form for the person using it, rather than actual y carrying out the ca culations he (or she) requests,
c f all these operations had to be done one by one by the human operator, it would be qu cker and easier to do the division sum by hand

When electronic computers were first inventea, it was thought that about twenty of them would be sufficient to do all the calculat ons that neeced to be oone in the world Th s estimate was based on the number of calculat ons that were done by mathematicians at the time, anc there was a total failure to realise that because computers cou d do large numbers of calculat ons quickly and reliably, it would become viable to do many tasks on a computer that had previously been done by other means as for instance in the example above.

WHAT ARE THEY USED FOR?

if on y twenty (or even two hundred) computers are needed for 'number-crunching' what do all the others do?

The nvention of the punched card is attributed to Hermann Holleritn who was one of the people given the task of analysing the data collected in the US census of 1880. He must nave found the work rather tedious, because for the 1890 census ne invented a system in which the answers from each census form were recordea by means of holes in a card.

One column (or group of columns) on the card would be used for each question on the census form, and
there were a number of places w thin the column where a ho e could be punched accorcing to the answer to the question. The cards were run througn a mach ne (a 'sorter') which sensed electrically whether there was a nole punched in a part cular column on each card the card was dropped into one hopper or anotner according to where the hole was punched. The macnine also countea how many cards went into each hopper.

Using the machine the work was comp eted in one third of the t me it had taxen to do it by hand ten years prevously (C early the authorities had not caught on to the potentia of automated data process ng - If they had, the job could have taken twice as long but produced six times as many analyses.)

Punched cards were subsequently used for many data process ng applications, particularly centra ised account ng functions in large organisations. Complters quickly began to be used in puncned cara systems where they provided the ability to perform more complicated analyses than could be done with card sorters and tabu ators - operat ons such as taking a number punched on a card add ng it to a number punched on a secona card, and punching a new card incluaing the number just calculated. For instance, a computer could be fed w th a stack of cards conta ning details of customers' accounts and a second stack containing detalls of payments made (the stacks having of course already oeen sorted into an appropr ate order), I would then be able to procuce a new stack of cards conta.ning the updated account details As an alternative to individual pieces of cardboard, the data were often recorded on magnetic tape n a similar
format to that used on the cards Reacing a 'record' from the tape produces the same electr cal signals to the compler that the card reader would have produced on reacing a cara containing the same data and such records are often referred to as 'card images. Tapes could however work ratner faster than card readers and were not restricted to a part cular s ze of record, also a tape was rather easier to handle than a box of cards containing the same amount of data.

Present-cay computers increasingly use magnetic discs instead of tape. The data are stored in the same way as on a tape, that is to say in the form of smal areas of magnetism in a coating made of a suitab e magnet c materia , and there are no grooves of the kind used on gramophone records. The advantage of ι sing discs is that any of the records on the disc can be read in a fraction of a second. whereas to read a record on a tape may require several minutes to wind the tape to the appropr ate place.

Magnetic d scs are also used as backing store' to extend the amount of memory to which the CPU has access There are thus several leve s of memory as depicted in Fig 1.2 (c). from reg sters, wh ch offer a limited amount of storage that s very easily accessible, to backing store, which offers a large amount of storage that takes a comparat ve y long time to access.

In sp.te of the many advances made in data process ng technology over the last tirity years, a very large proport on of modern 'fourth generation' computers are used to store card images and to do on them the same kind of operations - sorting cards into a particular order, counting them, printing out (or 'list ng') the data from them,
extracting cards with particular data values - that were done on pre-computer punched card equ pment and indeed by Hollerith in 1890.

PROGRAMMING LANGUAGES

To use a computer for a partic $\lrcorner l a r$ job, t is first necessary to 'program' it by storing in its memory the required sequence of operations.

The first computers were programmed by writing down the operations to be performed, then writing down the string of numbers that corresponds to the relevant bit string, and fina ly load ng this string of numbers into the complter's memory. This process was tedious and errors were often made so that the program loaged into the comp.ter did not


```
%aths sil related in some way. the charecters in a ine of tow
```



```
    pari cLal proshuct
```



```
    3 a punchod cerd, somntly 80 byces iong widh the lingivicu",
```



```
    column of the cards
```


do what it was supposea to. (These errors are called 'bugs', and more will be said of them anon.)

It was quickiy realised that converting the program nto this str ng of numbers from a form in which it was meaningfu to a person reading it was just the kind of job for wh ch you should use a computer Accordingly, programming 'languages' were developed - formal notatıons in wh ch programs could be written (as 'source code') for subsequent translat on by special programs called 'compilers into the bit string (or 'machine code') that represented the appropriate sequence of operations The computer would then 'run' the program by performing these operations.

Different machines nave different reperto res of operations that they can perform, and different ways of representing them in the computer's memory We talk of them as having different 'instruction sets'. At first, each machine a.so had ts own programm ng language, or 'autococe', but :t soon became apparent that it would be helpful if the same language could be used on all machines - then programmers would not need to learn a new language when they moved from one macnine to another, and programs written to run on one mach ne could be run on another without needing to be rewritten n the second machine's programming language.

The frst such language developed in the mid 1950s was Fortran. The name is short for 'formula transiator' because (as was appropriate for the days in which computers were used maınly for number-crunching) t was ch efly concerned with calculatıng the values of mathematica formulae. For instance the formula

$$
A / B+C * 5
$$

was translated into a sequence of machine code operations Inat would divide the number represented by A by that represented by B, and mult ply by 5 the number represented by C, and add the two results together (The asterisk was Jsed because the equipment on wh ch programs were typed aid not have a multıplication sign; we shal see how the complter f nds what numbers A, B, and C represent in Chapter 3.)

> A Fortran program is made up of 'statements', written with one statement on each ine A statement represents a s ngle action, such as storing the value of a formula in the computer's memory, although this usually corresponds to a sequence of several machine operations as in the example in the previous paragraph. The term 'statement' is rather mis eading, because for instance

$$
A=B+C
$$

> BUG $=$ à mistake in a program of in tre tesign of à piece of hardware, te a result of which th bohaves in a way that is diftewhet to that intended. Very occasionally you cen pretend you cetualiy intended it to behave that wry th for time on whime egee the bug becomes atecilty's.
> COMPILER - a program which translates text in a nigh-level nerguage mote a sequence of inotrutions in machine cede orm In 'intermediate code'. to the theter cese enother progremt cated a 'code generator' may tren ioto in in mehipacoches : Phimy be interpreled direcily:
does not state that the value of A is equal to the sum of the values of B and C , but commands the computer to do the necessary operations to store $B+C$ as a new value for A (This is covered more fully in Chapter 3.)

Fortran is still much used on large computers, but is not one of the most popular languages for microcomputers.

Another lang age f rst defined in the 1950 s was ca led Algol', short for 'algorithmic language'. 'Algorithm' orig nally meant the Arabic system of numbering (as distinct from say, Roman numerals) and arthmetic based on it, so Algo. was simply a language or ented towards aritnmetic, an 'a goritnm' has now come to mean a step-by-step specification of how a calculation is to be carr ed olt, and Algo is of course a language n which such specifications can be written.

The designers of Algo had three objectives the language should be as close as possible to standard matnematica notation, it should be suitap e for describing algorithms in journals, and it should be possible for a computer to translate it into machine code. It is noteworthy that the designers put communication of algor thms between people before communication from a person to a computer

All the versions of A gol use a special symbol, made up from a colon and an equals sign and cal'ed 'becomes', to ind cate the act on of storing a number in the memory. Thus

$$
a:=b+c
$$

is different from

$$
a=b+c
$$

and the latter expresses that the two va ues are (or happen to be) equal, and has no connotation of command.ng tre computer to change anything in order to make them equal.

The third important early anguage s Coool, the common bustness-oriented language'. It is qu te dfferent from the number-crunching languages, being aimed at the kind of task that is appropriate to punched-card equ pment and to the manipulation of ' f les' of card-ımage records on magnetıc tapes and discs, indeed t has been said that there are only four Cobol programs one to read in new cards, one to check that the data punched on them are va id, one to sort them and 'merge' them with an existing fi e, and one to print them (or the new file) out In contrast with the A gol aim of using standard matnematica notation, Cobol uses English words as in

ADD B TO C GIVING A

in an attempt to make programs comprehensible to people who are not famil ar with computers, and who are not mathematic ans One effect of this is to make even simpe programs rather long some abbrev ations are allowed but a program written n the abbreviated form s not ukely tc make much sense to an unınıt ated reader Moreover some Cobol constructions are not all obv ous even n their

unabbreviated form: for example in the part of the program that describes the heirarchy of data structures used, certain 'levels' in the herrarchy (66,77, and 88) behave very differently from the others.

Al three of the above languages are intended to be read by people as well as trans ated into machine code by computers However, the features that make programs easier for people to read also tend to make the language more verbose, and hence make programs longer to write and to type. These languages were also intended for an environment in wh ch the programmer wou.d first th nk out in deta l how to do the calculation he required, then write it down in the relevant language, then punch it (or have it punched) on cards or paper tape Finally the cards or tape were read into the computer which translated the program into machine code and 'ran' it If the program did not work some of the cards were replaced or an amended copy of the paper tape was made, and the new vers on was tried on the computer. Often there was a long wait for access to the complter, so the programmer had plenty of time to ref ect on whether the program was I ke y to work and a strong incentive not to be too careless n the writing of it

During the 1960 s there was a move, particu arly in univers ties, towards 'mult -access' (or 'on ine) computers which allowed programmers to type the r programs directly into the complter s memory instead of using caras or paper tape (wh ch are referred to as 'off- ine' because typing and editing of the program are done on equipment not d rect y connected to the computer) This made possible 'interactive' use of the computer, n which the programmer cou a type in a command, nave the computer obey it, and
ook at the resu t before going on to the next command. Programming was thus able to become more of a tr al-anderror process than before.

APL (which stands simply for 'A Programm ng Language') was, lıke Algo 60, not origınal y ntended as a language in which programs would actually be input to a computer, inceed, it was about eight years after the invention of the anguage that t was first used on a computer Unlike Algol, it was not intended for communication of algorithms from one person to another but rather as a notat on wh ch a person would use when designing an algoritnm, so it had to De designed in such a way that any particular calcu ation wound requ re the m nimum of writing. APL is st Il lsed very mlch in this way. a though using a terminal on-line to a computer ratner than a pencil and paper, so the requirement for terseness remains.

For this reason, APL uses mathematıca notation (a m nus s gn, for instance needs only one кeystroke, whereas the word SUBTRACT needs eight, and a ninth for the space that separates t from the next word) and special symbols were introduced for various commands for wh ch no suitan e mathematical notation was ava lable Mcst of the

> OMLUNE = comedted birectly to the Comanier, sn that deta WHen be corweyed by elsctronic aignala rether than traneported
theo, punchoed cards, cta.
frogren, thether then simply providing a eot of data bofore thrix
tram has finisthed
symbols are used for severa different things, rather n the way that some words in English are, and the particular meaning of a symbo used in a command is determined by the context.

Because APL is used chiefly for person-to-computer commun cat on, and because commands are often ephemera (that is once the commana has been typed and the computer has obeyed it - a process wh ch often takes only a coup e of seconds in al the command is no longer needed and can be forgotten) the form of a typ ca. APL program is such that it is extreme y dficult for someone other than the author of the program to see what is going on (It is usual y equa ly difficult for the author once he has had a few weeks to forget how the program was written.)

There is a more or less inevitable trade-off to make it easier for a person to understand, the program must have extra information adged to t, and one way or another this will require extra tyo ng. AP_ is sometımes ca led a writeonly' language because you can write programs it but you cannot read them afterwaras Because of the large number of special symbols, and the powerful faci ities they make ava lable, it takes some time to learn to use APL effectively

BAS C (an acronym for Beginner's All-purpose Symbo ic Instruction Code) oates from 1964 but on y Decame rea ly w despread with the advent of microcomputers in the late 1970s. L ke APL it is intended for nteractive use, bJt as its name suggests it is intended for people who are new to programming. Therefore it does not nave the powerful facilities of APL, nor the special symbols that invore them, commands are introduced by Engl sh words such as PRINT Some implementat ons, including
those on the $Z X$ computers, reduce the amosnt of typ ng by using a sing e key for each of these woras.

HIGH AND LOW LEVELS

Languages are often described as 'h gh-level' or low level. A low-level anguage is one that specifies the ndividual machine operations that are to appear in the macnine code although (as w th an autocode) the form in wh ch t is written is more helpfu to the numan reader than a string of numbers. These languages are often cal ed assembly codes' and are used where it is .mportant to control exact y wh ch operat ons the computer performs, where the program has to be particular y effic ent in is use of the computer, and where no sultable high- evel language s ava lab e on the computer in question

The program that contro s each of the $Z X$ series computers (checking when keys are pressed on the keyboard, arrang ng for the appropr ate picture to be shown un the TV, obeying BASIC commanos, etc.) is written n assembly code for a I three of these reasons for nstance the frequency of the signals recorded on the cassette tape by the SAVE command depends on the exact sequence of operations done during the SAVE process. Careful des gn al ows more faci ities to be fitted into the available memory and allows commonly used parts of the program to be made as fast as possibie.

High- evel languages are supposed to concentrate on express ng what task needs to be done, ard to re.leve the programmer of the need to decide just how the computer w ill do it Th s s necessary if hign-level anguages are to be 'machine-independent' i.e if the same program is
to be able to be run on any compJter. In practice the most common languages concern themselves a great deal with the 'how', to the extent that tis rather easy to ose sight of the 'what'. This is in some measure inev table in a genera purpose language because the only th.ng the tasks have in common is that they can be done on a computer: the language provides a way of describing what the computer is to do, but cannot do this in a way that is related to the needs of any particular application.

There are some specia -purpose languages that are used for particular kinds of task, and more genera languages that are more tru y nigh-leve are now beginn ng to appear; these are ca led 'very h gh-leve,' to distinguisn them from the older languages.

Many languages (such as Fortran and Cobol) nave s.jrvived far longer than one wou d expect given the rate at which other aspects of computer technology are developing. New computers use ex stıng languages so that programs written for earlier computers can be run on them and so that programmers who are familiar with the langlages can use the new computer with the minimum of retraining, and it is usua ly easier to use an ex st ng language (nowever inconvenient) than to create a new one.

[^1]
WHAT CAN A PERSONAL
 COMPUTER DOX

In the early days of computing there was much publicity on the sub ect of now many years it would take a team of matnematicians to do a set of calcu ations that a computer could do in an hour or two Many people therefore got the mpression that computers could do anything that matnematicians could do on y faster and more accurately. But by the mid-1960s researchers into art fic al nte ligence had shown that there were other tasks that people (inc uding mathematicians) could do in a fraction of a second but which took a computer a quarter of an hour

In general, complters are good at tasks that involve simple operations on numbers: copying them from une place to another, comparing two numbers to see wh ch is the arger, addıng and subtracting them. Except in some very large computers called 'array processors', these calculations are done one after the other ('seria.ly or in series') altnough they are done so quickly that it may look as if many of them have been done at the same t me At any instant the computer is only able to consider two or three of the thousands of numbers thas available in its memory

Computers are good at convert ng small amounts ot data into large amounts This does not simp y mean that iney are good at producing enormous quantit es of paper covered with numbers, altnough they have been mucn used in th s way in the past. Consider for example a page of teletext disp ayed on a IV screen. (A teletext page consists
of 24 I nes of text. each line contaınıng 40 'cnaracters', characters are things ike letters of the alphabet dig ts, punctuation marks, and the spaces between words. UK readers who do not have teletext sets can look at the BBC s 'Ceefax in v sion' programmes to see some typica, te etext pages) Th s kind of text is stored in a computer using one number for each character, so t needs a total of 960 numbers When the page sd splayed on a TV screen it consists of 57600 separate dots, and the TV picture can be stored in a form that uses a number to show the colour and brightness of each dot, requiring 57600 numbers

It is a simple calculation to generate the 57600 numbers that represent the TV picture from the 960 numbers that represent the text assuming the compJter has avalıable a table giving the pattern of dots that represents each character, and in fact the ZX computers all use essentıally this method of generatıng the TV picture althougn the cetails differ somewhat

People, by contrast, are good at tasks that involve reduc ng arge amounts of data to smaller amounts; this is called pattern recognit on' Th ss look ng at the TV p cture of the page of teletext we recognise patterns formed by the 57600 points of light on the screen as letters of the alphabet etc; we do not remember the colour and position of individual dots, nor even the etters nor the woras formed by them, but the overal appearance of the page and the sense of the message conveyed by the words

When we look at a page in this way, we are rooking at the whole page at once, considering the 57600 pieces of information 'in'para lel' It is true that f we read tnrough all the text on the page we read it serially, starting at the top
left but if one part of the page \sin a brighter colour, or tlashing on and off, our eye is drawn immediately to this area A computer that scanned ser ally through the picture would not be aware of a brighter area at the bottom of the screen unttl it came to t, on the other hand it would not be distracted by t whi e processing the other parts of the picture.

It s comparatively easy for a completer to convert the TV picture of a teletext page back into the text form, by simply looking at each of the 60 dots that make up each character pos tion' and comparing them in turn with the dot patterns of each of the ava lab e characters, if an exact match is found then the character in that position has been dentified if none of them matches exactly then the picture must have become corr pled .n some way The complter could even deal with this case by choosing the character that s 'nearest' to the dot pattern, using some simple measure of 'nearness that can be calculated from the dot pattern on the screen and the cot pattern for the character (such as counting how many of the 60 match exactly)

Now suppose that we have the same text printed on a piece of paper and we hold it in front of a IV camera Suppose even that it is handwr tten rather than printed, or that it is being held upside-down. To a person looking at a TV screen it wil appear obviously s mi ar to the teletext form and there is not much officulty in, say, locat ng the fourth letter on the th ro line and identifying it as an ' e ' But someone trying to program a computer to examine the picture, which it has to do a dot at a time, has a real prob em, because the program must f rst decide where the inaiv aual letters come and then identify each one from a dot
pattern wh ch s probably ratner different from the 10 by 6 pattern in the teletext.

If the picture s not of a page of text but of, say a street, then the problems for the computer are corresponding y greater A person does not nave any troubie in recogn sing, say, a car but it is not easy to spec fy in terms of patterns of light on the screen how a computer could d st nguish the mage of a car from any other part of the picture. Remember that the camera may be see ng the car from the front or the back or the side, and the car may be anything from a small red sports car to a large black saloon.

This example snows that when performing everyday tasks people lise a great deal of 'cultura ' informat on (such as just what is and what is not, a car) which it is mpractical (at least with present-day technology) to store inside the computer. Consider for example, the amount of information that would need to be stored in a computer controling a robot for it to be able to go to the fridge and take out a bottle of milk Th s requires
the concept of what a fridge is
the ability to locate the fridge (ncluding knowng which room t is in and being able to distingu sh it from the oven or the dishwasher);
the concept of what a bottle of milk is;
the inference that it is necessary to open the fridge door. ana the know edge that it s desirabie not to leave it open too long; and
the ab lity to locate the door hanale and open the door. and to locate the bottle of m lk and pick it up We shou d avo,d the temptation to think about
complets (and robots) as being rather stupid people, and think of them instead as being rather sophisticated machines Asking someone to make you some tea is a very d fferent act from pressing a button on a machine which causes t to dispense a cup of tea, and will remain so no matter how sophisticated tea machines become

HOME COMPUTERS

Personal computers are normally concerned only witn processing data, and do not directly control or manipulate physical objects (except for the printer on wh ch results etc. are printed ant, and disc or tape drives on wh ch data are stored for later use).

There has been some talk in recent years of 'home computers' which can control various things around the house such as the heating and lignting Wh le you are away

```
TELETEXT - text rransmikied with a telev ision signal during. the
```



```
nermiauy tor digcrax on the sergen by a suitab/v equipred tele-
```



```
40,30
montused wrammense
```



```
can also tyee infrmmation in, e.g. to order:at line tickeis or to
book theatre seats
```

the computer can open and close the curta ns and turn the lights on and off to make it cok as if the house is occupied, and pernaps raise the aiarm \uparrow an intruder is detected, you can phone it Jp and (using a dev ce simılar to the remote controi for a TV set) tell it when you will be back so that the neating and perhaps the cooker can be turned on at the right time. t can be used to enable the electricity company to control when your water heater is switched on, so that they can spread the load on the local electricity supply more even y. Although interfaces are avai able for many persona computers that wou d allow them to become home computers, the otner apparatus requred s not freely nor cheeply available. For instance you are very unlikely to find that your cooker nas anywhere for you to plug in a computer that would control it the motors etc required to open and close curtains of just one window would cost nearly as much as the computer; the 'auto answer' dev ce that would allow the computer to respond to telephone calls is likely to be fairly expensive, and you may f nd you need a separate phone line for it.

It is qu te possible that w thin a decade the electr city compan es w II begin to supply home complers to the r customers, the pr nciple use of these home computers will be for the control of power consumption (as suggested apove) and for automatica ly reading the meter. Communication (of control commands to the computer and of the meter readings from the computer) would probab y be along the power cables rather than through the telephone system, the same computer would probably also be able to carry out similar functions for the gas and water supplies.

WORD PROCESSING

We saw in Chapter 1 that all data are stored in the computer in a form which we think of as a sequence of numbers (Chapter 3 wi I consider this further.) Therefore the computer can store anything that can be represented as is sequence of numbers and do any processing that can be dofinea in terms of aritnmet coperations on those numbers (incluaing simply copying them from one place to another n the computer's memory).

A common use of computers, particularly personal complers is the storage and manipulation of text - reports, letters, and other documents Suppose you are writ ng a report on some topic or other; you (or your secretary) might 'ype a draft on your typewr ter ana send coples to some of your colleagues for their comments As a result of their .omments, and any further thoughts you mignt have had, various alterations are made to the draft and a complete new copy styped If any mistakes are made in the typ ng. they must be rubbed out or painted over, it has been "st mated that typists spend about 30% of their time correcting mistakes - it only takes a fraction of a secona to i, ress a key to print a character but it takes much onger to whe the character out aga n it is wrong Also, typists tend to

> ATEFFAGS - the Gomeotion botwoun one pat of a cystiom. mad another. Bugs (qu) citon arise beccuse an interface is not: well-defined, so the part of the system on one side of the interes?
Chother side
type less quickly than they could, for fear of making mistakes.

A word processor is a special purpose persona computer for storing and manipulating text there are also programs avaiiable that run on general-purpose persona computers and prov de much the same facilities With a word processor, you wou a not need to type the whole document a second time, Jst to 'edit' the draft stored in the computer. Typing m stakes are corrected as qu ck y as they are made. by press ng a de ete' key which simp y means 'remove that ast character from the document because at that stage nothing has been printed on paper, there is no rubbing out to do

The text is stored by using a number to represent each character. Essentially this means there is a different number for each key on the typewriter keyboard, for most keys there are in fact two numbers one for the shifted (or upper case) character and one for the unsmifted (or lower case) character Note that there are also codes for the keys that do not actually print anyth ng, such as 'space' 'new ne, 'tab', and 'backspace' The sequence of key presses is stored in the computer as a sequence of these codes.

For example, in the code that is used on a most a : types of personal computer (includ ng the Spectrum but not the ZX81) the lower case letters have codes $a=97, b-98$. $c=99$, and so on up to $y-121$ and $z=122$, the code for a capital letter is 32 less than the code for the corresponaing lower case letter, and the codes for space and exclamation mark are 32 and 33 respect ve y Thus the sentence

Go away!
would be encoded as

$$
71,111,32,97,119,97,121,33
$$

To change it to
Gone away!
we require the computer to copy all but the first two codes two places further up the memory and put the codes 110 and 101 (for n ' and e^{\prime}) n the gap this is an examp e of the 'eaiting' referred to ear ier. In practice the codes would be copied up one place at a time: once when you typed the ' n ' anc again when you typed the e' Suppose you missed the 'e' key and nit 'w' instead the text would read
Gonw away!
encoded in the computer as

$$
\begin{aligned}
& 71,111,11 C, 1.9,32,97,119, \\
& 97,121,33
\end{aligned}
$$

and you wo sld $\mathrm{h} t$ the 'delete' key to tel the computer to remove the 119 that has Just been inserted and close up the gap again by copying the remaining six numbers one p ace back All this copying back and forth may appear tedıous.

> COw What the toxt is sten ain tho cenputar ad em binionnde.
printing it The fext can be kept or naxking stope (Then
but it is the k nd of th ng that a computer can do extremely quickly, and is much eas er for the user than having to tell the complter in advance how many codes are to be inserted

The facilittes provided by word processors. therefore, are to type in text, to edit it, to print it out, and to store it away for future use. For this you need a keyboard to type on and a screen of some kind to see what you have typed (all personal computers have these, of course); some kind of storage device that will preserve the data even when the computer is switched off (d sc is idea but cassette tape s acceptable); and a typewriter or otner printer of adequate quality to type the documents out on.

It is this last requ,rement that makes the $\angle X$ computers unsuitable for word processing (except as noted in the next paragraph). The bas c computer does not have any means of producing pr nted output, the add-on ZX printer uses speciaı paper and the characters it prints do not approach typewriter quality You cannot print on your own letternead or invoice forms, for example, the best you can do is to print on the special alumin sed paper that the printer uses and then cut out the text and stick it onto your own paper - a tedıus process which results in an appearance that will be unacceptab e in many sit Jations However, it is possible to attach a typewriterquality printer to a ZX computer a though it requ res some special-purpose electronic circu try to be constructed. You can expect tnat anyone who sells a device of this nature wil also sell the necessary word-processing programs to go with it.

There are some more advanced faci ties that word
processors provide. One example is aritnmet c on figures in tables converting figures from one basis to another in a report, perhaps, or calculatıng totals on an ınvo ce. An examp e of the first would be a table which I sted income and expenditure for the var ous different div sions of an organisation for the ast five years. The figures might be typed in in tho.jsanas of doilars and the table might also show the expenditure in each case as a percentage of the corresponding income figure. and profit both in thousands of dollars and as a percentage of the prof t made by the whole organisation in that year.

The character codes are almost always chosen so that the va ue of a digit is equal to the difference between its code and the code for the d git zero. Thus in the Spectrum the code for zero is $48,1^{\prime}$ is $49,2^{\prime}$ is 50 , and so on. When you subtract 48 from a character code, if the resu t is 6 , say, then the character is ' 6 ' If the result is less than zero or more than 9, the character is not a digit The word processor can easily identify where the number begins (uscally it will start at a 'tab' character or even a special code inserted by the user to mark it) and work out its value and then perform whatever ar thmetic operations the user has requested

Another common facl ity is checking for typ.ng errors by venfying that each word in the document s a correct spelt word The words can easily be dent fied - a word is s mply a group of letters preceded and followed by codes that are not letters, such as space, new I ne, and punctuat on and compared against words held n a 'dictionary' file. Aliowances can easily be made for letters being in upper or lower case (for instance by convert ng everyth ng to lower case before doing the comparison).

Some care s needed in organ sing the words n the dict onary' so that they can De found qu ck y enough, but this too, is not a part cuiarly aiff cult problem The system needs to be able to add words to its dict onary: when a word s found that s not in the dictionary, the user s asked if this word s a typ ing error (in which case the document can be eated to correct t) or a new word to be addea to the detionary.

Thus if you mistype ' t ' nstead of 'to the spell ng checker will tell you that the word ti ' is not n its d ctionary and you can make the necessary correction, but if you type 'too' in mistake for to' the program does not say anyth ng about i because 'too' s also a word in ts dictionary.

For the program to detect this kind of error would require t to be able to parse and, in many cases, n some sense understand sentences n English. This is something that cannot be reduced to a sequence of simple arithmetic operations, and although a complicated program runn ing on a powerful computer wou a be able to do it suff ciently wel to detect a fair proportion of errors of th s kind it s outside the scope of present-day personal computers

LIMITATIONS

We have seen that computers in general can do any jobs that can be described as a sequence of s mple arithmet c operations This includes not only obviously numerical processes such as those involved n keeping accounts, but also storing and editing text and p ctures, which are represented inside the compJter by sequences of numbers However it stops short of being able to deal w th the kind of idea or concept that peop e learn by example
rather than from rigorous def n tions we know what a dog s because from a very early age we have been shown dogs and p ctures of dogs and tola 'th s s a dog, and have learnt 10 d stınguish a dog from a cat by various feat, res sucn as the shape of its head and the texture of its fur, but how can these cr teria be trans ated into numbers?

Altho.gh computers are ab e to do calculat ons very quickly it is quite easy to write a program that nvolves a huge number of ca culations and thus takes a very long t me to run The effect of increasing the number of calculations tends to be imperceptible up to a certain point and then becomes apparent quite suddenly: if the computer wi I do 100000 calculations per second then anything that takes less than 10000 calculat ons wil appear to take aimost no time at al , increasing the number to 50000 ntrodjces a slight hesitation 100000 a much more noticeable one, and by 300000 there is a signiticant de ay while the program runs. Thus the difference between 50 and 500 is not noticeable but the d fference between 50000 and 500000 is qu te dramat c.

The number of calculations needed to do a g ven iob can a so become very large becalse of the way in which more complex operat ons are defined in terms of s mpler operations For nstance, we may define s mple operations

that consist of 100 calculations each (not at all a large number, part cuiarly if any repetition is involved) and more compiex operations that consist of 100 of the simpler operations. Then a program that consisted of 100 of the more comp.ex operations - not at all a large program would do a total of 1000000 calculations when it was run. With ZX BASIC we have very much this k nd of structure: There are simp e operations such as fetching a number that has been stored away in the memory which incluaes finding where it has been stored, or multiplying two numbers together, wnich the computer has to do by a k nd of 'long mult:plication' because it cannot deal w th the whole number in one go. The more complex operations, which are the BASIC commands, are defined in terms of these simp er operations, and the BASIC program s built up from BASIC commands.

Because the computer does so many individual calcu ations for each BASIC command, t cannot manage more than a few hundred commands each second. and a single command that makes heavy use of certa n of the 'simp e' operat ons, such as converting a number into character form (particulariy on the $\mathrm{ZX81}$) and calculating trigonometric (etc.) funct ons (and particularly the to-thepower operation), can take a second or more to obey More powerful compsters are able to do more ca culations each second, and often require fewer individua caiculations to perform a particular operat on They often (but by no means always) have a more sophisticated means of translating commanas into sequences of ind vidual calculations than is poss ble with the resources available to ZX BASIC, so that fewer such ca culations need to be
performed to obey a part cular commana.
Apart from the speed with which the complter obeys commands, the aspect that is usually most important is the amount, and type, of memory avai able. The on y type of memory ava lable to the program in a ZX complter is in the RAM chips that are ns de the computer or (for the ZX81's add-on memory) plugged into the back. This is 'volatile memory when you switch the computer off al the data stored in it are lost

The most common type of 'non-volatile' memory, which will retain the data when you switch the computer off is magnetic disc. Data stored on disc have to be read into RAM before the computer can use them but the computer can fetch any part of the data when the program needs it and store updated records back on the disc when requ red, this is covered more fu ly in Chapter 10.

The only k nd of nonvolatule memory available on the $Z X$ computers at the time of writing is the cassette tape. Th.s not contro led by the computer, so its use is im ted to the user-controlled operations of storing a complete copy of a program on the tape (by the SAVE command) and retrieving it (by the LOAD command) Fortunately, when the program is saved the data it s keep ng n memory are saved w th t, so that when it is oaded again I can continue
VOL ATML E , when applied tomemory, means itioses the data
thored in it when the computer is tumed of Semiconductor
PMM is wotetlo, athough CMOS RAM (wich drawe very lithe:
teunciit gen bo made to appeer norwclatio by supaying
where it eft off (there are examples of th s n Chapters 9 and 10) but while the program is running it must have all the data it needs in RAM. A computer with a d sc on the other hand, does not need to fit al, its data into RAM Decause when processing a series of data records tonly needs to have n RAM the records it is actually working on - a record is transferred back to the $d s c$ when t has been f nished with and another one is read into the part of the RAM vacated by t

In pract ce this means that in record keep ng' applicat ons the maximum total size of the informat on (or 'data base' to use the jargon word) that can be kept s much smaller in the ZX computers than in a compler with a disc Most of the jobs of this k nd that are done on a computer are of a commercial nature, such as stock control payroll accounts, and malling I sts, th s s because companies are better able to, ustify the expenditure on a computer system and they also tend to have large amounts of data to keep up-to date. There are however several personal 'data base' appl cations that cou d be done on a computer includ ng addresses, phone numbers, o thdays, recises, and pank (etc) acco_nts as well as membersh pists for clups or societies.

Fortunately many of these only involve comparatively smal amounts of data and so can oe vable on a ZX computer, but because only smat amounts of data are invo ved it s ikely to be just as easy to use a pencir and notebook as is to use a computer The computer is more likely to de a denef t where some ar thmetic is to be done on the data (as in the example in Cnapter 10) tnan where the data cons sts s mply of text, stch as ists of addresses A.so,
you can fill up the space in the computer's memory more quickly w th text than w th numbers, if you have the 2×81 with the add-on RAM, for instance, yo might have about 13 K of RAM availab e for your data in whicn you could $\ddagger \ddagger$ some 2500 numbers but only about 130 names and addresses or about a dozen recipes


```
buted' data base
```



```
ing, whe reterniggfothe individual muemery ehmas 16 K usually
```


BARTIT UI

WRUTING PROGRAMS

STIORING AND IUSING DATA

If you write on a prece of paper We have 17 widgets in stock' this conveys information to anyone looking at it who can read and understand English The written woros do not however, ook at ail ike 17 widgets, or indeed $1 /$ of anything. A Roman might have scratched on a clay tablet 'XV widget habemus', which looks quite different again.

We are, therefore, quite used to storing information in forms that do not pear any resemblance to the things cescribed We also often leave a arge part of the informat on to be deduced from the context, for instance a card in a drawer label ed stock records' may ust say 'widgets. . 17

Computers also store informat on n forms that are convenient for them (not because the computers prefer 1 that way, but because it makes life easier for the people who make them) Computers, as we saw n Chapter 2 are not good at reading words written on pieces of paper, so the format of the informat on s such that it can easily be sensed and manipulated electronically.

Information written on paper is made up from a repertore of shapes $10 \mathrm{dig} \mathrm{ts}, 26$ capital letters, 26 lower case etters, and a number of other symbols incluaing punctuation marks and accents and s gns such as ' + ' and \%. We use the letters to make up words, ana the words (together with punctuation marks) to make up sentences We use the digits to represent numbers because there are
ten dfferent digits, this is cailed 'dec ma' number ng (from the Latın for 'ten') The Romans d d not have separate digits but used letters (I, V X, L C D, M) in their notation for numbers.

Sometimes quite different ways of representing the etters etc are used, for instance patterns of dots in Bralle or long and short pu ses of sound in Morse code. Ana of course there are alternative ways of conveying whole words: most notably in spoken form but also sign language and shorthand and pictograms.

We saw in Chapter 1 that information inside a computer is represented in 'binary' form as a string of 'bits each of which can take one of two values. The bits may be stored on magnet c media such as tape and discs (from which they are read by moving the media past a 'read head that converts the magnetic signa into an electrical one; cassette recorders are an example of this), in the form of holes in paper tape or cards, and in the form of magnetic or e ectrical signals in the compster's 'main memory' from which any bit can be read directly without naving to move any mechanica parts such as a tape drive mechanusm.

There are a number of aifferent ways n which b ts are represented on magnetic media, but on y the engineers who design computers need to know the detal s of them The ZX81 uses a system of long and short tone bursts very much I ke the dots and dashes of Morse code but about a hundrea times faster; a dot represents a 0 and a dash a 1. O i paper tape and cards, a hole represents a 1 and the z ω sence of a hole represents a 0 . Main memory in the 1960 s consisted of magnetic 'cores' magnetised one way round to represent a 0 and the other way round to represent a 1

Microcomputers use slicon chip memories, these have a number of ways of storing the bits internally, but at the pins wh.ch form the eiectrical connect on to the rest of the compıter they all use a hign voltage (above about 2 V) to represent a 1 and a 'low' vo tage (below about 1 V) to represent a 0

In the same way that etters are grouped together to form words and sentences, bits are gro ped together into 'bit strings'. A single bit can only be one of two things, a 1 or a 0; sometimes there are only two possible values for the data we need to store (true or false, present or absent, male or female) and in this case a sing e bit is slff cient A pair of b ts can have one of four values $(00,01,10$, or 11) and can thus represent data where there are up to four possib lit es Each bit added to $a b t$ string doubles the number of possible va ues, so three bits have eignt values, four bits nave 16 and so on. A group of eight b ts, cal ed a 'byte', can thus make one of 256 values.

It should be emphas sed that not only can a bit string be represented in many different forms (electrical, magnetic etc) but t can in turn represent many different things. The 256 d fferent values in a byte can for instance represent the who e numbers 0 to 255 , or the whole numbers -128 to +127 , or the fractional numbers 0 to 255/ 256 (in steps of $1 / 256$), or the various characters that can oe produced by a pr nter or shown on a TV screen, or the different operations that the computer can carry out on the data, or indeed the members of any set of not more than 256 things There is notning n the bit str ng to snow which set of things s being represented so a particular byte value could mean 186, or -70 or (on the ZX81) a white-on-b ack letter

L, or (on many machines ncl_aing the $Z \times$ Spectrum) a colon, or an instruction to compare the va ues stored in two certain places n the computer or (on the $2 X$ Spectrum) that a character shoula be in rea on white and f asning; or any other meaning you care to give it Only by the context can you decide wh ch meaning is appropriate.

Almost all high-level languages use 'data types' to distinguish between different kinds of 'values' that can be representea. The data type does a number of joos; it def nes which va ues are inc uded which va ue each possib e bit str ng corresponds to, now long the bit string is (i e how many bits it contans: there is usua ly no expl cit ind cat on of where a bit str ng ends in the way that the end of a word is shown by a space or punctuation mark) and which aritnmet c 'operat ons' are avallable.

In ZX BASIC there are just four data types numbers, strings, arrays of numbers, and arrays of characters Numbers, for instance, occupy 40 bits and cannot be larger than about 10^{38}, they are accurate to about nine decımal digits except that all numbers less than about 10^{-38} are stored as zero the various parts of the program that do ar thmetic on numbers, ncluding those that convert them to and from the decimal representation, need to agree on the exact way n which each number is represented by a 40 -bit bit string, but the user of the computer wil not normally need to be bothered w th such deta Is

When a program is translated into mach ne code, most of the nformation that the data type conveys is left behind. In the same way, a program in a trad tional genera purpose language such as BASIC only conveys a limited amount of information about the way in which the ratner
.Im ted reperto re of the data types is used to represent values encountered in the real world. The programmer may for instance want to store the amount of one-inch nexagonal steel bar which a company nas n its warehouse, the complter nas no knowledge of steel, bars, hexagons, or inches, and the data type wil probably just ndicate that t is a number. But the number could be the number of p eces, the total length in feet, the total engtn in metres, or the weight in mper al or metric or US short tons, it is Jp to the programmer to ensure that the correct units are assumed at each place in the program that the number s used


```
tremugyam
```



```
    In a varlahie or bemgg processed by the progyam, tre info:ma-
    cown ruyired to diceever th
    hawhedinindmesym(em
```


VARIAB_ES

Most computer languages store data in 'variab es Just as in algebra, a variab e is something that has a value that can change, but there the simılarity enas In a gebra, we have things I ke

$$
y=a x^{2}-b x+c
$$

in which a, b and c are 'constants, which take particular values, and x and y are varıables whicn can take a range of values. We can draw a graph (as in Chapter 7) showing which values of y correspond to which values of x. Having drawn the graph, we can see all the valles of x and y at the same time

The computer, on the other hand, is essentially a serial device, and so variables in a computer have to have their values one at a t.me. At any one time a var able in a computer can only have one value, but it may have dfferent values at different t mes and this is indeed the essence of how computers work. In BASIC we say

$$
\text { LET variable }=\text { value }
$$

and the computer first works out the value and then 'assigns' the value to the var able the var able has th s value unt.l another vaiue s assigned to t

Someth ng which is particu arly confus ng at first to anyone used to the algebra c sort of var able is

$$
\operatorname{LET} x=x / 2
$$

which looks as of we are wanting x to have a value which is equal to half of tself (i e zero) But ook at what the computer does' it takes the value of x (wh ch must have
been assigned to t previously) and divides it by 2, then assigns this new va ue to x To put it another way, x is assigned a new value which s nalf its old one. Similarly

$$
\text { LET } \mathrm{x}=\mathrm{x}+1
$$

(which would be nonsense as an a gebraic equation) assigns to x a new value which is one more than its o d one

A though this describes adequate y what a variable does in terms of the notations in the h gh leve language it is worth looking at how a variable is actually stored in the computer.

Most of the early languages were 'compied' into machine code; BAS C, as we shall see shortly is an exception to this, but the way in which it uses varıab es is sımilar. n a compiled language a varıable has
a a name,
b a data type, and
c a representation of the value
The name is used in the program to dentify wh ch particular variaple s being talked about (and is for this reason sometimes callea an 'identif er') , ust as the name 'Joe
VARIABLE--a place in the computer's mamary where a bit

- wing is stored: in mact high-tovel languages, the progrem.
mer's crily direct accees to the memory is to store data in, nere
: retrieve it from Variables' see 'data type' snd Fidentiler'.
IOENTIFIER - tic name given to a variable or other entity in a
progrem. In mat programming larguages (though not in $2 X$.
BASIC) the identifier is only used in the text (or 'source code')
form of the program, a mere direst way of estoblishing the v ce
-helos type sed looction being used in thomation cod

Bloggs' wou d be used to identify a part cu ar person. The representation is a bit str ng representing the variable s va ue at any t me, which is the value most recently assigned to t. This bit string is often of a fixed ength (a fixeo number of b ts) so that a particular group of bit ce is (i e places in the memory n which o ts can be stored) can be set aside to contain it, and any new value w II occupy exacily the same amount of memory as the old one it rep aces.

The data type describes all those th ngs the compiler needs to know about the va ue n order to translate ('compile') the program nto machine code such as how many bits t requires and what machine nstructions to use when doing arithmetic on it.

The name and data type are thus used when the program is compilea (at compile time') wh le the value is of course only present when the program is run (at 'runt me) The name and data type are not usually available at run time, a though some aspects of the data type wil be amp icit in the mach ne code operat ons that use the variable In lang ages of the sort ust described there are two distinct phases comple and run and the compe phase is completed before the run phase degins in interactive BASIC, as on the ZX computers, the Lser is able to type in part of a program and run 1 anc then type in some more and run that Obv ously the second part is not comp led until after the first part has run. so it is not poss tle to throw away the name' and 'type information at the end of comp lat on n case more compilation is requirea later

In fact most BASICs, ncluding ZX BASIC, differ from the earlier languages more radicaly than this in that they are not compiled at a.l but interpreted instead of
translating the nstructions in the program into machine instructions which wi , be obeyed ater, the computer obeys them as it goes along. This means that it is not necessary to find space in the computer's memory for all the mach ne instructions, and it does not have to process any of the instructions in the program that are not going to be obeyed (i e those that are there to deal with situat ons that do not happen to arise in this particular run) On the other nand, an instruction that is to be obeyed many times has to be translated many times whereas in a compiled anguage t only gets translated once.
(The ZX BASICs are actual y reasonably efficient n th s respect Keyworas such as PRINT are stored as s ngle coces so that the computer can immediately 100 k up in a table what k nd of act on to take rather than having to identify them from the separate letters P.R,I,N.T The codes are oniv translated nto letters when the program is I sted on the screen or prnter Numbers are trans ated into binary when they are typed in and the binary is stored alongside the character form in the program.)

In the $Z X$ computers, all three parts of the information about a variable are therefore stored together and are ava lab e al the t.me String variables are distinguished from numer c variab es in the program by the do lar sign at the end of the name and arrays (see below) are disting Jisned by the parentheses that follow the name. so the computer can always tell the data type of a variable without needing any context informat on n many languages, each name must be declared before it can be used the declaration specifies the data type Thus in Aigol 68

BEGIN REAL x , STRING s

declares that will the variable \times wil be of type 'rea'. (a floating point number) and the variable s wil be a string We can then say

$$
x:=5 ; \text { s }:=\text { "Hello" }
$$

put not

$$
\mathrm{s}:=5
$$

which would altempt to assign to s a value which it cannot represent In BAS C there are no declarations (except insofar as the DIM command declares the size of an array as mentioned below) bıt the data type is deduced from the form of the name if it ends in a dol ar sign t is a string, otherwise it is a number, so we can say

$$
\begin{aligned}
& \text { LET } \mathbf{x}=5 \\
& \text { LET } s=5 \\
& \text { LET } s \$=" H e l 1 o^{\prime \prime}
\end{aligned}
$$

but not

$$
\begin{aligned}
& \text { LET } s \$=5 \\
& \text { LET } s=" H e 110 " ~
\end{aligned}
$$

Note, by the way, that s and $s \$$ are different var ables even though their names are s milar.

In the ZX BASICs, and in most other BASICs, the varıables are kept ןumbled together in one part of memory, and if a variable that has not been mentioned before is used it is added to the top of the heap. There are some restrictions to this process, as follows.

If you try to use the value of (as dist nct from assign to) a variable that does not exist. the ZX BASICs signal an
error Th s is because t is assumed that you have made some mistake such as mistyping the name or forgetting to put in the command that should have assigned a va ue to it Therefore, the first time the computer comes across each name (other than an array) must be to the left of the equals s gn in a LET or FOR command.

Some BAS Cs simply ass ume the value is zero if the offending var able is a number or the 'empty' string (which contans no characters) if it is a string. This is helpful If it is what you intendea but it can cause programs to do some very strange things if it is not.

An array is a group of var ables of the same type that are all collected together under one name; arrays are dea t with more fully n Chapter 5 The whole group is created at the same t me by a DIM command, which specifies how many variables are required Because it does not also specify a value, all the variables have zero (if numeric) or the 'space' character (otherwise) assigned to them The first time the complter comes across each array name must therefore be in a DIM command but once it nas obeyed the DIM command yol can use the 'elements' (the
fivgether (and in a partiouter order) as a singla object (ct. "bit
ctring "). EASIC aflows character strings to be manipuhted ate
-whole or cisecoted into their individual charecters.

- ARPAY - - collection of varibbles all of the same type, whin of
cingh identifier (q). The individual varitbies (or toloments)
mo selocted by oiv of more numbers callod selbscripios
because they correspand mernbete in chatore wrich the
swritten as subscripts-
ndividua varıab.es from wh ch the array s made up) without hav ng to assign to them with a LET command first Some languages a low you to treat the whole array as a single vaice, for instance to assign it to another array Its representation is after al s mply a (ussally) rather large bt str ng which nappens to consist of the values of the elements one after the other. If is a so quite common to de ab e to group var.ables of different types together nto a 'record which again can then be treated as a sing e value. the indiv duai var ables of which .t s made up being the 'fields of the record These facilit es are, nowever not avalıable in BASIC.

ASSIGNMENTS

It was rather g ibly stated above that assignment commands take the form

$$
\text { LET variable }=\text { value }
$$

w thout too much be ng said about how the value was expressed The s mplest kinds of value are variab es and 'literals'. The current value of a varıable s ndicated by simply writing the name of the variabe as in

$$
\text { LET } \mathrm{x}=\mathrm{y}
$$

which assigns to variable x a copy of the value in var able y
(In BASIC this will a ways result in the values of x and y being the same bit string, but in other languages it is possible for x and y to be of d fferent types - pernaps two d fferent ways of represent $n g$ numbers, in which case the comp ster wou a translate the value from one representation to the other.)

The va ue n a var able is thus represented indirectly by g ving the name of the var able, the same name may correspond to different values at different times if the variabie has been altered in the meantime.

A literal is a value that is represented directiy as itse f in the text of the program, and s thus aiways the same value whenever the command contain ng it is obeyed n BASIC there are Just two types of literal number and str ng, as in

```
LET x = 42
LET qȘ = "What?"
```

Numbers are of course in decimal notat on, and can be a whole number as in the example above, or w th a dec ma point as in 3162 or in what is often ca led 'scientific notation' in wh ch a letter E is used to mean 't mes ten to the power'. Ten to the power n is the number which is written as a 1 with n noughts after t, ana ten to the power $-n$ is written as a 1 with n nougnts before it and a decimal point after the f rst nought. Thus 54 E 3 is 5.4×1000 or 5400 , and $47 \mathrm{E}-6$ is 47×0.000001 or 0.000047 Table 3.1 snows the correspondence Detween powers of ten and the prefixes used in metric and SI units, so for nstance 1.25 centımetres s 1.25 E 2 metres and 94 MHz is 94 E 6 Hz

Table 3.1 SI prefixes

d dect-	$E-1$	da deka-	$E 1$
c centi-	$E-2$	h hecto-	$E 2$
m milli-	$E-3$	k kilo-	E3
		myria-	$E 4$
μ micro-	$E-6$	M mega-	$E 6$
n nano-	$E-9$	G giga-	$E 9$
p pico-	$E-12$	T tera-	$E 12$
f femto-	$E-15$	P peta-	$E 15$
a atto-	$E-18$	E exa-	$E 18$

Litera str ngs are always enclosed in quotes These notations are used in almost all compliter anguages

So far then, we have seen how a variad.e can store numbers and str ngs that we have typed n and copies of things that have already been stored n other variables But a computer ought to be able to compute, or derive, new values from existing ones, and the notation used for this is called an 'expression.

Expressions are D.jilt up from arthmetic and similar operations, the symbols that snow what operations to do are called 'operators' and the vaiues on which the operations are done are cal ed 'operands' For nstance in the expression $x+3$ the operator s the p us sign and the operands are the value of the variable x and the literal va ue 3 The operation to be done is adding these two values together, and the value of the whole express on is the result of this operation, so if, say, the value currently stored in x is 5 then the value of the express on $s 5+3$, or 8

An expression can have more than one operator, as in

$$
2+3 * 5
$$

but we have to decide just wnat the operands are. Is $2+3$ an operand of the mu tiply operator, so that the value is 5×5 or 25 or is $3^{*} 5$ an operand of the adaition operator so that the value is $2+15$ or 17 ?

Some anguages do all the operations in the order in which they appear, from left to right, so that in the examp e the addition is done first and the result, 5 , is an operand of the multıpl cation. One or two do them n order from right to left, but most (inc uding BASIC) use the concept of 'pr ority'. Each operator has a 'prior ty'. and the operators w th the h ghest prionity are done f rst Operators with equal priority are done from left to right Muitiplication has a higher priority than addit on, so $3^{*} 5$ is worked out first and the resu $\mathrm{t}, 15$. is then an operand of the plus s gn and the value of the expression is 17 .
ust as n ordınary arithmetic or algebra,
parentheses can be used to group things together into a single operand, as in

$$
(2+3) * 5
$$

 oilher operation, similar to a lunction as lar as the computer is iconcomed. The parameters are callod 'osornde' ad sion' Whav tabo whiten in parcestsoent:
where the express on n parentheses is an operand of the multip ication and the value of the whole express.on s 25 . Obviously

$$
3) * 5
$$

is not a valid expression ana so cannot be an operand of '+'

The prior ties are mostly arranged so that an express on without any parentheses is eva uated in a way that will appear sensible to the programmer. Mult plication and d vision have a higher priority than addition and subtraction so that an expression such as

$$
a * x+b-c / x
$$

is eva uated in the same way as the correspond.ng algebraic express on

$$
a x+b-c / x
$$

There are a number of other operators, mostly to do with comparing va ues to see whether one is bigger than the other etc and w th combining the resu ts of several such comparisons and the r prior ties are listed near the end of the mancal that comes with the computer

There s never any harm in us ng parentheses to snow in what order the operations snoula be done even where they are not strictiy needea (except, perhaps, if the computer is so full that there is not room for them) Therefore when n doubt (and where someone reading the program m ght be in doupt) parenthesise

A few languages (notably POP- 2 and Forth) and some calculators use 'reverse Polish notat on' for
expressions. Polish notat on was invented for use particu arly in formal logic and put the operator f rst, as in

$$
+2 * 35 \text { or } *+235
$$

mean ng respectively 'add 2 to the resu t of multiplying 3 by 5 ' and 'multiply the resu t of adding 2 to 3 by 5'. Reverse Polish puts the operator last as in

$$
235 *+\text { or } 23+5 *
$$

which is more convenient for computers Both forward Po ish and reverse Polish nave the advantage that ne ther brackets nor prior ties are needed, the order in which operators and operands appear defines uniquely in what order the operations are to be done and what their operanas are

Operators such as plus and multiply are called 'binary' operators because they nave two operands. There are also 'Lnary' operators that have ust one operand; they are also called 'prefix operators if they are written before the operand and postfix operators if they are written after t. Binary operators (except in Polish notation) are a so cal ed

$$
\begin{aligned}
& \text { PREFIX OPERATOR - an operatar which pracedes its. }
\end{aligned}
$$

> tions.
> POSTEIX OPERATOR - an operator which foliows its ooerand
postix operators,
inf x^{\prime} operators because they are written between their operands.

BASIC does not have any postfix operators; an examp e of a postf x operator in ordinary mathematics s the exclamation mark used to ndicate 'factoria' as in ' 41 which means 'factorial 4 or $4 \times 3 \times 2 \times 1$ In a programming language that recognised measurements such as length and weight as data types in their own right (in which case a computer would be able to be more helpful in the exampe invoving steel bar earlier n this chapter) postfix operators such as ft ' and ' lb ' might be defined to convert ordinary numbers into a measure of length etc. However, no sucn language is available at the present time.

ZX BASIC has two prefix operators of the ord nary mathematical kind mınus and NOT (The latter is used in Boo ean arithmet c, described in Chapter 4.) There are aiso many prefix operators which are functions' such as SIN and COS and LOG in most BASICs these are written with the ir operand in parentheses rather like array elements, as in

$$
\operatorname{SIN}(x) \quad \text { or } \operatorname{LOG}(\cos (x))
$$

but in ZX BASIC they nave the status of operators so that the rather more natura form

$$
\operatorname{SiN} \mathrm{x} \quad \text { or } \quad \text { LOG } \cos \mathrm{x}
$$

can be used.
Prefix operators need to have a pr ority fust as infix operators do, because

$$
\begin{aligned}
& \text { SIN } x+y \text { could mean SIN }(x+y) \\
& \text { or } \quad(\operatorname{SIN} x)+y
\end{aligned}
$$

and in fact most of the prefix operators have a priority higher than any infix operator so that t is the latter mean ng that is used. One exception s NOT, which although it has a higher priority than the infix Boolean operators comes below the other infix operators for a reason that will become clear in Chapter 4, and the other is minls, wh ch comes below 'to the power' so that for nstance $-x \uparrow 2$ means $(x \uparrow 2)$ or x^{2} and not $(-x) \uparrow 2$ which would be $(-x) \times(-x)$ or $+x^{2}$

GETTING THE ANSWERS OUT

We have now seen how the computer can have values spec fied to t, calcu ate other values from them, and store all the values away n varıab es To use the computer as a simple calculator we clearly need one more faci ity name y the ab lity to display the va ues so that the user can read them, and this is done by the PRINT command

The PR NT commano simply cons sts of the word PRINT (to see the results on the IV screen, LPRINT to see them on the printer) fo lowed by the values you want printed, separated by semicolons Str ng values are displayed by sending to the screen (or printer) the characters they conta n Each character can be thought of as represent ng a key being pressed on an electric typewriter, most are 'pr nting characters' and cause the relevant character to be printed and the 'pr nt position' (where the next character wil

> :(NF X GPERATOA - an operätor which has one oberand before h and another after it. The four functions' edid, subtrect
:operatorsk
go if it too s a printing character) to be moved on one place, but others include space (which moves the print pos tion on without print ng anything) and, on the Spectrum, codes that alter the colour etc. of following printing characters.

Numbers are converted into strings, and the resulting str ng values are treated as above (There is also a prefix operator STR\$ that does the same conversion if you need it within a program.) Unl ke some BASICs ZX BASIC does not inc ude any 'space' characters in the string into which a number s converted, so for instance
LET $x=4$
LET $y=2$
PRINT $x ; y$$\quad$ and \quad LET $z=42$
both print the same th ng. If a comma is used instead of the semico on, at least one space wil be inserted between the numbers, in fact suff cient spaces to bring the pr nt position to the centre of the line or the beginning of the next ine (whichever comes first). Often there wil be text to insert between two numbers anyway, as in

$$
\begin{aligned}
& \text { PRINT } n ; " \text { eggs at ";c;"p/doz cost "; } \\
& \mathrm{n*} \mathrm{c} / 12 ; " \mathrm{p} "
\end{aligned}
$$

which raises a number of points wortny of remark Spaces are included in the pieces of text to separate the numbers from the words, so that if, say $\pi . s 6$ and c is 78 the output reads

$$
6 \text { eggs at } 78 \text { p/doz cost } 39 p
$$

and not (for nstance)

$$
6 \mathrm{eggs} \text { at78p/doz cost } 39 \mathrm{p}
$$

Although this may be obv ous looking at the example outputs nere, t is surpris ng now often it is forgotten when a PRINT command is being written The reason ZX BASIC does not insert spaces in numbers is that otherwise the output might look like the fo.lowing

$$
6 \text { eggs at } \quad 78 \mathrm{p} / \text { doz cost } \quad 39 \mathrm{p}
$$

and insert ng spaces in PRINT output is easier than tak ng them out A I the above formats are preferable to

number of eggs	$=6$
cost (p/doz)	$=78$
total cost (pence)	$=39$

which may have been appropr ate n the days of the punched card tabularor and is far too preva ent today. Finally, note that (unlike Fortran, for instance) BAS C allows calculated values as we 1 as simply values from variables in a PRINT command, and the above example is more efficient (in space to store the program in time to obey it, and in reducing the amount of clutter' the numan reader has to contend with) than

```
LET total = n*c/12
PRINT n;" eggs at ";c;"p/doz cost ";total;"p"
```

which uses two commanas nstead of one and introduces an extra var able.

INPUT AND DECISIOINS

In Chapter 3 we considered the commands LET and PRINT whicn allow the computer to be used in much the same way as a desk calculator That is, calculations (which are typed n in the form of express ons) can be performed and the results displayed on the TV screen (with PRINT) or on the printer (with LPRINT, wnich is exactly like PRiNT) or stored away for later use (with LET).

Programs consist of sequences of commands; there are of course commands other than LET and PRINT and LPRINT many of which are introouced later in this section and a I of which are described fully in the manual that comes with the computer The program is built up from ',Ines', on the ZX81 there is one command to each I ne, but on the Spectrum several commands can be written on one I ne, separated by colons. Each me has a line number which snows where it goes in the program; if you type in a line without a I ne number it is obeyed immed ate y and then thrown away, but a line that begins with a number s aded to the program and s not obeyed at this stage.

The manual describes the detai s of how programs are typed in. The screen is divided into a top part, which is a 'window through which the program can be seen, and an area at the bottom in which the I ne currently being typed is displayed Therefore, when the program is changed (by inserting or remov ng or replacing al ne) the result of the change is immediate y apparent Th s contrasts w th many BASICs in which the screen merely shows a record of the

I nes that have been typed recently, although a 'isting' of the program can be displayed in response to a command Some computers permit this I sting to be altered without necessari y doing the corresponding alterations to the program.

A further feature of ZX BASIC is that lines are entered nto the program only if the r syntax is correct, whereas other BASICs will accept anyth ng and only check it when the program is rın. Syntax is concerned with the way words etc. are put together to form commands, semantics are concerned with the mean ng of the command and semantic correctness usual y depends on the context witnin which the command is obeyed Thus

$$
\text { LET } \times \$=S Q R \text { y and } \text { LET }>\text { THEN IF }
$$

are syntactically incorrect and would be rejected while

$$
\text { LET } x=S Q R y
$$

s syntactically correct and is accepted into the program, Dut may fail at run time if the value of y is negative or if y does not exist at al. This sti I applies even if the semantics do not in practice happen to depend on the context, so that

$$
\operatorname{LET} x=S Q R-1
$$

is accepted as syntactically correct even though it w II always fall at run time.

Natural languages such as English also have syntax and semantics. For instance 'The fat cat on the mat' is syntactically not a sentence because it does not include a verb The green sky is sleepıng furiossly' is syntactically correct but semantically does not appear to make sense

The computer does not reject incorrect commands it does not understand because it gets a pedantic satisfaction from making yo. do tagain properly, but because any sense that it might make of the commana might not be what you intend, for instance

$$
\text { LET } x \$=S Q R y
$$

could have been typed in mistake for

$$
\text { LET } \mathrm{x} \$=\text { STRS } y \text { or LET } \mathrm{x} \$=\text { STR } \$ \mathrm{SQR} \mathrm{y}
$$

or LET $\mathrm{x}=\mathrm{SQR} \mathrm{y}$
and the computer is not intelligent enough to be able to decide that any part cular one is more I kely.

In the same way that the text of this book is divided into paragrapns, t is helpfu if a program can pe divided vis Jally into separate sections The REM command (short for 'remark') is prov ded for this purpose. it instructs the computer to gnore the rest of the line whicn can then be used for a descr ption of what the following piece of code does, for the benefit of the human reader (On the Spectr.m,


```
bxt within which to interprot the various words that appear ins?
petement (cf. 'pares'). For inctance, the syntax of 'The cot ats.
I mouse on the mat' shows which of the things appearing in
the sentence (the cm, tha moven themy) dfolthe coting cut 
which it was that got eater.
```



```
In a fongucge, whthin the framework delined by the symbx, qv.
The syntax definos that the cat ate the mouse, shalue centwes
```


note that it ignores the who e of the rest of the I ne, even though if you type a colon as part of the remark it goes into K mode as if it was expect ng another command)

On the Spectrum. ab ank line can be inserted into the program by typing a line consisting of the ine number and a space (There has to be something fol owing the ine number because otherwise the line witn that number (if any) will be deleted from the program and notning wi I be inserted) On the ZX81 the nearest thing to a blank I.ne s a ine containing the keyword REM and nothing e se.

Unfortunately even by be ng carefu to ay out the program in a well-structured' way we cannot ent rely overcome BASIC's essential y write-on y' nature (see Chapter 1). But if we cannot make it easy for other people to understand how a program works we can still make it easy for them to use it witnout needing to see the commana lines from which it is made up at all.

Often two quite separate people are concerned with a program, the orogrammer who writes tand the user who wis run it The user s mply wants his data processed, and is concerned on y with the data va ues and not at a! with the variables in which the programmer chooses to store them Moreover he wil not want to type any more tnan s necessary.

The INPUT command is the means whereby the user enters data nto the computer With the _EI command, the programmer is able to assign a va ue to any varian e at any I me. the programmer controls the order in which the assignments are done, ana must be assumed to understand the effects of them With the INPUT commana, it is stil the programmer who decides what variab es are to be
assigned to and at what stage, it is however the user who provides the values to be assignea.

An INPUT command consists of the keyword INPUT and a var able (although on the Spectrum more elaborate forms are also possib e), and the effect s just the same as a LET command except that the vaiue styped in by the user instead of being included as part of the command. In most BASICs (and inceed in most other computer languages) the input value must be a literal, but in the $Z X$ BASIC it can be anyth ing that could appear to the right of the equa s sign in a LET command. This is useful for typing in values such as Pl^{\prime} 2 and in circumstances where the user knows the names of some of the variables available at that point in the program but it also perm ts cheating in programs that give practice in anthmetic by ask ng tne answers to sums (This probiem can be avoided on the Spectrum by using . NPUT LINE, checking that the ine contains notning but d gits and then using VAL to convert it to a number; ord.nary string input wi I not do because the user can rub out the quotes and use STR\$. Of course in many circumstances where this kind of program is usea the pupil will have notning to gain by slch cheatıng anyway.) When the INPUT commana is obeyed. the user is presented with the 'L' cursor at the bottom left of the screen, enclosed in quotes if a str ng s required or on its own if a number s required It s easy for the programmer, who is famil ar with the way the program works, to forget that the user wil often not have any idea what the computer is asking and hence not know what to rep y. t is therefore important to get into the habit of always putting a message on the screen indicating what value is being requested On
the Spectrum this can be done as part of the INPUT command but on the ZX 81 it must be done by preceding the INPUT command with a PRINT command. it is important to word the message in terms that the user will understand Suppose a variable r holds the percentage rate of interest payable on an investment a suitable message when INPUTting r is 'Type n the percentage rate of nterest per annum' or 'Interest rate (percent per annum)?' and def nitely not 'Value of r ' even though this is how the programmer thinks of t.

DECISIONS

When the computer is being used as a calcu ator, commands are typed in one by one and each command is obeyed before the next one is typed There snocear distinction between the roles of the programmer who decides what commands are to be obeyed by the computer, and the user, who supplies the data for those commands In particular, resu is from earlier commands, or data not directly used in the caiculations, may inf uence the choice of wh ch commands are given subsequently For instance, income tax mignt be deducted at different rates depending on the tota amount of income, nterest on d fferent kinds of bank account may be calculated in different ways.

Where the action to be taken by the computer depends on things that will not be known unt I the program is run, the programmer has to allow for all the possible circumstances (Programs often fai because a como nat on of circumstances arises that the programmer did not think of) The IF command is used to switch the complter to one
course of action or another depending on a value which it ca culates Th s s only useful if the calculated value is not known when the program is written one example of this is a va ue wh ch s nput by the user when the program s run (or is calculated from one that s) Another very common example occurs in a 'loop' which is a sequence of commands that is obeyed repeatedly untıl some condition s fulf Iled: at the end of the sequence the computer tests to see whether it should repeat it or go on to the next part of the program Th s s a little different from the case where the programmer spec fies a ternative courses of action, one or the other of which wi I be taken depend ng on the circumstances, becajse both courses are taken when the program is run, but at different times.

The IF command takes the form

IF condition THEN line

in wh ch line' represents anything that could be a command line (though without a I ne number, of course) fthe cond tion is satisfied, the ine fol owing THEN is obeyed, otherwise t is ignored, just as a ine starting with REM is ignored. For instance

$$
\text { IF } \mathrm{x}=\mathrm{y} \text { THEN LET } \mathrm{x}=5
$$

tests if the values of x and y are equal if so, 5 is assigned to x but if not the LET command is ignored and x retains its former value On the Spectrum, where severa commanas can be put on one ine note that the whole line s gnored if the condition is not satisfied; most of the BASICs that allow several commands on a line da this, but there are a few which only ignore the first command after the THEN, so that

```
IF }\textrm{x}=\textrm{y}\mathrm{ THEN LET }\textrm{x}=5\mathrm{ ; LET }\textrm{y}=
```

would ass gn 4 to y whether or not x and y were equal This is rather like the priority of operators in expressions - on the Spectrum the co on has a higher priority than THEN, but in some BASICs it has a lower priority.

Some BASICs, and many other languages, allow an ELSE part which is obeyed only if the condition is not satisfied, as in

IF $x>0$ THEN LET $y=x$ ELSE LET $y=-x$
but ZX BASIC does not.
The condition usually takes the form
value comparison value
in which the two values are of the same type (numbers or strings) and the compar son operator is one of

$$
=\rangle\rangle=\langle<\rangle
$$

meaning respectively 'equal to', 'greater than', 'less than, 'greater than or equal to' 'less than or equal to' and 'greater than or less than ' The ast three may also de thought of as 'not less than' 'not greater than', and not equa to.

It is convenient to think of the comparison operators as yreld ng a 'Boolean' value TRUE or FALSE the former f the condition s satisfied, the latter if it is not. (More s said about Boo ean arithmetic later in th s chapter) Thus $x=5$ is TRUE $\mathrm{f} x$ holds the value 5 and FALSE if x nolds any other va ue, $x>3$ is TRLE if x nolds a value which is greater than 3 (sLch as 4 or 5976 or 3000001), and FA.SE If it holas the value 3 or any value less than 3 (such as 0 or

29 or -47) If the condit on is TRUE the part after THEN is obeyed, if the cond tion is FALSE it is ignored

The comparison operators can appear n expressions n the same way as ordinary arıthmetic operators, the comparison operators have a lower priority so that expressions such as

$$
x * y>n+5
$$

have the obvious meaning.
In some languages a separate data type s used for Boolean values, but in ZX BASIC they are stored as numbers with zero representing FALSE and any other value representing TRUE. Any Boolean value generated by the computer uses 1 to represent TRUE.

Boolean values can be stored in numeric variables just I ke any other numbers, so we can write

$$
\begin{aligned}
& \text { LET smaller }=x<y \\
& \text { LET } p=x=3 \\
& \text { LET } p=x=3
\end{aligned}
$$

to assign 1 to the variable smatier if the value in x is less than that in y and 0 otherwise, and to assign 1 to p if x holds the value 3 and 0 otherwise The third line of course means the same as the second as far as the computer is
ind fatse instead of the numbers used in the algebra with
which moot people teve move familior, it is thus helpit to
describing choulation on whesthet gris bo stared ing
single bit
concerned, out a person reacing it is more likely to be mis ed into thinking that it sets both p and x to the value 3 .

Using these variab es we can write commands 1 ke

```
If smaller THEN PRINT x;" is smaller"
IF p THEN LET x = y+5
```

and in fact between the IF and the THEN we can use anyth ing that has a numeric va ue if the value is zero the part to the right of the ThEN is ignorea, if the va ue s nonzero it is obeyed.

In ordinary mathematics, we are used to wr ting
th ngs like

$$
1 \leqslant x \leqslant 5
$$

to mean x is greater than or equal to 1 and less than or equal to 5 , e. x is in the range 1 to 5 nclusive. In ZX BAS C we can write

$$
1 \ll x<=5
$$

and we might expect it to mean the same, but on closer consideration this turns out not to be so. The two operators are of the same priority so are done from eft to right Therfore the va ue of ' $1<=x$ ' is worked out as etther TRUE (1) or FALSE (0), wh ch then goes on to be the left operand of the second ' $<=$ ' operator The expression thus reduces to erther ' $0<=5$ ' or ' $1<=5$ ', and in either case yields TRUE! So

$$
\begin{aligned}
\text { IF } 1 & <x \ll \\
& \text { PRINT "Value is in range" }
\end{aligned}
$$

always prints the message 'Value is in range' whether x is in the range 1 to 5 or not.

A final caveat on the comparison of numbers concerns values that have been der ved from calculations in which some of the numbers used were not stored exactly n the computer. The only numbers that are stored exactly are who e numbers less than about 4000000000 and numbers (within the range the ar thmetic allows) that are the resu t of multıplying or div dıng these by powers of two, $v z$. by 24 , 8 16, 32, 64, etc. Furthermore, literal numbers written with a decimal po nt or an E are always liable to be inaccurate because of the method the BASIC uses to convert them from the dec ma form in which they are typed to the b nary form used inside the computer

The comparison operators work by subtracting one operand from the other and seeing whether the result is zero or positive or negative. The details of how this is done, in part cular the 'rounding of operands and results to 32 bits or about $91 / 2$ dec ma dig ts, have some very cur ous effects. For instance the literal 0.25 is converted into binary by working out $(2+5 \times 01) \times 01$ but the constant 0.1 cannot be represented exactly in binary and the f nal result is about 5×10^{11} ess than one-quarter The d vision sum $1 / 4$ is however worked out exactly It happens that when one of these numbers is subtracted from the other the result is rounded up by the same amount of apout 5×10^{-11}. so that $1 / 4 \quad 0.25$ yie ds about $10{ }^{10}$ while $0.25-1 / 4$ yields 0 . It fol ows that $025=1 / 4$ is TRUE but $1 / 4=0.25$ is FALSE!

In any programming language it is always wise to allow for the possibility that numbers (other than whole numbers below a certa n size) may be inexact and for
instance to replace
IF $x=y$ THEN ...
by something like
IF ABS $(x-y)<1 E-8$ THEN ...
If x and y are known to be between about 05 and 10, or
IF ABS $(x-y)<1 E-8$ * ABS x THEN ...
If we have litt e idea what s ze they will be.
As well as using Boolean values n IF commanas we can use them in Boolean arithmetic, which was invented by the French mathemat cian George Boole Remember that we have just two values zero representing FALSE and any value greater than zero representing TRUE, we wil assume for the moment that none of the values we encounter w II be negative.
f x and y are two such values then $x \times y$ s zero if either x or y is zero, if both are nonzero then $x \times y$ s nonzero also Similarly $x+y$ is zero if x and y are both zero but if e ther is greater than zero then (because ne ther of them is negative) the sum s greater than zero also
n Boolean arithmet c the multiply operator is also called AND, so that x AND y is TRUE only if x and y are both TRUE, the addition operator salso ca led OR Decause x OR y is TRUE if x is TRJE or y is TRUE or both are

Although Boo ean aritnmet c wou d work satisfactor ly in most cases using the ordinary arıthmetic add and mult ply operators, as in

$$
\text { LF }(y>1)+\text { smaller * }(p<3) \text { THEN ... , }
$$

the operators AND and OR as in
IF y>1 OR smaller AND p<3 THEN ...
are also prov ded. These have the correct effect even if their operanas are negative or so large that adding or multıplying would result in a value too large to store in the compliter.

The th rd Boo ean operator that is avalable in $Z X$ BASIC is NOT, wh ch s a pref x operator w th only one operand NOT x has the value 1 if x is 0 , and 0 otherwise so NOT x is TRUE if, and on y if, x is not TRUE

The prior ties of the Boolean operators are chosen as follows AND has a nigher priority than OR in the same way that multiply has a higher priority than add, so that the operat ons are grouped in the same way in each of the two examples above. NOT, being a prefix operator, has a higher prority than e ther of these but all the Boolean operators have a lower priority than the comparison operators so that the parentheses can be om tted in the second example above.

A somewhat devious use of AND allows the equivalent of the 'condit ona expressions' that are provided n some other languages. The value of x AND y is in fact the same as x if y is TRUE, and zero if y is FALSE. Thus for nstance the value of

$$
(a+b \text { AND } q)+(b * c \text { AND NOT } q)
$$

is $(a+b)+0$ if q is TRJE, and $0+\left(b^{*} c\right)$ if q is false, so that the whole expression has the effect of

[^2]The eft operand of AND (though not of OR) may also be a string. in wrich case if the right operand is FALSE the val se of the expression is the empty str ng (a string with no characters n It) The ' + ' operator between two strings means 'concatenate', and concatenating the empty str ng (IIke adding zero to a number) has no effect Therefore exactly the same construction may be used as with numbers; for example

$$
(a \$ \text { AND } x=y)+(b \$ \text { AND } x<>y)
$$

has the effect of

$$
\text { IF } \mathrm{x}=\mathrm{y} \text { THEN a\$ ELSE b\$ }
$$

A slightly more elaborate example is

$$
\begin{aligned}
& (\text { "greater" AND } x>y)+(" 1 \text { ess" } \\
& \text { AND } x<y)+(\text { "equal" AND } x=y)
\end{aligned}
$$

Un the the conditional express ons in most languages, it is not necessary to nave the ELSE part, so we can write

$$
\text { PRINT } x \text {;" is ";"not " AND } x<>y \text {;"equal to ":y }
$$

and

$$
\begin{aligned}
& \text { PRINT } x ; " \text { nch"; "es" AND } x<>1 \\
& \text { in ZXBASIC. }
\end{aligned}
$$

ARRAYS AND STIRINIGS

n Chapter 3 we saw or efly that an 'array' is a group of variables all of the same type, collected together under one name. The invidual variab es are called 'elements' of the array and are selected by a number called an 'index or subscript'; it is ca led a subscript because in ord nary mathematical notation a suoscript would be used, as in v_{3} or b_{n}, but on the computers that run BASIC we cannot wr te subscripts in this form so it is put in parentheses instead, as in $v(3)$ or $b(n)$.

Each array is sa o to have a particular number of 'd mensions' For a one-dimens onal array we mag ne all the elements being laid out along a line, for a two-d mensional array they form a rectangle, for a three-dımensional array they form a cuboid For four or more d mensions we need to go into hyperspace, but the idea is the same. The 'd mensions' of a three-dimens ona array, for example, are the length and widtn and he ght of the cubord, e the number of elements in each direct on.

The DIM command is used to create (i e. reserve space for) an array and specifies ts dimensions Th」s
DIM v(10)
sets up a one-d mensional array v with e ements $v(1)$, $v(2), \ldots(10)$ and

$$
\text { DIM } c(4,3,2)
$$

sets up a three-dimensional array with elements $c(1,1,1)$, $c(1,1,2), c(1,21), c(1,2,2), c(1,31), c(1,3,2), c(2,11)$. .. $c(4,3,2)$. Elements are always numbered from 1 upwards n each dimension.

If the name of the array ends in a dollar sign, the elements of the array are characters instead of numbers, so

$$
\operatorname{DIM} \mathrm{c} \$(4,3,2)
$$

sets up a three-d mensional array of characters. It can a so however, be used as a 4×3 (and hence two-dımensional) array of strings, each string being exactly two characters long (because in this case the last dimension of the character array is 2).

The max mum size of an array depends on the amount of storage available in the computer. An array of numbers takes four bytes for the name etc plus two for each d mension and five for each element, an array of characters is sim lar except that only one byte is taken for each element. For example:
DIM a(10) $\quad 4+2 \times 1+5 \times 10=56$ bytes DIM a\$(10)
$4+2 \times 1+1 \times 10=16$ bytes
DIM a\$(6,100)
DIM a $(3,3,3,6)$

$$
4+2 \times 2+1 \times(6 \times 100)=608 \text { bytes }
$$

DIM a\$(6,6,6,6,6)
$4+2 \times 5+1 \times(6 \times 6 \times 6 \times 6 \times 6)=7790$ bytes
$\operatorname{DIMa}(9,9,9,9) \quad 4+2 \times 4+5 \times(9 \times 9 \times 9 \times 9)=32817$ bytes
If the other things competing for space (the program, other variables display fie, etc.) are all qu te small, then the approximate amount of space ava labe is as shown in Taple 51 As an indicatıon of what can pe stored in it, the table also shows the d mensions of a two
dimensional n.umeric array of approximately th s size.
Table 5.1. Storage space

Computer	Total RAM	Bytes available	2-D array
ZX81 (European)	1 K	800	$(12,13)$
TS1000	2 K	1800	$(12,30)$
ZX81 + 16 KRAM pack	16 K	15400	$(30,100)$
	16 K	8700	$(30,58)$
Spectrum	48 K	41500	(83100)

As an example of how an array might be \lrcorner sed in a program, suppose you want to store the pattern of colours on a Rubik's cube.

DTM c(6,3,3)
creates an array c in which you can store the 3×3 pattern of colours on each of the six faces: $c(1,11)$ might be at the top left of the front face $c(1,1,3)$ at the top rght, $c(1,32)$ centre bottom, and so on. How you choose the numbers and orientations of the other faces may well make a substant al difference to how easy it is to write rout nes to do the var ous rotations that are possib e with the real cube in the worst case you would have to write a separate p ece of code to deal with each face.

It is sometrmes conven ent to Jse an array as a 'look-up tab e', where the translation from one value to another cannot be calculated easıy using the normal arithmet c operations and functions For instance, suppose you dec de to number the cube as follows:

$$
\begin{gathered}
\operatorname{top}(3,1,3)(3,2,3)(3,3,3) \\
(3,1,2)(3,2,2)(3,3,2) \\
(3,1,1)(3,2,1)(3,3,1) \\
\text { left side } \\
(2,3,1)(2,2,1)(2,1,1)(1,1,1)(1,1,2)(1,1,3)(5,3,3)(5,3,2)(5,3,1) \\
(2,3,2)(2,2,2)(2,1,2)(1,21)(1,2,2)(1,2,3)(5,2,3)(5,2,2)(5,2,1) \\
(2,3,3)(2,2,3)(2,1,3)(1,3,1)(1,3,2)(1,3,3)(5,1,3)(5,1,2)(5,1,1) \\
(4,3,3)(4,3,2)(4,3,1) \\
\operatorname{bottom}(4,2,3)(4,2,2)(4,2,1) \\
(4,1,3)(4,1,2)(4,1,1) \\
(6,3,1)(6,2,1)(6,1,1) \\
\text { back }(6,3,2)(6,2,2)(6,1,2) \\
(6,3,3)(6,2,3)(6,1,3)
\end{gathered}
$$

Then if you look at any face $f w$ th $(f, 1,1)$ in the top leftnand corner the co ours on that and the ad acent faces are stored in the following elements of c :

\[

\]

The values of t, l, b, and r are different for each f. For instance $f f-1$, indicating that you are ooking at the front face, then $t=3,1=2 \quad b=4$. and $r=5$. If $f=2$, so you are looking at the left side, then $t=1, l=3, b=6$, and $r=4$ Note that you had to look at it sideways to get the $(2,1,1)$ element in the top lefthand corner. If we store the values of t, i, b and
r for each f in four 6-element arrays, we can find them easily when required for operations such as rotat ng one face, and all the faces can be dealt w th by the same piece of code On the Spectrum we can write

```
10 DIM t(6): DIM 1(6): DIM b(6): DIM r(6)
20 FOR i=1 TO 6
30 READ t(i), l(i), b(i),r(i)
4 0 ~ N E X T ~ i ~
50 DATA 3, 2, 4,5, 1,3,6,4, 2,1,5,6, 6,5,1,2,
4,6,3,1, 5,4,2,3
```

Dut on the ZX81 the DIM commands nave to be on separate ines and READ and DATA are not aval able. (Chapter 22 of the ZX81 manua shows a way round this)

Once these arrays are set up we know that the colour above ($f 1 \mathrm{f}) \mathrm{sc}(t(f), j, 1)$, for instance, and that to the right of $(f, i, 3)$ is $c(r(f), 4-1,3)$

YOU DO NOT ALWAYS NEED ARRAYS

There are, however, situations in which an array is not the right way to deal with repetitive data

Suppose we have to find the mean of a list of numbers x_{1} to x_{n}, which s the result of adding al the numbers together and then dividing by n A common approach to this is to divide the program up as
read in the numbers
calculate the mean
wr te out the answer
and the program m ght go sometning like

```
10 PRINT "How many numbers?"
20 INPUT 口
30 DIM x(n)
40 PRINT "Now type in the numbers"
50 FOR i=1 TO n
60 INPUT x(i)
70 NEXT I
100 LET sum=0
110 FOR i=1 TO n
120 LET sum = sum+x(1)
130 NEXT i
140 PRINT "Mean is ";sum/n
```

This program has two FOR-loops in t, but actually there s no reason wny we cannot amalgamate them and rep ace ines 50 to 130 by

```
    50 LET sum=0
    6 0 ~ F O R ~ i = 1 ~ T O ~ n ~
    70 INPUT x(i)
120 LET sum = sum+x(i)
130 NEXT i
```

But now ook at what is happening the program reads the f rst number into $x(1)$ and then adds it on to sum, t never uses $x(1)$ again but goes on to read the next number into $x(2)$, and so on Each time round it uses a new element of x which it then never uses again, so t could nstead nave just one variable and use it over and over again, as n

50	LET sum=0
60	FOR i=1 TO T
70	INPUT x
120	LET sum $=$ sumtx
130	NEXT i

Now we do not need line 30 etther; If n s at all large, a great deal of space has been saved. This version of the program does a small amount of calculation between reading one number and asking for the next but the time it takes to do this is not likely to be noticeable. The original version d α much of its ca culation after the last number has been input, and if n is large there may wel be a noticeable pause between typing n the last number and seeing the answer on the screen.

Sometımes a bt of algebraic manipulation of the original problem can make the programming more eff cient. If we also want to work out the standard deviation s, using the formu a

$$
s^{2}=\text { sumsquev } /(n-1)
$$

where sumsqdev is the sum from 1 to n of $\left(x_{n}-\text { mean }\right)^{2}$, then we can only beg n to ca culate it after we have worked out the mean, and we therefore need to store all the numbers (in the array x) in order to work out sumsqdev at the end of the program. But note that

$$
\left(x_{n}-m e a n\right)^{2}=x_{n}^{2}-2 \times x_{n} \times m e a n+m e a n^{2}
$$

so the formula can be rewritten as
$s^{2}=\left(\right.$ sumsq $-2 \times$ sum \times mean $+n \times$ mean $\left.^{2}\right)(n-1)$
where sumsa is the sum of x_{r}^{2}, which can of course de calcu ated as the numbers are be $n g$ read in Replacing mean by sum/n we get
$s^{2}-\left(\right.$ sumsq $-2 \times s u m^{2} / n+n \times$ sum $\left.^{2} / n^{2}\right) /(n-1)$
which reduces to

$$
s^{2}=\left(s u m s q-s u m^{2} / n\right) /(n-1)
$$

Here is the program mod fied to work oft the standard deviation as well it s also mod fied to avo a asking the user how many numbers there w II be, and to echo the numbers on the screen so that the user can always see the last 20 or so numbers he typed it is written for the Spectrum; the main modification requ red for the ZX81 is to insert a SCROLL command in front of each PR NT (except for those before line 100) and to change ENTER to NEWLINE in lines 40 and 50

```
    10 PRINT AT 10,0; "Mean and standard deviation"
    20 PRINT
    30 PRINT "Type each number terminated"
    40 PRINT "by ENTER."
    50 PRINT "Then type ENTER again."
    6 0 ~ P R I N T
    70 LET sum=0
    80 LET sumsq=0
    90 LET n=0
100 INPUT x$
110 IF x$=""' THEN GOTO 190
120 LET x=VAL xS
130 LET n=\square+1.
140 PRLNT n;" ";x
150 LET sum=sum+x
160 LET sumsq=sumsq+x*x
170 GOTO 100
180 REM
181 REM here to print mean and s.d.
I82 REM
190 IF n=0 THEN GOTO 280
```


PROCESSING TEXT

The operations that are typically done on arrays of numbers are fairly fam.liar to most people orainary aritnmet c on ind viqual elements, and totalling rows and columns The computer does these operations in very much the same way that peop e do them, but rather faster

Operations on character arrays and strings are unfamiliar because the computer's view of a character string is qu te different from a person's The character string is converted into a string of numbers on which s mple arithmetic operations are then done, this is a rather labor ous method, but it is the ony one avaiable and the computer's speed at do ng the ar thmetic that is involved makes it much less laborious than it wo.ld be for a person

The numbers (or codes') nto which the various characters are trans ated are isted in Appendix A of the ZX81 and Spectrum manua s Because of the way the TV picture is made, the codes used in the 'display fie' on the

ZX81 had to be the numbers 0 to 63 for ordinary characters and 118 for 'newline'. (The disp ay file is the representation stored in the memory of the picture on the TV screen, on the ZX81 this consists of a list of character codes with a 'new ine code to mark the end of each ine) The codes were chosen in a way that seemed convenient. for nstance the digit n has code $28+n$ and the nth etter of the a phapet has code $37+n$. Again because of the way the hardware makes the TV picture, adding 128 to the code for a character produces that same character but in white-onblack instead of black-on-wh.te.

The same codes that are used in the display file are used n the other p aces that cnaracters are stored, for instance in the text of the program and in variab es, and some of the codes that cannot be used n the display f le are used to represent 'tokens' such as the keywords LET and PR NT and THEN, in partic دlar, adding 192 to the code for a letter gives the code of the keyword that shares a key with that etter on the keypoard (for instance letter G is code 44, $44+192=236$, and code 236 s GOTO wh ch is on the same key as G).

The Spectrum d splay f le does not store character codes directly and therefore does not restrict the choice of character codes. However, the Spectrum was always intended to support the serial interface add-on which aliows data to be exchanged w th other data processing equipment, and the Spectrum character codes have therefore been chosen to be, as far as possible compat ble with dev ces using various international standard codes:
ASCII and ISO-7 and the newer codes for videotex (also called viewdata), teletex (a kind of super-telex for word
processors), and teletext (which s broadcast along w th terevision pictures).

We have already seen how a string can be storea, printed out, and joined onto another string, but BAS C also al ows you to dissect a string and look at the indiv dual characters or groups of characters it contains ZX BASIC's method for do ng this is cal ed sl cing' in the manual. this is the name used for a similar fac lity for dissectıng arrays in Algol 68 , but it can be used on str ngs as well as on cnaracter arrays. _ike the functions LEFT\$. MID\$, and RIGHI\$ in other BASICs, it lets you se ect a part of the string starting in a specif ed p ace and of a specifiea length However, a part of the string is specif ed purely in terms of the number of characters from the start of the string if the string contains a sentence in English, say, then to se ect the second word you must first find where it is. The follow ng piece of program ass gns to $w \$$ the nth word of the sentence in $s \$$

L nes 120 and 130 move k on to the start of the word, which we remember as/, then lines 150 to 160 move it to the character after the end of the word Starting from there, we search for the next word, and repeat the process unt I the
nth word is found If we run off the end of the string, the program will stop w th error code 3.

The operator LEN gives the length of a string, so line 160 above could have read

160 IF LEN $s \$\rangle=k$ THEN IF $s \$(k)\rangle$ " " THEN GOTO 150
to prevent error 3 happening on the last word The operator VAL interprets the contents of a str ng as a numeric expression and y elds its value and on the Spectrum VAL\$ s a so avallab e, wh ch does the same job for an expression that yields a string. bit there is no fac lity to obey a whole command contaned in a string.
(Note, by the way, that

$$
160 \text { IF LEN } s \$>=k \text { AND } s \$(k)\rangle " \text { " THEN GOTO } 150
$$

would st ll give error 3 at the end of the string because $s \$(k)$ would still get eval ated whatever the value of the left operand of AND.)

As was indicated in Chapter 2 examining the individual characters in a string is a long way from the kind of processing people do when looking at a piece of text; it is not possible to stand back and look at the whole string at one go The piece of program above dissects a string into ind vidual words, but using a rather s mple-minged definition of 'word' the kind of thing a user might type in real life is
"Fred,Joe and Jim."
so we neea to extend the program to recognise "Fred ' and 'Joe' as two words (the program as written reckons the f rst word is "Fred, Joe ') and to separate "Jim" from the full stop On the Spectr um, we also have to cope with the fact that letters can be in upper or lower case: 'THE ' and "The" and "the" must be recogn sed as the same word even though they are different strings. if the program is to make any attempt to interpret a who e sentence written n English, it neeas to have some k nd of 'd ctionary to tel it the meanings of al the words the Lser mignt possibly type Because of the difficulty of wr ting a program that can interpret English sentences correctly, it is often better to present choices to the \rfloor ser n the form of a 'menc' rather than ask a question and altempt to interpret the answer For instance, the program
10 PRINT "Where is the Vatican?"
20 INPUT c\$ "Rome" THEN PRINT "Wrong!"
30 IF c\$ $>$ "Ro
will print 'Wrong 'if the user types any of the fo lowing
"ROME" "Rome." "Rome" "It is in Rome."
although none of them could be considered to be a wrong answer The program could be moalf ed to make some attempt at picking out the word 'Rome from these answers perhaps as follows (lines 30 to 50 are not needed on the ZX81 which does not have ower case letters)

```
10 PRINT "Where is the Vatican?"
20 INPUT c$
30 FOR i=l TO LEN c$:
    REM convert to upper case
```

```
40 IF \(c \$(i)>=" a "\) AND \(c \$(i)<=" z "\) THEN LET
    \(\operatorname{cS}(i)=\) CHR \(\$\left(\right.\) CODE \(C \$(i)-\operatorname{CODE}\) "a" \(+\operatorname{CODE}{ }^{\prime \prime} A^{\prime \prime}\) )
50 NEXT i
60 FOR i=1 TO LEN c\$ - 3
70 IF c\$(i TO i+3) = "ROME" THEN GOTO 100
80 NEXT i
90 PRINT "Wrong!"
```

This won't pr nt 'Wrong!' if the reply contans the letters R,O M,E together anywhere in t, which is somewhat overgenerous as it means that 'Cromer' would be taken to be a correct answer. We can allow for this by adding, pernaps

```
    95 GOTO 130
100 REM check "ROME" isn't part of a longer
        word
110 IF i>1 THEN LF c$(i-1) >= "A" AND
        c$(i-1) <= "Z" THEN GOTO 80
|20 IF i < LEN c$ - 3 THEN IF c$(i+4) >= " A"
        AND c$(1+4) <= "Z" THEN GOTO 80
```

but th s will stil not trap

```
"50 miles north of Rome."
```

as a wrong answer. To de sure there is no confus on, the menu' approach is preferable, as in

```
10 PRINT "Where is the Vatican?"
20 PRINT
30 PRINT "1. Florence"
40 PRINT "2. Monte Carlo"
50 PRINT "3. Norwich"
```

```
    60 PRINT "4. Rome"
    70 PRINT "5. Naples"
    80 PRINT
    90 PRINT "Type the number corresponding"
100 PRINT "to the correct answer."
110 INPUT city
120 1F city <> INT city THEN GOTO 80 :
            REM not a whole number
130 IF city < 0.9 OR city > 5.1 THEN GOTO 80 :
    REM not in range l to 5
140 IF city <> 4 THEN PRINT "Wrong!"
```

Restr cting the user's cho ce s perhaps undesirable in this kind of quiz game (because if he ust guesses he has one chance n five of being r ght), but in more typica s tuat ons where the program s ask ng the user what he wants it to do next it is Lsually helpful

PROGRAMS FOR OTHERS TO USE

So long as you are us ng your personal comp ter as a g orified calcu ator, or to produce pictures on the IV screen, or even for it to p ay simple games with you, it does not matter too much how your programs are written prov ded they fit n the amount of memory you have available and produce the required results But if you are wr ting a large or complicated program or one that other peop e wil use, or one that someone e se wil ater need to mod fy, or one in which it is important to be reasonab y sure that the resu ts correspond correct y to the input data, then there are a number of guidelines that should be followed

Actuatly, if you are wr ting 'serious' programs you probably shou a not be using BASIC at all Several languages are avalab en cassette for the $Z X$ computers f you buy one make sure you know whether it mplements the whole anguage or on y parts of it also check how much of the compıter's memory it takes up Preferably read the reviews in the microcomputer magazines. Remember that each time you switch off the computer you iose what is in the memory, so you will have to read the cassette n afresh each t me you want to use it on y BASIC s n the machine when you switch on.

As the name, Beginner's All-purpose Symbol c Instruction Code, mpl es BASIC is intended as a way of introducing people to computers and programming, in the expectation that they wi l later graduate to programming in other languages But, as many people n the software
industry nave noted (not least the members of the Alvey committee which reported recently to the UK government on certain aspects of complting in the 1980s), BASIC can get you into some very bad habits

STRUCTURED PROGRAMMING

The larger a program s , the more difficult t becomes to keep track of the effect of any particular commands on the rest of the program, or the state of play as regards things that other parts of the program snould be upoating Questions ar se such as. Is it all r ght to use variable/ or sthere some otner part of the program that has left something stored there which it is expect ing to be able to retrieve later on? Has nextvalue (which is supposed to nold the value that the program will look at next) been updated yet. or are there circumstances in which istill nolds a value that has a ready been dealt witn? Can we print a message here without obiterating or otherwise interfering with, something written by another part of the program?

Technıques for limit ng these kinas of prob em nave two main components:

1 Break the program up nto pieces of manageable size It is not poss ble to De very precise as to how big is manageable:: $\lrcorner p$ to perhaps 40 or 50 commands in average circumstances, but a stra ghtforward process which happens to require a ot of commanos can take more a complicated one should be limited to rather fewer

2 Use comments to show what each prece does what resources it uses, etc.

There are usually things that are true throughout the program. and can be documented in a comment at the top of the program (If that does not take up too much memory) or outside the computer altogether (if you can be sure it will not get lost); for exampie in a program to piay a board game sucn as chess there $\mathrm{w} \|$ probab.y be an array whicn holas the current position and a variab e which shows whose move it is the documentation should define how the information is encoded in them Then when writing the part of the program that displays the board on the screen you need refer only to this documentation; it is not necessary to look at the part of the program that sets up the initial pos tion nor at the part that updates the pos tion when a move is made. Sim larly, the comments on ndividual parts of the program can assume that you already know the information that is in th s global' documentation and need not repeat it

Incidentally the design of just now the informat on is to be represented in the memory (called the data structure') is the most important part of most non-trivial programs Once this has been done, the program usually fails automat cally nto a number of sections each of which is concerned with updating a part of the data structure to take account of a change in the thing represented such as making a move in a chess game or add ng a new transaction to a bank ba ance. If the data structure has been wel designed these operat ons snould be fairly easy. When design ng the data structure you should always try to use a representation that will be convenient for the program In part cular consider how you can avo d making the number of aifferent operations (and hence the number of different sections n the program) unnecessarly large. In the chess
game, for instance, do you , ust need one rout ne for 'make a move', or do you need separate routines for 'white's move' and 'black's move'? If you favour having just one, however it is going to be significantly more compl cated than e ther of the separate ones? If so, I m ght de better to use two after all

Dur ng the 1970s the term 'structured programming' became current. This is a technique whereby you describe the task your program has to do in terms of ' ower-level tasks the description shou d be of manageable size. i.e less than a page. For the chess game this might be

1 set up initial position, set 'white to move', ask whether computer is to play black or white or both or (f two people are us ng it as a kind of electronic chess board) neitner, 2 arsp ay board on TV screen, indıcate whose move tis; 3 if the player cannot move, indicate 'checkmate' or 'stalemate' and go to 7:
4. If it is the computer's move work out what the move snould be; if the user's move, ask for the move to de input, 5. make the move, or if it s 'resigns go to 7;
6. swap from 'wh te to move' to black to move' or vice versa, and go to 2;
7 show (on the screen) wh ch player has lost, and ask whetner another game is to be played; if so go to 1.

Each of these seven tasks is in turn cescribed in terms of lower- evel tasks, and so on unt I all the tasks have been def ned as sequences of commands n BASIC (or whatever programming language is be ng used but for the purpose of this book we wil assume t is BASIC).

A feat.re of BASIC which very few other anguages
share is that eacn line of the program has a number, and you may as well make use of this to assist unoerstanding of the program by using line numbers from 1000 up for step 1 . 2000 up for step 2, and so on. If step 2 cons sts of six lowerleve steps, these shou d start at 2100, 2200, , 2600 line 2000 should contain a REMark indicating what step 2 does.

Some structured programming purists would ns st on a more direct manifestat on of the top level n the program, as in

10	GOSUB 1000
20	GOSUB 2000
30	GOSUB 3000: IF done THEN GOTO 70
40	GOSUB 4000
50	GOSUB 5000 : IF done THEN GOTO 70
60	GOSUB 6000
62	GOTO 20
65	
70	GOSUB 7000 : IF another THEN COTO 10
72	GOTO 9999

They would also insist on el mınating al GOIOs from the program. n the 'o ock structured' languages, particularly the newer ones, such as Algol 68, Pascal, BCPL, and C facil ties are provided wh ch can replace most uses of GOTO n the example above, lines 20 to 65 would be bracketed together as a 'block' in some way (which depends on the anguage), the GOTOs on lines 30 and 50 wou d take the form of 'exit from the D ock' commands and that on line 62 would be shown as 'repeat the block' Lines 10 to 70 would be another block (with the first block 'nested' inside tt) w th the IF GOTO replaced by a command of the form 'repeat while (another)'. We can do some of these
things in BASIC, as in
10 FOR a $=0$ TO 0 STEP -1

15 GOSUB 1000
20 GOSUB 110
70 GOSUB 7000
72 LET a = another: REM go round again if TRUE
75 NEXT a
78 STOP
100
110 FOR b $=0$ TO 1 STEP 0
120 GOSUB 2000
130 GOSUB 3000: IF done THEN RETURN
140 GOSUB 4000
150 GOSUB 5000: IF done THEN RETURN
160 GOSUB 6000
170 NEXT b
but this does not real y seem to make what the program is doing any clearer.

Many of the advocates of structured programming concentrate on the elımination of GOTOs with almost relig ous fervour (sometimes actually quot ng Genesis chapter 11 verse 7 in wh ch, in the Authorised Version, God says 'Go to, let us go down, and there confound their language, that they may not understand one another s speech' as evidence that it is GOTOs that make programs ncomprehensible). However, t is poss ble to find very clear and comprehens ble programs that use GOTOs, and very obscure and mudaled ones that do not.

But if you are writing in ZX BASIC you do not real.y have any sensible alternative to using GOTOs, and you shou a be aware of how to use them and how not use them.

In most languages, if you wish to GOTO a
command that command must have a ' abel'. A abel is very mucn like the name of a var able, in that it dentifies the part of the memory in which the line is stored, usually it has the same form as a variable name (letter fo lowed by letters andi or dig ts) thougn in Fortran it is a number Many compilers have the abi ity to generate a cross-reference' table wh ch shows where eacn lapel is used. When you are looking at a plece of the program, eitner to check whether t is correct or to see whether a change you are proposing to make wil upset someth ng else, you can be sure (1) that the only ways into the plece of program are at the top and at each abe, and (2) that each place from which it is entered can be found in the cross-reference tab e. You can therefore be certain of being able to check every context in which the plece of program can be used. In BASIC, every I ne nas a I ne number and is therefore potentially the target of a GOTO. No crossreferencer is provided in the standard firmware, although t would not be too difficult to write a crude one in BASIC. (Look in Chapters 27 and 28 of the manual in the case of the ZX81, and Chapters 24 and 25 in the case of the Spectrum, to find where to PEEK and what to look for there, in each case Appendix A tells you that the code for GOTO is 236.) The problem is made worse by the availability of commands like

$$
\text { GOTO }(j+5) * 100
$$

which is liable to GOTO anywnere remember that / is not necessarily a whole number nor is it necessarily posit ve, it could for instance be 353 in which case the command reduces to GOTO 147, and if there s no line 147 it wil

GOTO the next hignest line number.
It s therefore most mportant to put a REMark at any place that is liable to de GOne TO from any other part of the program This a so apples (n deed rather more so) to places that are the target of a GOSUB; in this case the REMark should make clear what the end effect of the GOSUB wil be (ie what wil have been done by the time the RETURN is reached).

Another criticism often levelled at GOTOs is that ndiscrim nate use leads to a program whicn, if you trace ail the paths the computer can fo low through it, ooks ike a plate of spaghett (It has also been said that the more extreme forms of 'structured programming' with their many separate layers of program, resemble a dish of lasagne, which is fust as dffcult to see tnrough) We nave found that a good rule that helps avoid this k nd of problem s Backwards jumps should only be used for loops
A backwards jump is one that GOes TO a command that precedes it in the program, such as

120 IF n<>0 THEN GOTO 100

(100 being before 120) A loop s a sequence of commanas that is obeyed several times, for examp e

```
100 INPL'T n
110 LET total = total+n
120 IF n<>O THEN GOTO 100
```

In wh ch ines 100 to 120 are obeyed repeated y untı a zero va ue s nput (We assume that a message sucn as "type n the numbers, terminated by a zero's pr nted before the
oop is enterea.) Clearly there has to de a backwards jump at some point in the loop (unless FOR NEXT is used, wh ch s not very approprate nere) But the program should De arranged such that there are no backwards Jumps except those from the midd e or end of a loop back to the beginning. For example, suppose you have to take different action at a certain point if the variable x contains the vaiue zero.

```
240 IF x=0 THEN GOTO 2500
260 [action if }x\mathrm{ is nonzero]
280 [next part of program]
...
2500 REM here from 240 if x=0
2520 [action if x is zero]
2540 GOTO 280
```

This contains a backwards jump on I ne 2540 and we can see that if there are many sect ons like ines 2500 to 2540 scattered around the program t wll have the spaghettil ke structure al uded to earlier However we can rearrange it as

```
240 IF x<>O THEN GOTO 270
250 [action if x is zero]
260 GOTO 280
270 [action if }x\mathrm{ is nonzero]
280 [next part of program]
```

Frgain; tho usod ts a verb, meaning to cboy a sequerose ck
feommande repeatedy. A common consequaforefobut(m-
which has no backwards ,umps, and has a much cleaner structure (similar in fact to the form the program would take in a 'GOTO- ess' language) so that we can see what it does without having to keep track of odd b ts of program in other parts of the listing.

RELIABILITY

The nov ce programmer s usua ly surpr sed the first time he lets someone else try out a program he has just written, to discover just how easi y 1 can be made to fail and indeed how difficult it is for the guinea-pig 」ser to get it to work at all

Lsually the problem s that the user's input s not quite in the form that the programmer expected. Pernaps when asked to type a ist of words he puts commas between them when the programmer expected spaces, or several spaces where the programmer expected just one. Perhaps he was not tola that none of the words may be more than ten letters ong. Perhaps he was asked for a number but not told that it must be a integer ($\mathrm{i} e$. a 'whole number) or less than a hundred, or greater than zero To the programmer, knowing how the program works such restrictions m ght be obv ous, and it s sometimes difficult for him to remember that the user does not have tnis information. Often the reason that the program does not cater for a particular form of input s that the programmer would himself never think of us ng it anyway it would never occur to him that adjacent woras in a list snould be separated by anyth ng other than a single space, so the program does not a low for severa spaces, or a comma.

The programmer s defence aganst this problem is
a kind of 'belt and braces approach:
(1) Make sure that the user has been told exactly what the program expects.
(2) Make sure that the program can cope with any kinds of inplt, even those that are not in accora with the instructions given in (1).

There is a limit to the effectiveness of (1): users are often too eager to get on w th trying out the program to take the necessary time to read the instruct ons careful y; ndeed. in the computing trade t is general y believed that users only look at the instructions as a ast resort, if al otner attempts to get the program to work have failed. The user's understanding of some of the words you use may not be the same as yours. If you Duild all the instruct ons into the program and disp ay them on the screen at appropriate times, you may have to abbreviate them for lack of space

With (2) we attempt to trap wrong inputs which are the result of mistyp ng or of the user's misuncerstanding of what is required The program should check whatever assumptons it makes about the input data, preferably immediately after they are input. For examp e, suppose we want the user to choose an integer in the range 1 to 999

```
100 PRINT "Think of a number less than 1000"
110 PRINT "What is your number?"
120 INPUT number
130 IF number<1000 THEN GOTO 160
140 PRINT "Your number was too big"
150 GOTO 100
160 IF number>O THEN GOTO 190
170 PRINT 'We need a number greater than 0'
```

180 GOTO 210
190 IF number=INT number THEN GOTO 230
200 PRINT "We need a whole number"
210 PRINT "Think of another number"
220 GOTO 110
230 REM NUMBER is an integer, 1 to 999
The INPUT command ensures that what we get is a number and we then check that it obeys any restrictions we have ass.mmed ater in the program. Here we have told the user that it should be less that 1000 and have assumed that most users w Il not think of choosing a negat ve or fractional number. Each of the condit ons is checked, and the user is told if his number s rejected, including the reason for the re, ection. This last is most important; there few th ngs more infuriating than a computer which refuses to process the th ngs you give it without giving some ndication of what is wrong (This is why when ZX BASIC rejects a command line because of a syntax error it positions the 'S cursor at the place where it thinks the error is It mignt pernaps have been more helpfu if it a so told you the nature of the error, but often the nature of the error is fa rly obv ous once its position has been pointed out and in many cases the computer would nave diff culty decid ng just what the calse of the error was.)

The above plece of program does not give the user a ong message listing all the restr ctions on the input, it 儿st gives the important details It then checks a l the assumptions, incluang those the user has been told about If you are systemat c, you should be able to make certain that the nput to a program conforms to whatever assumpt ons the rest of the program makes about it You
can then be sure that the program snould perform correctly whatever inputs the user gives it.

SPEED

The ZX computers do not run programs particular y quickly, and so it can be important for the programmer to be aware of how to avoid making the program slower than it has to be. Some aspects of the design of the BASIC are innerited from the $\mathrm{ZX80}$, in wh ch the requirement to ft the whole system into a very smal amount of memory was paramount To keep the internal des gn simple (and thus to minimise the space used by the machine code program that interprets the BASIC) the various things that have to been kept in memory (the BASIC program, variables, strings, etc.) are simply stacked one after the other so that if a particular item is requ red the computer searches through from the beginning until it finds it, if one needs to be nserted the others are moved $_p$ to make room, and if one needs to be removed the others are movea back to close up the space This saves keeping (and keeping up-to-date) the mu tituce of po nters whicn would be needed to find things more quickly at the expense of a fair amount of search ng and (when th ngs have to be moved) copying; but since there cannot be very much to search througn or to copy anyway (because there s so little room) this does not take very long.

The name of a variable, for instance, is stored in the program without any add tional nformation as to where t s stored. so every t me a variab e is used when the program s run the computer searches through the part of the memory where the var ables are kept, ook ng for the variable with the required name In a $\angle X 81$ with only 1 K of

RAM this will not take very ong, as there cannot be very many variables to search through, but in one w th 16 K , or in a Spectrum (especial y one with 48 K) there is room for a big program with lots of variables and if the computer has to keep finding the one that happens to be at the end of the list this w II slow the program down noticeably

Whicnever language and complter are used, n the typica program only about 20% of the commands are obeyed often enough for it to matter at a I how long they take. Except where anımated disp ays are being generated what usually matters to the user is the time between hitt ng ENTER, at the end of a command or p ece of input, and seeing either results or an invitation to supply more input, so any command that is obeyed only once or twice during this time is not likely to make a sıgnif cant difference.

Some of the techniques for reaucing the run time of a program apply to most languages on most complters. and are arge y common-sense measures such as not doing inside a loop (and hence once each time round) a calculation that could be done outside it. But there are a few peculiarities of the ZX BASIC that deserve specia mention in this context.

GOTO searches the program from the beginning for the line you want, so a line near the beg nning of the program can be found more quickly than one near the end The natural way to wr te a program is with the nit alisation (which is just done once) frst , then data input, then processing and output. But th s would put the part of the program most likely to benefit from faster GOTOs in the place where GOTOs are slowest so a better order would be GOTO initialisation
processing \& outplt (often-used loops)
processing \& output (rest of)
STOP (or GOTO end)
in tialisation
data input
GOTO processing
This includes a backwaras jump that is not part of a loop, and indeed t is a ready less clear just what the program is do ng, so we see that we have to cnoose between a faster program and a well structured one The extra GOTOs are obeyed just once each, so the time they take does not matter

NEXT and RETLRN are a so jumps and use the same mechanısm as GOTO to f nd the FOR or GOSUB instruction to return to. NEXT is partic ularly important because it is always part of a loop, and therefore obeyed many times.

You may de ab e to reduce the number of lines in your program by, for example replacing

```
140 PRINT "Value is ";
150 PRINT x
```

by
140 PRINT "Value is "; x
or
270 LET $\mathrm{q}=\mathrm{x}+$ LOG y
280 LET q $=\mathrm{q}$ * EXP z
by

$$
270 \operatorname{LET~q}=(x+\operatorname{LOG} y) * \operatorname{EXP} z
$$

On the Spectrum you can put several commands on one ine separated by colons, and since it is the number of ines ratner than the number of commands that matters this can speed things up considerably Also, there is a litt e extra processing to be done at the end of a line, so putting your commanas on fewer lines will speed the program up a little anyway But t is still likely to be worth starting a new line for a FOR or GOSUB command, because the special kind of jump done by NEXT and RETLRN searches for the line contain ng the FOR or GOSUB (sk pping down just ooxing at the I ne numbers) and then scans through the line counting the commands in it untı it comes to the one after the FOR or GOSUB.

In this case, the format that w II run faster is also likely to be fa rly good from the point of view of readability, as in

```
2100 LET a=5: LET b=0: LET c=7
2110 GOSUB 1000
2120 FOR n=l TO 50: LET q(n)=q(n)+r(n): NEXT n
2130 GOSUB 1200
etc
```

The way in which variab es are found s.n many ways sim lar to the way in wh ch program lines are found, and it is us Jally done rather more often. Each var able that nas been assigned to is described by a record wh ch specifies its type, name, and value (Trying to use a variab e for which no record exists causes error 2) Assum ng the program s started by RJN, there are no records present when the program starts, new records are added at the end by DIM, цET, FOR, and INPUT commands, ana the records
are searched from the beginn ng so the o dest one is always looked at first.

In ceta I: DIM adds a new record describing an array FOR and also LET assigning to a numeric variable, will use the existing record for that variable f there is one, otherwise it will add a new one. LET assigning to a string variable always adds a new record, f there is an ex st ng one, t is removed and al the later recoras are moved back to close up the gap LET w II never create a new record when assigning to an array e ement.

As a general rule, therefore, the arrays and numer c variables that are going to be used frequent y shou d be DiMensioned or assigned to before anything else even if they are not going to be used until ater String variab es w II usually gravitate to the end n any case

Short names should be used for numeric variables (arrays and strings are restricted to one character names anyway - another hang-over from the $\mathrm{ZX80}$). A var able w th a name $s x$ or seven characters long takes twice as long to search past as one w.th a one-character name The characters that are the va ue of a string variable take a s mi ar amount of time to search past.

Note that the computer searches for a variable each tıme tappears in the program Thus in

```
100 FOR j=n+l TO n+10
110 LET a(j) = a(j)*j
120 NEXT j
```

n which I ne 100 is obeyed once and I nes 110 and 120 are obeyed 10 tımes, I searcnes for n tw ce (both on I ne 100), a 20 times (all on line 110, twice each t me round), and : 41
times (once on ine 100, three times each time round on I ne 110 and once each time round on line 120). In a.l, these three lines therefore conta $n 63$ searches for var ables and 9 jumps.

It takes about the same time to search past a var.able as a program ine so the extra time to find the twenty-first variable (say) instead of the f rst is about the same as the extrat me to GOTO the twenty-first program line instead of the f rst This is a litt e more than the t me it takes to do a floating po nt addition or subtraction, but somewhat ess than the time required for a mu tipl cat on or alv sion.

The otner trap for the unwary is in some of the operations on numbers The 'to the power' operator is always worked out using the formula

$$
x \upharpoonleft n=\operatorname{EXP}(n * \operatorname{LOG} x)
$$

except when $x-0$. This means that $x \uparrow 2$ takes about twenty tımes as long to ca culate as $x^{*} x$ does, and may give a ess precise answer Similarly $x \uparrow 3$ takes about ten times as long as $x^{*} x^{*} x$. A so $x \uparrow n$ causes an error A if x is negat ve because you cannot take the _OG of a negative number so if $x=3$ then $x^{\star} x$ is +9 but $x \uparrow 2$ stops the program w th error A Mora: use mult plication instead of to the power' whenever possible.

SQR x is worked out as $x \uparrow 05$, and thus also takes rather a long time to calculate, but there is not rea ly any viadle a ternative Some of the trigonometric funct ons are slower than others: TAN x is worked out as $\operatorname{SIN} x$: $\operatorname{COS} x$; ASN uses SQR and ATN, as does ACS

PARTI
 EXAMMPLE RROGRAMMS

GRAPRICAL PRESENTIATIUN DF DATA

The programs in this chapter are concerned with disp aying numer c data on the screen n p ctorial form. We saw in Chapter 2 that this is the kind of task to which compJters are we I suited, and a p ctor al oispiay often gives a much better over-a l impression of trends etc. in the data than a column of figures would.

The most iterally 'graphical' presentation s by draw ng a graph as of a value y wh ch depends on another value x. Mathematicians say y is a 'function' of x and show this by writing $y-f(x)$ The graph is drawn by considering each possibe value of x in turn, work ng out the corresponding y, and (startıng from a fixed point called the 'orig n') measuring x units a ong the paper and y un is $u p$ the paper and marking the place.

In ZXBASIC, the PLOT command does most of the work of this for us Having worked out the va ues x and y, we need only say

$$
\text { PLOT } x, y
$$

to get the relevant point blacked in on the screen Thus

$$
10 \text { FOR } x=0 \text { TO } 255
$$

20 LET $y=S$ IN x

30 PLOT x, y
40 NEXT x
But f you try the program in th s form you will ind t does not plot a sine wave, in fact it stops with error B
(Indicatıng that the graph does not fit on the screen) before getting very far at all We need to make sure the graph is large enough to see properly w thout be ng too big to fit on the screen.

As the manual (Chapter 18 for the ZX 81 , Cnapter 17 for the Spectrum) describes, the screen $s d$ vided into a rectangular array of 'picture elements', called 'p xe s' for snort. The rows and columns are identified by whole numbers (which we will call 'co-ordinates') starting with zero in the bottom lefthand corner; on the ZX81 there are 44 rows and 64 col 3 mns , so the top r ghthand corner s column 63 and row 43 We w 11 find t more conventent to think of the top righthand corner as $(x-63, y-43)$; this is why the rows are numbered upwards. The pixels on the Spectrum are much smaller than those on the Z×81, and there s room for four times as many n each direction, so the co-ordinates go up to ($x=255, y=175$).

D fferent computers behave in different ways when a picture does not $f t$ on the screen Consider the s mple line draw ng in Fig 7.1(a) positioned on a screen as in Fg $7.1(b)$ Part of the picture is off screen and does not appear. this technique is ca led 'windowing' because t is as if the screen is a window through wh ch you are ooking at the picture, and you see only those parts of the picture that are oppos te the window.

Another technique s called 'wraparound, here the parts that fall off one edge appear at the opposite edge, as in Fig $71(c)$ This is rather as if you had drawn the picture on a car tyre nner tube (a shape matnematıcıans cal a 'torus') and then cut the tube open and flattened it out. Wraparound was much used in the early days of graph cal

FIG 7.1

(a) Intended picture.

(c) Effect of wraparound

(b) Effect of windowing.

(d) Appearance in ZX BASIC.

PIXEL - the smailest pat of a pistire for wrich the compunter

 tw moving the pernion of the window.
WFAPAROUND = when referrea to eqmouter ghaphes is an
 Wo estondit esme an equin the cpacsis cido, the that the while picture is visible although possibly in a raithei jumbled form
displays because, w th the techno ogy then available, it was much easier to mplement, but windowing is normal y more conven ent for the user.

ZX BAS C does not use either of these technıques, but simply signals error B whenever PLOT etc. finds that a point does not fit on the screen. However, it is not too diff cult to check inside your program that you are not plotting points off-screen, and even to do your own windowing In the above examp e we can change line 30 to

$$
\begin{aligned}
& 30 \text { IF } x>=0 \text { AND } x<=63 \text { AND } y>=0 \text { AND } y\langle=43 \\
& \text { THEN PLOT } x, y
\end{aligned}
$$

On the ZX81 this plots the po nt only if t fits on the screen; on the Spectrum it plots it only if it $s \mathrm{n}$ the lower lefthand corner of the screen, so that your picture will not obliterate whatever is already in the rest of the screen By vary ng the four numbers against which the values of x and y are tested, yo \lrcorner can have a rectangular window of any size anywhere n the screen. By us ng d fferent tests you can have windows of other shapes; for instance

$$
30 \text { IF } x>=0 \text { AND } x<=y-8 \text { AND } y<-40 \text { THE.N PLOT } x, y
$$

defines a triangular window and

$$
30 \text { IF }(x-128) \uparrow 2+(y-88) \uparrow 2<1600 \text { THEN PLOT } x, y
$$

defines a circular one n the m adle of the screen on the Spectrum (On the ZX81 yo」 would have to use smalier numbers to keep it on the screen)

As indicated at the end of Chapter 6, it would be better to use $(x-128)^{*}(x-128)$ instead of $(x-128) \uparrow 2$ to
reauce the time taken to do the test (Even though the computer has to find x twice and do the slbtraction twice, this is st II a lot quicker than using 'to the power operator.) Whatever kind of w ndow we Lse. we still do not get anytning that looks mucn like a sine wave; we need to choose the right scale at which to draw the p cture For any x, the value of $\sin x$ is in the range -1 to +1 This is why we have had so itt e success so far. all the points plotted were either in the bottom two rows of pexels or just off the bottom of the screen

We therefore need to 'scale' and 'translate' the p cture Sca ing is done by multiplying all the coordinates by a certain number (so the picture gets bigger or smaller but is stil centered on the same orig n), translation is done by adding the same number to all the y co-ord nates so that it moves up or down or to the x co-ordinates so that it moves sideways Considering only the y co-ord nates for the moment, we can do

```
25 LET y = y*20+22
```

on the ZX 81 or

$$
25 \text { LET } \mathrm{y}=\mathrm{y} * 80+88
$$

$$
\begin{aligned}
& \text { the coordinates of all the points in the pictare by the same } \\
& \text { numiser } \\
& \text { TRANSL.ATE - to move a picture by adding the same pair of } \\
& \text { finmbors (ono fer the xairection, another for thay discetiex) to }
\end{aligned}
$$

on the Spectrum to get the y values into the range 2 to 42 on the 2×81 or 8 to 168 on the Spectrum wh ch fits comfortab y on the screen.

What about the x direction? One complete cycle of the sine wave takes from zero to 2π or about 6.3 so if we divide the pixe co-ordinate by 10 we will get one comp ete cycle on the ZX81 or four on the Spectrum We may as well start at $x=0$, so no translat on s needed Note, by the way, that in the x direction we are starting from the pixel coordinate and calculat ng the value whereas n the y direction it is the other way round we start w th the value (derived from the \times value) and calculate the pixel coordinate

Let us now rewrite the program n the $\mathrm{ZX81}$ version Note that we are now assured that each point (x, y) s onscreen so there s no need for any windowng

```
10 FOR x=0 TO 63
20 LET y = SIN (x/10)
25 LET y = y*20+22
30 PLOT x,y
40 NEXT x
```

This calculates the y co-orannate in two stages (lines 20 and 25) before using t on ine 30. We can make the program sicker by ca culating it all none go and putt ng the express on n the PLOT command instead of putting the result in the variable y and tak ng it out again*

```
10 FOR x=0 TO 63
30 PLOT x, 20 * SIN (x/10) + 22
40 NEXT x
```

This w Il work on the Spectrum too, but produce a rather small picture in the bottom lefthand corner of the screen. To Il the screen we should do

```
10 FOR x=0 TO 255
30 PLOT x, 80 * SIN (x/10) + 88
40 NEXT x
```

You snould try one of these out on a $\mathrm{ZX81}$ or Spectrum, and experiment w th chang ing the various constants (two in line 10, three in ine 30) to see what happens.

A MORE GENERAL VERSION

We can adapt the program to print the value of any expression as follows. This shows the power of the VAL operator in ZX BASIC, wh ch allows the string to contain any expression rather than just a literal number The version given is for the spectrum.

```
    10 LET i=0
    20 DIM y(255)
    30 LET ymin = 0
    40 LET ymax = 0
    50 LET X = 0
    55 LET xstep = 0
    60 PRINT "Graph plotting"
    70 PRLNT
    80 PRINT "Type the value of y as an"
    90 PRINT " expression involving x."
100 PRINT
110 PRINT "Be careful to use the single"
120 PRINT " keys for SIN, LOG, etc"
130 PRINT " instead of spelling them"
```

```
140 PRINT " out letter by letter."
150 INPUT f$
1 6 0 ~ C L S ~
170 PRINT "y = ";f$
180 PRINT
190 PRINT "x start at?"
200 INPUT x
210 PRINT "x finish at?"
220 INPUT xmax
230 LET xstep = (xmax-x)/255
240 CLS
250 PRINT "y = ";f$
260 LET y0 = VAL fS
270 LET ymin = y0
280 LET ymax = y0
290 REM now get the rest of the y's and
                    find the max and min
300 FOR i = 1 TO 255
310 LET x = x + xstep
320 LET y(1) = VAL f$
330 IF y(i) < ymin THEN LET ymin = y(i)
340 IF y(i) > ymax THEN LET ymax = y(i)
350 NEXT i
360 REM now we know the range that y covers
370 IF ymin = ymax THEN LET ymax = ymin+l
380 LET yscale = 168 /(ymax-ymin)
390 PLOT 0, (y0-ymin) * yscale
4 0 0 ~ F O R ~ i ~ = ~ 1 ~ T O ~ 2 5 5 ~
410 PLOT i, (y(i)-ymin) * yscale
420 NEXT i
```

For the ZX81, change 255 to 63 wherever toccurs and change 168 to 41 on line 380 . On the Spectrjm you can delete lines 180 to 210 and 240 and 250 if you replace ine 220 with

220 INPUT "x start at "; $x ;$ ", finish at "; xmax

On lines 10 to 50 we make sure that the variables we wil be using most often are mentioned before $\$ \$$ as explained at the end of Chapter 6, this helps keep as short as possible the pause between when the user enters the ast inputs and when the results start to appear. We keep the values in an array to save having to calculate them twice, if each one takes quite a long t.me to work out this speeas up the second loop (ines 400 to 420) quite a lot, while if they take only a short tıme the program wi I run quite qu ck y any way and there is no sign ficant penalty On the other hand, we cou d s mply work out all the va ues twice over, as in

260	LET $\mathrm{ymin}=\mathrm{VAL} \mathrm{f}$ \$
270	LET ymax $=$ ymin
280	LET $\mathrm{xmin}=\mathrm{x}$
290	REM now find the max and min y values
300	FOR i=1 TO 255
310	LET $\mathrm{x}=\mathrm{x}+\mathrm{xstep}$
320	LET $\mathrm{y}=\mathrm{VAL} \mathrm{f}$ \$
330	IF y < ymin THEN LET ymin $=\mathrm{y}$
340	IF $y>y$ ymax THEN LET ymax $=y$
350	NEXT 1
360	REM now we know the range that y covers
370	IF ymin $=$ ymax THEN LET ymax $=$ ymin +1
380	LET yscale $=168 /(y m a x-y m i n)$
390	LET $\mathrm{x}=\mathrm{xmin}$
400	FOR $i=0$ TO 255
410	PLOT i, (VAL f
415	LET $\mathrm{x}=\mathrm{x}+\mathrm{xstep}$
420	NEXT 1

(Lines 10 to 250 are the same as pefore except that line 20 is a LET rather than a DIM) This wil start to draw the graph a little earlier (because the loop on ines 300 to 350 is a little quicker) but will usually take longer to draw it, psychologically this might be better as the user can see that the program is doing something and indeed can see now far t has got

Note that if y scale was set up as (ymax-ymin) /168 we would have to divide rather than mu tiply in line 410, and divis on takes longer than multiplication. S mi arly in line 310 we fino the next x from the old one rather than deriving each one afresh from i as in

$$
310 \text { LET x = xmin + i * xstep }
$$

because this would invoive an unnecessary multipl cation.

HISTOGRAMS

As well as draw ng graphs where the pa rs (x, y) are associated by some mathematical formula such as the one stored in $f \$$ in the program above, we can araw grapns in which the pairs ($x y$) represent experımental or other data from the real world' The graphical form may well reveal trends or per odic varıations that are not nearly so apparent from the raw f gures. A program to draw such a graph is

```
10 PRINT "Caption for graph?"
20 INPUT c$
30 PRINT c$
40 PRINT "Minimum y value?"
50 INPUT ymin
60 PRENT ymin
```

```
    70 PRINT "Maximum y value?"
    80 INPUT ymax
    90 IF ymax>ymin THEN GOTO 130
100 PRINT "Maximum must be greater than"
110 PRINT " minimum!"
120 GOTO 70
130 LET yscale = 168 / (ymax-ymin)
140 PRINT "Now input the y values in"
150 PRINT " order from left to right"
160 INFUT y
170 CLS
180 PRINT c$
190 LET x=0
200 IF y>zymin AND y<=ymax THEN
    PLOT x, (y-ymin) * yscale
210 LET x = x+1
220 IF x>255 THEN GOTO 9999
230 INPUT y
240 GOTO 200
```

We shou a probably print a further message between lines 150 and 160 telling the user that STOP can oe used if there are less than 256 numbers (see Chapter 9 of the ZX81 manual or Cnapter 2 of the Spectrum manual).

Note that we check (on line 90) that the maximum and minimum values supplied by the user are sensible and (on line 200) we do not assume that the y va ues will in fact necessarily come with n these limits No effort is made to maximise the speed with which the program runs because it has very litt e to do Detween being given one nput va ue and asking for the next.

Another kind of aisp ay that is often used is the
histogram We can make the program plot a histogram by simply replacing line 200 with

```
200 IF y>ymax THEN LET y=ymax
202 FOR j=0 TO (y-ymin) * yscale
204 PLOT x,j
206 NEXT j
```

and making a suitable alteration to the message printed by ine 10. On the Spectrum it w II be quicker to use DRAW keep the new line 200 but insteaa of 202 to 206 use

204 IF $y>=y m i n ~ T H E N$ PLOT $x, 0$: DRAW 0 , (y-ymin)*yscale

Histograms are often drawn with the ind vidual columns separated; all we need to do is to replace ine 210 with

```
210 LET x = x+2
```

On the Spectrum we may want to make them rather chunkıer; to do this rep ace lines 200 to 220 in the origınal program by

```
200 IF \(\mathrm{y}>\mathrm{ymax}\) THEN LET \(\mathrm{y}=\mathrm{ymax}\)
202 IF \(y<y m i n ~ T H E N\) GOTO 210
204 LET y = (y-ymin) * yscale
206 FOR \(j=x\) TO \(x+3\) : PLOT \(j, 0:\) DRAW \(0, y:\) NEXT \(j\)
210 LET \(\mathrm{x}=\mathrm{x}+6\)
220 IF \(x>252\) THEN GOTO 9999
```

Sometimes it is he pful to nave histograms in several colours The ZX81 a lows grey as well as b ack and
white, using the characters avallable in G mode on keys ASDFGH when SHIFT is held down (see Chapter 11 of the ZX81 manual) They are not sLpported by PLOT, so you have to either use PRINT AT or else accumulate the picture in a character array and then copy t to the screen when it is complete. An example program for the ZX81 using PRINT AT can be made by replacing lines 200 to 220 of the original program by

```
192 REM define character codes for block
    and half-height block
194 LET block = 8
196 LET half = 9
198 REM draw column upwards
200 LET y = (y-ymin) * yscale
202 FOR v=21 TO 1 STEP -1
204 IF y>1.5 THEN GOTO 210
206 LF y>0.5 THEN PRINT AT v,x; CHR$ half;
208 GOTO 216
210 PRINT AT v,x; CHR$ block;
212 LET y = y-2
214 NEXT v
216 LET x = x+1
218 IF x>31 THEN GOTO 9999
220 REM swap colours for next column
223 LET block = 136-block
226 LET half = 140-half
```

> WTCenAM ech number is shown as a rectangle the aroa of which it proporional to the value depicted. Usualy ell the rectengles re the anm value.

L ne 223 swaps block between 8 the code for a grey square, and 128, the code for a black one, ine 226 swaps half between 9 , for a grey half-sqLare, and 131 for a black one. If you change these lines to

$$
\begin{aligned}
& 223 \text { LET block }=13 \text {-block } \\
& 226 \text { LET half }=13 \text {-half }
\end{aligned}
$$

then the black columns wil be nalf-width, leaving a gap before the next grey one. There are no characters ava lable which would allow you to make narrower grey columns unless you turn the histogram on its side (cf. Exerc se 3 in Chapter 11 of the ZX 81 manual).

On the Spectrum, you have eight colours avai able ncluding black and white, and you also nave two brightness levels You can draw the columns as wide as you like, and have gaps of any w dth Detween them, the version of the program on page 130 had columns four pixels wide all in the same co our with a gap two pixels wide, but if we add

```
195 LET colour = 2
206 FOR j = x to x+4: PLOT INK colour; j,0:
    DRAW INR colour; 0,y: NEXT j
210 LET x = x+8
225 LET colour = 7-colour
```

(wnich will cause the existing ines 206 and 210 to be deleted) then the colurnns wi I be alternately red and pale blue, five pixels wide with a three-pixel gap

Although the Spectrum graphics have high resolution when used for monochrome pictures (with the same paper' and 'ink' colours over the who e screen), for muiticolourea pictures the resolution with whicn you can
specify the co ours is much lower. The screen is divided nto 'character posit ons' each consist ng of an 8×8 array of pixels, so there are 64 pixels in each character position When you are using the screen for the text (as in the PRINT command) each character prınted occup es a character position For each character position you can specify the 'paper' and ' nk colours (in each case one of e ght colours, if you co.Jnt black and white as colours), and also whether the character is high'ighted (by being brighter tnan norma) and whether it s to flash In the case of text this al ows you complete freedom to specify the colour of each character independently.

When draw ng p ctures, nowever you need to be aware that all the $64 p$ xe s that make up a character position snare the same co our spec fication If any of them is to be highlighted, or to flash, then all must do so You only have two colours - paper co our and ink colour ava lable Suppose you want to draw a histogram witn adjoining red, blue. and green columns on a wh te background Suppose you start by arawing the rea co umn in the righthand half of a column of character squares in rea ink on wh te paper (say w th the x va ue going from 4 up to 7) in the manner of line 206 n the program Just above You can go on to draw the blue column next to it (with x from 8 to 11) in blue ink on white paper If you now try to add the green colımn, in green nk which we wil suppose is ha f as nigh as the b ue column, you w Il find that the bottom ha f of the b ue column (which shares character squares with t) changes to green because you are changing the ink colour in those character squares.

You can create the green co umn by changıng the
paper co our to green, but this also is cone a whole character position at a t me: when you change the bottom row from white to green the next seven rows change as well You can thus only get one-eighth the resolution that is otherwise available on the Spectrum and indeed only onehalf the resolution that is available on the $\angle X 81$. Now suppose the blue column is (say) 50 pixels high and the green column is higher: you w II be cnanging the paper colour above the top of the blee column to green To be sure of avoiding this problem the height of the blue column has to be a multiple of eight pixels also.

One way round this restriction is to use half-tones to generate intermediate colours in the same way that the ZX81 generates grey. (This is mentioned in Cnapter 17 of the Spectrum manual) For instance, keeping lines 10 to 130 from the program above, we can have

140	REM set up user-defined characters b to i as half-tone
150	FOR $i=U S R$ " ${ }^{\text {b }}$ " TO USR " ${ }^{\text {b }}+62$ STEP 2
160	POKE i, BIN 01010000 : POKE i+1, BIN 10100000
170	NEXT 1
180	REM now make a to h into 0 to 7 rows (out of 8) of half-tone
190	FOR i=0 TO 7
200	
210	POKE $\mathrm{j}, 0$
220	NEXI j
230	NEXT i
240	PAPER 7: INK 0: CLS: PRINT cS
250	FOR $i=1$ TO 16

```
260 INK 2: LET c$="red"
270 GOSUB 1000
280 FOR j=i*l6-12 TO i*16-9: PLOT j,0:
    DRAW 0,y: NEXT j
290 INK 1: LET c$="pale blue"
300 GOSUB 1000
310 FOR j=21 TO l STEP -1
320 IF y<7 THEN PRINT AT j,i*2-1:
    CHR$(145+y);: GOTO 350
330 LET y=y-8: PRINT AT j,i*2-1; CHR$(152);
340 NEXT j
350 LET c$="dark blue"
360 GOSUB 1000
370 FOR j=i*16-4 TO i*16-1: PJ OT j,0:
                        DRAW 0,y: NEXT j
30 NEXT i
390 GOTO 9999
4 0 0
1000 INPUT (i); "st " AND i=1; "nd " AND i=2;
    "th " AND 1>2; (c$); '': '; y
1010 LET y = (y-ymin) * yscale
1020 RETURN
```

The program draws the red column in one set of character squares and the biue and ha f-tone blue in another. The half-tone b ue s done before the full-colour b ue because PR NT writes the whole character square, but it can be cone afterwards by

```
PRINT OVER l; AT j,i*2-1; CHR$(145+y);
```

which will not disturb the parts that nave already been written by DRAW.

A number of var ations on the above themes are
possible and should be done as exercises They nc ude drawing a line between adjacent points on a graph so that the graph forms a continuous I ne even where one y value differs from the next by more than 1 drawing axes on the graph and abel ing them; and histograms in wh ch each column has more than one colour An exampie of the last is a h stogram of sales snowing home-market sales in ful. colour and export sales in ha f-tone.

SCATTER DIAGRAMS

Another way of presenting real-worid' data is in the form of a scatter d agram' in which we simp'y p ot (x, y) pairs This lets us see whether there is any correlation Detween x and y if there is, the points will be grouped together around a line or curve but if there s none the points wil be randomly pos tioned a I over the screen

A suitab e program to make a scatter diagram on the $Z X$ Spectrum is

```
    10 REM }x\mathrm{ is max, }n\mathrm{ is min, }v\mathrm{ is value
    20 DIM x(2)
    30 DIM n(2)
    4 0 ~ D I M ~ v ( 2 )
    50 PRINT "Caption?";
    60 INPUT c$
    70 PRINT c$
    80 FOR i=1 TO 2
    90 PRINT "Minimum "; "xy"(i);" value? ";
100 INPUT n(i)
110 PRINT n(i)
120 PRINT "Maximum "; "xy"(i);" value? ";
130 INPUT z(i)
140 [F x(i)>n(i) THEN GOTO 170
```

```
150 PRINT "Maximum must be greater than",
                " minimum!"
160 GOTO 90
170 PRINT x(i)
180 NEXT i
190 PRINT "Now type in ( \(\mathrm{x}, \mathrm{y}\) ) pairs"
200 PRINT "STOP terminates"
210 INPUT v(1)
220 CLS
230 PRINT c \(\$\)
2\%0 INPUT v(2)
250 FOR \(\mathrm{i}=1\) TO 2
260 IF \(\mathrm{v}(\mathrm{i})<\mathrm{n}(\mathrm{i})\) OR \(\mathrm{v}(\mathrm{i})>\mathrm{x}(\mathrm{i})\) THEN GOTO 300
270 LET \(v(i)=(v(i)-n(i)) /(x(i)-n(i))\)
280 NEXT i
290 PLOT v(1)*255,v(2)*168
300 INPUT v(1)
310 GOTO 240
```

On the ZX81 line 290 becomes

```
290 PLOT v(1)*63,v(2)*41
```

because of the lower-resolution graphics
The expression

```
"xy"(i)
```

criver cotay frat cancie of a peit of members, whece we zina
tacking for arctionthip botwerath two merobez in the pen
coordinates:
used in lines 90 and 120 is a 's ice' in whicn we select the ith character of the string " $x y^{\text {". Thus } x}$ s printed when $i=1$, and y when $i=2$ In fact x will be pr nted if i is anywnere n the range 0.5 to 1.5 , and y if it is anywhere in the range 1.5 to 2.5 , if it is outside the range 0.5 to 25 the program stops with error code 3 (subscript out of range) or B (integer out of range). Contrast this with

$$
(" x \text { " AND } i=1)+(" y \text { " AND } i=2)
$$

which still yie, as x when $t=1$ and y when $i=2$ Dut y elds the empty string (and does not cause an error) fi has any other va ue ncluaing for nstance, 10001 or -42

To see how a scatter diagram m ght ook withol 1 need ng to have any real data, we can do the following. Firstly for a complete y random pattern:
10 FOR $i=1$ TO 200
20 PLOT RND*255, RND*168
30 NEXT i

The regular lines of dots that appear are an artefact of RND, which produces numbers that are not quite as random as they snould be. As usual for the $\mathrm{ZX81}$ the multip iers in line 20 should be 63 and 41 (or 43 as there is no capt on) Also you should have on y 30 or 40 points rather than 200, otherwise most of the screen w II be black For the kind of aistribution more I ke y to occur in nature, again with no correlation between x and y :

$$
10 \text { FOR i=1 TO } 200
$$

20 GOSUB 1000
30 LET $\mathrm{x}=\mathrm{v}$
40 GOSUB 1000

```
    50 LET y=v
    60 IF x<0 OR x>1 OR y<0 OR y>1 THEN GUTO 20
    70 PLOT x*255, y*168
    8 0 ~ N E X T ~ i ~
    90 STOP
1000 REM Set v to a weighted random number
1010 LET v = RND*1.9999 + .00005
1020 LET v = 0.1 * LN (v/(2-v)) + 0.5
1030 RETURN
```

As before, any apparently regular patterns are an artefact of RND. For a scatter diagram in wh ch the two va ues are linearly related, replace line 50 by

50 LET $y=0.2+x * 0.6+\mathrm{v*} 0.2$
An example of a non-linear re ationsh p is produced by
50 LET $y=3 *(x-0.4) *(x-0.4)+v * 0.2$

STATIISTIGS

- The purpose of a scientific experiment is to test a hypothesis (or theory) by seeing fan outcome pred cted by the hypothesis occurs in practice Somet mes the experment is such that its outcome is unequivocal there is no doubt whether the predicted event has occurred - but often, particularly in the life sciences, statistica methods must be used to snow whether the result of the experiment accords w th the hypothes s More precisely, we need to know how ikely the observed event (or set of events) would be if the hypothesis is correct.

For example n an experiment n which a number of plants are grown from seed the hypothesis be ng tested might preaict that half of them would have yellow flowers a quarter of them red flowers an eighth blue flowers, and an eighth purple flowers Suppose 404 plants surv ve and flower the hypothesis does not pred et that you will get 202 yellow ones, 101 red, 50 blue, 50 purple and one w th blue and purple str pes Rather it is predicting that each one of the 404 plants has an even chance of having yellow flowers $3-1$ aga nst red, and 7-1 against each of blue and purple If the hypothesis is true it is stil possible for all 404 to turn out to be blue, but it is so extremely unlikely that you wou d think that either the hypotnesis was false or there was someth ng very wrong w th your exper ment. In pract ce you wil get a result such as 190 ye low. 126 rea, 47 blue, and 41 purple and yos will want to know just how likely th s result is if the probabilites are as stated above.

Th s s calculated using χ^{2}, which measures how different the observed results (here 190, 126, 47, and 41) are, overall, from the expected results (here 202, 101, 505 , and 50.5). The likelinood of results deviat ng from the expected by as much as the observed results do is calculated from χ^{2} and the number of degrees of freedom'

The number of degrees of freedom is always one less than the number of possible outcomes of each event in the experiment. In the example here, we have 404 events each of which nas four poss ble outcomes, yellow red, blue, or purple, so that the observed results consist of four numbers which must add up to 404 There are three degrees of freedom because any three of those numbers can vary independently; we may get any number w th yel.ow flowers and any number of the rest may have red flowers, and any number of what remains may nave blue flowers, but then all that are eft over must have purple flowers

The fol owing program works out the probability accord.ng to equatıons derived from M. Abramowitz and I.A Segun, Handbook of Mathematical Functions, Dover Publications nc, New York, 1965, equations (26.4.4), (26.4.5) (26 2.1), (26.2.5), and (26 2 17). The version for the Spectrum is given first then the alterations for the ZX81 (wh ch only affect the INPUT prompts and the presentation of the results on the TV screen) are g ven

Lines 10 to 80 set up a table on the screen so that several sets of resu ts can be processed. Lines 100 to 160 set up coeffic ents that are used in the calculation of $q(x)$ wh ch is needed if the number of degrees of freedom is odd Using this metnod instead of wr ting the coeff cients directly nto line 520 as literals gives a ratner tidier ayout; t does
make the program run more slowly but this is unlikely to be perceptidie. Lines 310 to 350 accumulate χ^{2} as the sum of

$$
(x-e)^{2} / e
$$

where e is, the expected and x the observed value, avord $n g$ use of the to-the-power' operator which is very slow.

If v, the number of degrees of freedom, s an even number, we require to calculate

$$
s=\sum_{r=1}^{(v-2) / 2} x^{2 r} /(2 \times 4 \times 6 \times \ldots \times 2 r)
$$

or, to put it another way,

$$
\begin{aligned}
s=\chi^{2} / 2 & +x^{4} /(2 \times 4)+\chi^{6} /(2 \times 4 \times 6)+\ldots \\
& +x^{v-2} /(2 \times 4 \times 6 \times \ldots \quad(v-2))
\end{aligned}
$$

which the program works out as

$$
\begin{aligned}
s=\chi^{2} / 2 \times & \left(1+\chi^{2 / 4} \times\left(1+\chi^{2} / 6 \times \ldots\right.\right. \\
& \left.\left.\times\left(1+\chi^{2} /(v-2) \times(1+0)\right) \ldots\right)\right)
\end{aligned}
$$

The loop at lines 420 to 440 starts at the righthand end of th s expression, keep ng the intermediate result in q each time; the f nal step is done at line 460 which calculates the probability as

$$
\exp \left(-\chi^{2 / 2}\right) \times(1+s)
$$

If v is an odd number, we have

$$
\begin{aligned}
s=x+ & \chi^{3} / 3+\chi^{5} /(3 \times 5)+\ldots \\
& \ldots+x^{v-2} /(3 \times 5 \times 7 \times \ldots \times(v-2))
\end{aligned}
$$

which is worked out as

$$
\begin{aligned}
s= & \chi \times\left(1+\chi^{2} / 3 \times\left(1+\chi^{2} / 5 \times \ldots\right.\right. \\
& \left.\left.\ldots \times\left(1+\chi^{2} /(v-2) \times(1+0)\right) \ldots\right)\right)
\end{aligned}
$$

As before, the loop at ines 420 to 440 coes most of the work, this time the last step is in ine 530 which calculates the probab lity as

$$
\operatorname{EXP}(-c h i 2 / 2) * \operatorname{SQR}(2 / P I) *(1-p(c h i)+s)
$$

using the value of $1-p(c h \prime)$ calculated on the previous line.

330 INPUT "Observed value: "; x, "Expected value: "; e
340 LET chi2 $=\operatorname{chi} 2+(x-e) *(x-e) / e$
350 NEXT n
400 REM work out probability value
410 LET $4=0$
420 FOR n=v TO 3 STEP -2
430 LET q $=1+(\operatorname{chi} 2 / n)$ * q
440 NEXT n
450 IF $\mathrm{n}=1$ THEN GOTO 500
455 REM here if v is even
$460 \operatorname{LET~q~}=\operatorname{EXP}(-\operatorname{chi} 2 / 2) *(1+(\operatorname{chi} 2 / 2) * q)$
470 GOTO 600
500 REM here if v is odd
510 LET chí $=$ SQR chi $2:$ LET $t=1 /\left(1+p^{*}\right.$ chi $)$
520 LET $\mathrm{b}=((((\mathrm{b} 5 * \mathrm{t}+\mathrm{b} 4) * \mathrm{t}+\mathrm{b} 3) * \mathrm{t}+\mathrm{b} 2) * \mathrm{t}+\mathrm{bl}) * \mathrm{t}$
$530 \operatorname{LET} q=\operatorname{EXP}(-\operatorname{chi} 2 / 2)$ * $\mathrm{SQR}(2 / \mathrm{PI})$ *
(b + chi*q)
600 REM display results
610 LET $\mathrm{x}=\mathrm{v}$: GOSUB 1000
620 PRTNT x\$;
630 LET x=chi2: LET n=4: GOSU'B 2000
640 PRINT AT 23-PEEK 23689,11; x $\$$
650 LET $\mathrm{x}=\mathrm{q}$: LET $\mathrm{n}=6$: GOSUB 2000
660 PRINT AT 23-PEEK 23689,22; x $\$$
700 INPUT "Another set of data? (Y/N) "; a\$
710 IF a\$ = 'Y" OR a\$ = "y" THEN GOTO 200
720 LF a\$ \bigcirc "N" AND a\$ \bigcirc " n " THEN GOTO 700
900 GOTO 9999
1000 REM Set $x \$$ to value of x rounded to an
integer and right-aligned in 10
characters

1010	LET x ($=" \quad "+\operatorname{STR}$ (INT $(x+0.5)$
1020	LET x S $=\mathrm{XS}$ (IEN $\mathrm{X} \$-9$ TO)
1030	RETURN
2003	REM Set $x \$$ to value of x rounded to n decimals and right aligned in 10 characters
2002	REM Assumes $0<x<1)^{\wedge}(9-n)$ and $0<n<9$
2010	LET $x \$=$ STRS INT (x * $10 ¢ \mathrm{n}+0.5$)
2020	LET x \$ $=100000000{ }^{\prime \prime}($ LEN x\$ TO n$)+\mathrm{x}$)
2030	
2040	
05	RETURA

n the rout ne on lines 2000 to 2050 I ne 2010 sets $x \$$ to the required str ng of digits without its decimal point, I ne 2020 adds zeroes to the left of $x \$$ if required to ensure there are at least $n+1$ digits line 2030 adds spaces to bring it up to 9 characters and line 2040 inserts the decimal po nt.

The main changes required for the $\mathbf{Z X 8 1}$ are to replace lines 50 to 80 by

50 FOR i=0 TO 43
55 PLOT 20,i
60 PLOT 42,i
65 NEXT i
70 FOR $1=0$ TO 63
75 PLOT i, 39
80 NEXT i
and to replace 'AT 23-PEEK 23689,' by 'TAB on lines 640 and 660. (On the Spectrum we cannot use TAB because it outputs spaces to the screen which wou d oo terate the
vertica I nes drawn by 1 nes 70 and 80 . On the 2×81, TAB skips over them in the same way that AT does Inc.dentally, on both machines the 'comma' PR NT separator outputs spaces but new line at the end of a PRINT command does not)

Where there s ust one degree of freedom, the results given by the above program are a little mislead ng because the distribution of χ^{2} is continuous whereas the observed va ues are discrete. That is to say the way n which we ca cu ate the probabi ity of χ^{2} being within a certain val je does not take into account the fact that only certain values of χ^{2} are possible Yates's correct on allows for this, and gives a better value for the probabil ty n the case where there is just one degree of freeaom; the fol owing ines shou d be added to the program to imperement it.

0	IF $\mathrm{v}<>1$ THEN GOTO 300
230	INPUT "With Yates's correction? (Y/N)";aS
240	IF a\$s ="N" OR aS="n" THEN GOTO 300
245	IF a \$ $\rangle^{\prime \prime} \mathrm{Y}^{\prime \prime}$ AND a ¢ $\left\langle>\right.$ " $\mathrm{y}^{\prime \prime}$ THEN GOTO 230
250	INPUT "Observed value: "; x, "Expected value: "; e
260	LET $x=$ ABS ($\mathrm{x}-\mathrm{e}$) - 0.5: LET chi $2=\mathrm{x}^{*} \mathrm{x} / \mathrm{e}$
270	INPUT "Observed value: "; x, "Expected value: "; e
280	LET $\mathrm{x}=\mathrm{ABS}(\mathrm{x}-\mathrm{e})-0.5$
285	LET chi2 $=$ chi $2+\mathrm{x}$ * x / e
290	GOT0 400
300	REM calculate chi-squared without correction

REGRESSION

At the end of Chapter 7 we looxed br efly at scatter diagrams, which are appropr ate for occasıons on which two values are measured and we are looking for some correlat on between them. In this section we wil look at now the computer can prov ce some objective measurements of how the values are re ated

Here as with the χ^{2} test, we are considering the outcome of a number of separate trials. The χ^{2} test is used where each trial has only a finite (and often quite smal) number of possible outcomes, as with the f ower-growing examp e in which there were just four possible outcomes of each tr al (yel ow, red, blue, or purple; we discounted any trials in wh ch we got no flowers at all). For each poss ble outcome the number of trials with that outcome is countea. In the χ^{2} test we assumed that the differences detween trials were due to chance (or to random variations n some factor we were not measuring) and investigatea how ikely it wou of be that the particular set of outcomes we observed wou d occur if the hypothesis was correct

The techniques described in this section are appropriate where each tria produces two measurements (which wil be called x and y here) and we are looking for a correlation between the two things measured which would incicate that they are connected in some way. A relat onship between the two measurements is solght, such that we can say that y consists of some function of $\times(1 \mathrm{e}$ a va ue worked out using an algebra c formula involving x) plus an additional component which is a random var ation

The mpl cat on sthat there s a causa relationsh p between whatever is measured by x and whatever s
measured by y, so that given the value for $x n$ a particular tr al we can predict the value of y more accurately than we could otherwise. This contrasts with the χ^{2} example, in which we did not have any informat on that would (for example) allow us to select beforehand which plants were more likely to have red fowers.

For nstance, we might enqu re whether people s height is related to the height of the r parents We might ask a number of college students for their own height (for the variable y) and the average of the he ghts of their parents (for the variable x) We shouid obvio usly do this separate y for ma e and female students, because men are on average taller than women the k nd of result we might expect is that tall parents wil tena to have ta l children and short parents wil tend to have short children, and that there wi l be a certain amount of rancom var ation in the heights of children of parents of a partic , lar neignt, with the chi dren tending to be sl ghtly c oser to the average height than the r parents. We can express this as

$$
y=a+b x+\text { random variation }
$$

and we hope to take enougn pairs of measurements to be ab e to identify the va ues of a and b with reasonable confidence.

As wel as finding the numer cal va ues for a and b we wi i plot a scatter a agram and draw on the the ine $y=a+b x$.

```
10 REM x is max, }n\mathrm{ is min, }v\mathrm{ is value
20 DIM x(2)
30 DIM n(2)
40 DIM v(2)
```

```
    50 LNPUT "Caption: "; c\$
    60 PRINT c\$
    70 FOR i=1 TO 2
    80 INPUT "Minimum "; "xy"(i);" value: ";
        n(i), "Maximum ";"xy"(i);"
        value; "; \(x(i)\)
    90 IF \(\mathrm{x}(1)>\mathrm{n}(\mathrm{i})\) THEN GOTO 120
100 PRINT "Maximum must be greater than",
        minimun!"
    110 GOTO 80
    120 NEXT 1
    130 PRTNT "Now type in data as two numbers"
    140 PRINT " separated by a comma inside"
    150 PRINT " the quote marks, e.g."
    160 PRINT
    170 PRINT " "'"2.47,15.438"'"
    180 PRINT
    190 PRINT "Use STOP (inside the quotes) to"
    200 PRINT " terminate."
    210 REM read in data and accumulate sums
    220 LET \(\mathrm{sx}=0\) : LET \(\mathrm{sy}=0\) : LET \(\mathrm{sxx}=0\) :
        LET sxy=0: LET n=0
    230 INPUY' dS
    240 FOR \(i=1\) TO LEN d \(\$\)
    250 IF d\$(i) = "," THEN GOTO 310
    260 IF d\$(i) = " STOP " THEN GOTO 500
    270 IF i>3 THEN IF d\$(i-3 TO i) = "STOP"
        THEN GOTO 500
    280 NEXT 1
    290 INPUT "Your input must include either",
        "a comma or STOP "; \(\$ \$\)
    300 GOTO 240
    310 REM here if i'th character of d\$ is comma
    320 LET \(\mathrm{v}(1)=\) VAL d\$ (T0 i-1)
    330 LET \(v(2)=\) VAL \(\mathrm{d} \$(\mathrm{i}+1\) TO \()\)
```

```
340 LET \(\mathrm{sx}=\mathrm{sx}+\mathrm{v}(1):\)
    LET \(\mathbf{s x x}=\mathbf{s x x}+\mathbf{v}(1) * v(1)\)
350 LET \(\mathrm{sy}=\mathrm{sy}+\mathrm{v}(2)\) :
    LRT sxy \(=\mathbf{s x y}+\mathrm{v}(1) * v(2)\)
360 LET \(n=n+1\)
370 IF \(n=1\) THEN CLS: PRTNT \(\mathrm{c} \$\)
380 FOR \(1=1\) TO 2
390 IF \(v(1)\langle n(i)\) OR \(v(1)>x(i)\)
THEN GOTO 230
\(400 \operatorname{LET} \mathrm{v}(\mathrm{i})=(\mathrm{v}(1)-\mathrm{n}(\mathrm{i})) /(\mathrm{x}(\mathrm{i})-\mathrm{n}(\mathrm{i}))\)
410 NEXT 1
420 PLOT v(1)*255, v(2)*151
430 GOTO 230
500 REM here at end of data
510 IF \(\mathrm{n}=0\) THEN STOP: REM no data at all
520 LET b \(=\left(s x y-s x^{*} s y / n\right) /\left(s x x-s x^{*} s x / n\right)\)
530 LET \(a=s y / n-b * s x / n\)
540 PRINT AT 1,0; "y = ";a;" + "; b;"x"
600 REM now draw line with this equation
610 LET x1 \(=\mathrm{n}(1)\) : LET yl \(=\mathrm{a}+\mathrm{b}\) * xI
620 LET \(\mathrm{x} 2=\mathrm{x}(1)\) : LET \(\mathrm{y} 2=\mathrm{a}+\mathrm{b}\) * x 2
630 IF yl > \(x(2)\) THEN GOTO 700
640 IF yl \(>=n(2)\) THEN GOTO 800
650 REM here if must start at bottom edge
660 LET yl \(=\mathrm{n}(2)\)
670 GOTO 720
700 REM here if must start at top edge
710 LET yl \(=x(2)\)
720 REM here if not at lefthand edge
730 REM finish if not on screen at all
740 IF \(\mathrm{b}=0\) THEN GOTO 999: REM horizontal
750 LET xL \(=(\mathrm{yl}-\mathrm{a}) / \mathrm{b}\)
760 IF \(\mathrm{x} 1<\mathrm{n}(1)\) OR \(\mathrm{xl}>\mathrm{x}(1)\) THEN GOTO 999
800 REM Iine starts at ( \(\mathrm{xl}, \mathrm{yl}\) )
810 IF \(\mathrm{y} 2>\mathrm{x}(2)\) THEN LET \(\mathrm{y} 2=\mathrm{x}(2)\) : GOTO 840
```

```
820 IF y2 >= n(2) THEN GOTO 900
830 LET y2 = n(2)
840 REM here if finishes at top or bottom
850 REM we now know it is on screen
860 LET x2 = (y2-a) / b
900 REM here when start and end points found
910 LET v(1) = 255 / (x(1)-n(1))
920 LET v(2) = 151 / (x(2)-n(2))
930 PLOT (xl-n(1)) * v(1), (y1-n(2)) * v(2)
940 DRAW (x2-xl) * v(1), (y2-y1) * v(2)
```

For the ZX81 the INPUT commands on lines 80 and 290 must be converted to use PRINT for the captions in a s milar manner to the program in Chapter 7, f you restrict them to the first three lines of the screen they wil not overwrite the scatter diagram. - ines containing several commands must be split up, for instance line 340 is replaced by

```
340 LET sX = sx + v(1)
345 LET sxx = sxx + v(1)*v(1)
```

Line 810 however must not be replacea by

```
810 IF y- > x(2) THEN LET y2=x(2)
815 GOTO 840
```

becalse this would always GOTO line 840 , even when $y 2$ was not greater than $x(2)$. In fact the job oone by ines 800 to 860 is exactly the same as that done by lines 630 to 760 . except that the tests on ines 740 and 760 are not needed the second time _ nes 630 to 760 were written in a way that is compatible with the $Z \times 81$, nes 800 to 860 in a way that is more convenient on the Spectrum Therefore for the $\mathbf{Z X} 81$
we, ust need to replace lines 810 to 830 with a copy of ines 630 to 710 w th the une numbers sultably changed and $y 1$ rep aced by $/ 2$ Conversely, on the Spectrum we can make the program neater by replac ng I nes 630 to 710 w th a s mi arly modified copy of lines 810 to 830
(Make sure you anderstand why the tests are only needed once f rst we f nd where the line, which we are drawing from left to rght, comes onto the screen - top, bottom, or lefthand edge - then we find where 1 leaves it The tests on ines 740 and 760 detect the cases in which the line does not come onto the screen at a l, naving come onto the screen 1 mlst then go off it aga n and, if we are drawing it from left to right, this must be at the top, bottom, or righthand edge.)

The mult pliers 255 and 151 in line 420 and I nes 910 and 920 need to De changed to 63 and 37 for the $\angle X 81$, and the DRAW command on tine 940 must be replaced by the line drawing rout ne from Chapter 18, Exercise 6 of the ZX81 manual

Tre word STOP in line 260 is the token STOP wh ch is a shifted A on the keyboard (symbo s shift in the case of the Spectrum, wh ch nas two snift keys) but in line 270 it is the letters S I,O P We check for both because th s s easier and also more helpfu than expla ning in ceta I to the user that one or the otrer must be used (Note, by the way, that eitner wil work in the program n Chapter 7 one gives code D the other code 2) The program should be ref ned to check the input more thoro ghly, making sure that the substrings before and after the comma are valıd n _mbers (consisting only of digits, point, letter E, and leading and tralling spaces) before applying $V A_{\llcorner }$, so that the user wil
get a helpful error message and an opportunity to retype rather than have the program abort with code C A further refinement of help to the user might be to display the last x and y co-ordinates, and the number of pairs so far. on the second and thira I nes of the screen, for instance by

375 PRINT AT 1,0; "Point number "; n;
" was", v(1),v(2),

The comma at the end of the PRINT command ensures that the previous message s obliterated Suppose the ffth y value is 127863 and the sixth is 103 ; if the comma was not there the s xth y value wou d appear as 1037863 (the 103 being the true value and the 7863 left over from last time) L ne 540 needs to obliterate the ast message printed by I ne 375. Because we do not know how long the two numpers wil be we cannot be sure how many commas will be needed to clear the rest of the area without clearing any of the scatter diagram; therefore it is better to ceear the area first by

535 PRINT AT 1,0,,,,

which clears two lines as required.
$Z \times$ BASIC restricts the names of arrays to one character (Th s s another hangover from the ZX80) Thus we cannot call the maximum and min mum values max and min (see lines 10 to 30) and they have been reduced to the rather less mnemon c letters x and n Arguab $y x$ shou d not be used as $x(1)$ and $x(2)$ can be confused with the $x 1$ and $x 2$ used for the horizontal co-ordinate, perhaps the maximum sholla be ca led m. Ne snoula perhaps attempt to make th ngs a little more readable by adaing

45 LET $\mathrm{x}=1$: LET $\mathrm{y}=2$

and ta king about $m(x), m(y), n(x), n(y), v(x)$, and $v(y)$ instead of us ng litera numbers for the subscripts We should then also change lines 70 and 380 to

$$
\text { FOR } i=x \text { TO y STEP } y-x
$$

to make it clearer what the loops are doing

CORRELATION

The I ne drawn by the above program is called a regression line. The program provides an objective way of finding th s ine and a subjective assessment (by ooking at the p cture) of how close y the experimental results $f t$ th s line But there s a quantity which we can calculate ca led the correlation coefficient, which gives an od ect ve measure of how well they fit.

If a I the points lie exactiy on the regression line, the correlation coefficient s-1 if the line slopes upwards from left to right -1 if it slopes downwards. For any particu ar

regress on ine as the points move further away from the I ne the correlation coefficient gets nearer to zero f the slope of the regress on ine decreases whi e the po nts maintain their distance from it the correlat on coeff cient again gets nearer to zero.

Thus if the correlation coefficient $s+1$ or -1 we can predict the value of y exact y, so ong as we know the value of x. If the correlation coeffic ent s zero this snows that x has no nfluence on y we cannot predict y any better knowing x than we could if we aid not know x

The following I nes added to the program above enable t to calculate the correlat on coeff cient a so

```
225 LET syy=0
355 LET syy = syy + v(2)*v(2)
550 PRINT "Correlation coeff. "; (sxy - sx*sy/n)/
    SQR ((sxx - sx*sx/n) * (syy - sy*sy/n))
```

The values of the corre ation coefficient that can be regarded as ind cat ng a close relationsnip between x and y depend on the circumstances, but as a rough guide there is st Il a substantia random component in y for correlation coefficients as hign as 0.85 , as can be seen by runn ng the program you can use real data, data you nvent yourself, or computer generated data (using RND) as in the programs at the end of Chapter 7.

ACCOUNITINIG

One of the prob ems with most pocket calculators is that there is no record of the numbers that were keyed in Someone adding up a column of figures on (say) an invoice tends to look mostly at the invoice form and at the keyboard, and it is very easy to forget to rook at the display during the brief time that each number appears on it (between keying the ast digit and keying the '+ operator) to check that the number has been keyed correctly.

A program in a personal computer, on the other nand, can remember all the numbers that were keyed in (by storing them n an array) and display them on the screen so that they can be checked against the origunal data. If they are displayed in a co umn in a similar format to the original, the task of checking them becomes farly easy

Unfortunate y, BASIC does not make it very easy to d splay figures properly aligned in a column The following program (for the ZX81) shows the k nd of thing that is required

```
10 DIM p(201)
20 PRINT AT 10,0; "Type in the prices to be"
30 PRINT " totalled; use zero to"
40 PRINT " terminate the list."
50 FOR i=1 TO 200
60 INPUT p(i)
70 LET p(i) = INT (p(i)*l00 + 0.5) / 100
80 IF p(i)=0 THEN GOTO 110
90 NEXT 1
```

```
100 SCROLL
110 PRINT "No room for any more."
120 SCROLL
130 PRINT "Now check the prices."
140 FOR i=20 TO 200 STEP 20
150 FOR j = i-19 TO i
160 IF p(j)=0 THEN GOTO 200
170 SCROLL
180 LET n$ = STR$ (p( j)*100)
190 PRINT j; AT 21,24-LEN n$; n$( TO LEN n$ - 2);
                        "."; ("0"+n$)(LEN n$ TO LEN n$ + 1)
200 NEXT j
210 SCROLL
220 PRINT "All correct? ("'Y"" or ""N"")"
230 INPUT r$
240 IF r$="Y" THEN GOTO 360
250 IF r$<>"N" THEN COTO 230
260 PRINT AT 21,0; "Line number in error?"
270 INPU'T j
280 IF j<=1 AND j>i-20 THEN GOTO 310
290 PRINT AT 20,0; "Line ";j;" is not on screen."
300 GOTO }15
310 SCROLL
320 PRINT "Correct value?"
330 INPUT p(j)
340 LET p(j) = INT (p(j)*100 + 0.5) / 100
350 GOTO 150
360 IF p(j) \diamond O THEN NEXT i
370 REM here when all been checked
380 LET sum=0
390 FOR i=1 TO 200
400 LET sum = sum + p(i)
4 1 0 ~ N E X T ~ i ~
4 2 0 ~ S C R O L L ~
430 LET n$ = STR$ (p(j)*100)
```

> 440 PRINT "Total"; AT 21, 24-LEN n\$; n\$(TO LEN n\$ ~ 2);"" " ("O"+n\$)(LEN n\$ TO LEN n\$ + 1)

L nes 180 and 190 also ines 430 and 440 , print the value of $p(f)$ correctly aligned assuming it is already rounded to two decimal p aces (which is done by line 70 or 340), we assume that $p(1)$ is in pounds (dollars, francs marks etc.) so that the decimal places are the pence (cents, cent mes, pfennigs, etc). How would you modify it to deal with halfpence?

The only change required for the Spectrum is to remove the SCROLL commands. The PRINT commands on I nes 220, 260, and 320 could be replaced by a capt on n the INPUT command that follows in each case For the version that works in half-pence, you could use one of the user-defined characters for the ' $1 / 2$ '.

Often, the price of each item on an invoice is broken down into net + tax the net figure being in turn broken down into quantity \times unit cost. The follow ng program (written for the Spectrum) cnecks the figures on an invoice, perhaps one received from a supplier, on which the arithmet c has already been done To keep it simp.e, we assume all items carry tax at 15%.

screen. fike winoing the paper of a scioll from one roll to the Giner

```
    10 LET runtotal=0
    15 LET netsum=0: LET taxsum=0
    20 CLS
    30 INPUT "Quantity (or zero if no more",
    "items): ";qty
    40 IF qty=0 THEN GOTO 500
    50 INPUT "Quantity: "; (qty), "Unit price: ";
        price, "Net: "; net, "Tax: "; tax,
        "Gross: "; gross
    60 IF ABS (qty*price - net) < 0.01
        THEN GOTO 110
    70 PRINT "Net price doesn't tally."
    80 PRINT qty;" x ";price;" = ";qty*price
    90 PRINT "given as ";net
    100 BEEP 0.5,47: GOTO 30
    110 IF ABS (net*0.15 - tax) < 0.01
        THEN GOTO }16
    120 PRINT "Tax doesn't tally."
    130 PRINT "15% of ";net;" is ";net*0.15
    140 PRINT "given as ";tax
    150 BEEP 0.5,47: GOTO 30
    160 IF ABS (net+tax - gross) < 0.001
        THEN GOTO 210
    170 PRINT "Gross price doesn't tally."
    180 PRINT net;" + ";tax;" = ";net+tax
    190 PRINT "given as ";gross
    200 BEEP 0.5,47: GOTO 30
    210 LET netsum = netsum + net
    220 LET taxsum = taxsum + tax
    2 3 0 ~ G O T O ~ 2 0
    500 REM here when finished
    510 LNPUT "Total net (zero if not given):",net
    520 LNPUT "Total tax (zero if not given):",tax
    530 INPUT "Invoice total: ",gross
    540 LF net=0 THEN PRINT "Net total ";netsum:
        GOTO 590
```

```
550 IF ABS (net-netsum) < 0.001 THEN GOTO 590
560 PRINT "Net total doesn't tally."
570 PRINT "Calculated as ";netsum
50 PRINT "given as ";net
590 IF tax=0 THEN PRINT "Total tax ";taxsum:
    GOTO 640
600 IF ABS (tax-taxsum) < 0.001 THEN GOTO 640
610 PRINT "Total tax doesn't tally."
620 PRINT "Calculated as ";taxsum
630 PRINT "given as ";tax
640 If ABS (netsum+taxsum-gross) < 0.001
    THEN GOTO 690
650 PRINT "Invoice total doesn't tally."
660 PRINT "Calculated as ";netsum+taxsum
670 PRINT "given as ";gross
680 INPUT "True total: ";gross
690 LET runtotal = runtotal + gross
700 INPUT "Another invoice to do? (Y/N)"; r$
710 IF r$="Y" OR r$="y" THEN GOTO 15
720 IF r$O"N" AND r$O"n" THEN GOTO 700
730 PRINT ,,,,"Total of all invoices this run",
runtotal
```

The main change requ red to make the program work on the 2×81 is to separate out the capt ons from the INPUT commands and put them in PRIN T commands as n the f rst program in this chapter Also the BEEP commands must be removed, you should cons der other ways of attracting the operator's attention such as making the screen flash.

The user is asked to type in all five \dagger gures for eacn Item, and the program checks that net pr ce, the tax, and the gross price nave been calculated correctly The first two only need to be correct to the nearest penny, because the
true value may have been rounded up or down to a whole number of pence; the values g ven for the net pr ce and tax snould add up to the gross price exactly, but we have to a low for round $n g$ errors n the computer and so we only insist on it being correct to the nearest tenth of a penny
f any of the figures in an item is wrong, the 」ser has to type the whole item again. How would you modify the program so that only the ncorrect f gures had to be retyped? Remember that when the computer finds that tnree figures are inconsistent it does not know wh ch of the three Is at fault Hav ng found one error, the program does not cneck for any further errors but immeciately asks for the item to be correctea. This is beca se the correction will probably affect the outcome of the remaining tests: If net does not ta ly with aty \times price, it may well be that net has been m styped, n which case the other two tests will fail a so, or that net was wrongly calculated in the first place and the figures for tax and gross must now be reca culated

The program asks for al the figures to be typed in, rather than just asking for the quantity and unit price and work ng the others out. There are two reasons for this one is that the actual f gures are used for net and tax, which may be up to a penny different from the calcu ated tigures and thus (if there are a lot of items) make a noticeable difference to the total The other reason s that t would be quite easy for the user to fal to notice a discrepancy between the figures displayed on the screen and those on the invoice form, so it is better for the comparison to be done by the computer There is then no need for the kind of checking of input that was done in the first program in this chapter. because the numbers are cnecked against each other.

If we replace line 150 w.th
145 INPUT "Is tax figure correct? (Y/N)"; r \$
150 IF $\mathbf{r} \$=" \mathrm{~N}^{\prime \prime}$ OR $\mathbf{r} \$=$ "n" THEN GOTO 30
155 IF $\mathrm{r} \$<>$ "Y" AND $\mathrm{r} \$\left\langle\right.$ " $\mathrm{y}^{\prime \prime}$ THEN GOTO 145
then the program wi I cope with the occas ona item at a rate of tax other than 15%. Consider how you wou d modify the program so that it always required the percentage rate of tax to be nput, or (by inserting some commands between lines 110 and 120) so that it asked the rate of tax only if the input f gures were not cons stent with a rate of 15% Consider also how you would modify t to give a d scount on the net price, so that net was not compared against
qty * price
but rather aga nst

$$
\text { qty * price * (100-discount) / } 100
$$

Alternatively, by a sımılar modif cat on at I ne 100 to that just described for I ne 150, the program could report the percentage discount (or surcharge) that appeared to have been appl ed and ask f this was correct. f net was smaller than qty \times price, the d scount would be ca culated as

$$
100 \text { * (1 - net / (qty * price)) }
$$

otherwise the surcharge would be calculated as

$$
100 *(\text { net } /(\text { qty } * \text { price })-1)
$$

The program might be wr tten so that it misses this out if the rate of discount or surcharge is clearly absurd but it wou d not be easy to decide on a suitabe eriterion for 'absurd' adjustments to prices of f nished goods caused by changing pr ces of certa n metals, for instance, can be very
arge - so it s probably better to leave 1 to the user to decide what appears reasonade.

The second part of the program checks the totas on the invoice, it al ows for the possibility that the ind vidual totals of the net and tax figures may not be given on the or ginal invoice and it displays them on the screen in case they are needed for tax recoras. It a so keeps a grand tota of al the invoices; it could eas ly be altered to keep separate grand totals for net and tax.

INCOME TAX

Another kind of tax calculat on, at least in the UK, s PAYE (an acronym for 'pay as you earn') which is deducted from wages by employers when the wages are paid Readers who are not d rectly interested n PAYE should stil find the program instructive as an example of the kind of data process ng that is frequent y required in a commercia environment

Each week the total pay since the start of the tax year is ca culated and the 'free pay' (wh ch s the amount of pay the emp oyee can have without pay ng any tax) is deducted from it. The remainder, the 'taxab e pay' s then looked up in the Tax Tables (which are supplied to all emp oyers by the Inland Revence) to find how much tax should have been pa a since the start of the tax year; the amount that had been paid by the previous week is subtracted to f nd now much is payable in the current week This amount is deducted from the employee s pay and rem tted to the Inland Revenue

The fo lowing program does most of the ar thmetic involved, as in the previous examp e, t is written for the

Spectrum but the only changes required for the ZX 81 are to move the captions from INPJT commands into PRINT commands and to insert a CLS command before ine 200 The program can very simp y de adapted for monthly paid emp oyees by substitut ng month' for 'week througnout

550 IF $\mathrm{r} \$ \mathrm{~m}^{\prime \prime} \mathrm{Y}$ " OR $\mathrm{r} \$ \mathrm{~m}^{\prime \prime} \mathrm{y}^{\prime \prime}$ THEN GOTO 100
560 IF r\$ß"N" AND r\$ \langle "n" THEN GOTO 540
600 PRINT "Total to pay to employees"
610 PRINT " this week "; all pay
620 PRTNT "to Inland Revenue "; all tax
The user types in the prev ous week's tota pay and total tax from the Deduction Card, the c .rrent week's pay, and the 'total free pay' 'igure found by looking up the employee's tax code n the tax tab es The computer works o.st the new 'total taxabie pay figure, which the user has to look up in the tax tables to f nd the new total tax due' f gure; the computer can then work out the remain ng f gures.

The d splay on the screen (generated by I nes 200 to 290) shows the figures to be entered on or checked against, the Deduction Card, in the order n which they appear on the Cara. A better display, in which the figures are correctly aligned with their decimal points under each otner and exactly two digits in the 'pence' column, would be produced by the method used in the first program in this chapter (IInes 430 and 440) Note that this assumes that all the figures wil be an exact number of pence, ideally we should hold them as pence rather than pounds, to avoid rounding errors in the calculations (The computer can hold whole numbers up to about 4000000000 exactly, but cannot hold numbers expressed as dec ma fractions exact y. If your wages bil is more than $£ 40 \mathrm{~m}$ you wil probably have a arger computer to do your payroll!) For examp e:

```
265 LET total tax = INT (total tax * 100 + 0.5)
273 LET m$ = STR$ prev tax: LET n$ = STR$
    total tax
```

```
275 IF LEN m$ = 1 THEN LET m$ = "0"+m$
277 LF LEN n$ = 1 THEN LET n$ = "0"+n$
280 PRINT "total tax"; TAB 21-LEN m$; m$(TO LEN
m$-2); "."; m$(LEN m$ - 1 TO LEN m$); TAB 30-
LEN n$; n$(TO LEN n$-2); "."; n$(LEN n$ - 1 TO
LEN n$)
```

The version of the program given beiow uses a slbrout ne (at I ne 1000) to pr nt a number correct y aligned

If we store the various totals for each employee on cassette from one week to the next, the user w II not need to enter these particu ar figures The general shape of the program is
(1) set up arrays;
(2) perform one week's process ng;
(3) save on tape;
(4) when reloaded from tape, repeat from 2.

The program beıow also ncludes Natıonal insurance contributions, the contribution each week is based on the pay in that week, which is looked up in another of the Tax Tables Unlike the vers on above, it copes correctly with the case where the emp oyee's total pay is less than his free pay.

10	INPUT "Maximum number of en
20	DIM n S $(n, 20)$: REM each employee's name
30	DIM $p(n)$: REM total pay to date
40	DIM $t(n)$: REM total tax to date
50	LET i=1: GOSUB 2000
80	LET all tax $=0$: LET all nic $=0$

90	LET all pay $=0$
100	PRINT "Name: ";n\$(i)
110	INPUT "This week's pay: "; pay, "Total free pay: "; free pay, "Total NI contr'n: "; tnic, "Emplayee's NI contr'n: "; enic
120	LET pay $=$ INT (pay * $100+0.5$)
130	LET free pay $=$ INT (free pay * $100+0.5$)
140	LET tnic $=$ INT (tnic * $100+0.5$)
150	LET enic $=$ INT (enic * $100+0.5$)
160	LET total pay ${ }^{\text {c }}$ p(i) + pay
170	LET taxable pay $=$ total pay - free pay
180	IF taxable pay < 0 THEN LET taxable pay $=0$
200	PRINT TAB 11; "last week this week"
210	PRINT
220	PRINT "total NIC";
225	LET v\$̧ = STR\$ tnic: GOSUB 1000
230	PRINT "employee's NIC";
235	LET v \$ $=$ STR\$ enic: GOSUB 1000
240	PRINT "week's pay";
245	LET v\$ = STR\$ pay: GOSUB 1000
250	PRINT "total pay";
253	LET v \$ $=$ STR\$ $p(i):$ GOSUB 1100
256	LET v\$ = STR\$ total pay: Gosub 1000
260	PRINT "free pay";
265	LET v\$ = STR\$ free pay: GOSUB 1000
270	PRINT "taxable pay";
275	LET v\$ = STR\$ (taxable pay) : GOSUB 1000
280	INPUT "Total tax due: "; total tax
285	LET total tax $=$ INT (total tax * $100+0.5$)
290	LET tax $=$ total tax - t(i$)$
300	PRINT "total tax";
303	LET v\$ $=$ STR\$ t(i): Gosub 1100
306	LET v\$ = STR\$ total tax: GOSUB 1000
310	PRINT "week's tax";

315 LET v\$ = STR\$ tax: GOSUB 1000
320 PRINT
330 PRINT "net pay";
335 LET v\$ = STRS (pay - tax - enic): GOSUB 1000
400 PRINT
410 PRINT
420 PRTNT
430 REM check OK before updating arrays
440 INPUT "Figures OK? (X/N) "; r\$
450 IF $\mathrm{r} \$=$ " $\mathrm{N}^{\prime \prime}$ OR $\mathrm{r} \$=$ "n" THEN GOTO 100
460 IF r\$<>"Y" AND r\$>"y" THEN GOTO 440
470 LET $p(i)=$ total pay: LRT $t(i)=$ total tax
480 LET all tax $=$ all tax + tax
485 LET all nic $=$ all nic + tnic
490 LET all pay $=$ all pay + pay - tax - enic
500 LET $\mathbf{i = i + 1}$
510 IF $1<=\mathrm{n}$ THEN IF $\mathrm{n} \$(\mathrm{i}, 1)\langle>"$ THEN GOTO 100
540 INPUT "Any more employees? (Y/N) "; r\$
550 IF $\mathrm{r} \$=$ "Y" OR $\mathrm{r} \$ \mathrm{a}^{\prime \prime} \mathrm{y}^{\prime \prime}$ THEN
GOSUB 2000: GOTO 100
560 IF $\mathbf{r} \$ 0^{\prime \prime} \mathrm{N}^{\prime \prime}$ AND $\mathbf{r \$ O} \mathrm{S}^{\prime n}$ " THEN GOTO 540
600 PRINT "Total pay to employees"
610 PRINT " this week";
620 LET v\$ = STR\$ all pay: GOSUB 1000
630 PRINT
640 PRINT "To Inland Revenue: tax"
650 LET $\mathrm{v} \$=$ STR $\$$ all tax: GOSUB 1000
660 PRINT " NI contributions"
670 LET $\mathrm{v} \$=$ STR\$ all nic: GOSUB 1000
680 PRINT " total"
690 LET v\$ $=$ STR\$ (all tax + all nic) : cosub 1000
700 LNPUT "Now write back to tape: start", "recording \& then press ENTER."; r\$

710	SAVE "PAYE" LINE 760
720	PRINT "Rewind \& replay the tape"
730	VERIFY "PAYE"
740	PRINT "Tape checked successfully"
750	GOTO 799
760	LET i=1: REM restart here when reloaded
770	GOTO 80
799	GOTO 9999: REM skip over srtn at end of program
1000	REM Print number from v\$ on righthand side of screen via GOSUB 1200
1010	LET $\mathrm{tab}=30$
1020	GOSUB 1200
1030	PR INT
1040	RETURN
1100	REM Print number from $\mathrm{v} \$$ in centre of screen
1110	LET $\mathrm{tab}=21$
1200	REM Print number of pence from $V \$$ as pounds and pence, with last digit in colum
1202	REM number held in variable TAB
1210	IF LEN v
1220	IF $v \$(1)=$ "-" THEN IF LEN $v \$=2$ THEN LET $\mathrm{v} \$$ " -0 " +v (2)
1230	PRINT TAB tab-LEN v\$; vS (TO LEN vS - 2); "."; v\$(LEN v\$ - 1 TO LEN v\$);
1240	RETURN
2000	REM Input name for i^{\prime} th employee
2010	INPUT "Employee's name: "; n\$(i)
2020	IF n ($(\mathrm{i}, 1)\langle$ " " THEN RETURN

> 2030 INPUT "Name must not start with a", "space. Employee's name:", n\$(i)

2040 GOTO 2020
For the ZX81, there are the usual changes of splitting up I nes with more than one command and separating the captions etc out of INPLT commands into separate PRINT commands L nes 720 to 750 must be omitted because the $\mathbf{Z X 8 1}$ does not have a VERIFY faci ty and the text 'L NE 760 must be omitted from line 710 because the program wil start there a atomatically when reloaded it also carr es on there after thas deen saved, so the user wil need to abort it with STOP (or by switch ng the computer off). The input on line 700 is ignored and is simply there to prov oe a conven ent way of making the computer wart untı the user has got the tape ready.

It is worth emphasising that the Spectrum version checks that the new data have been correctly stored on the tape but this is not possib e with the ZX81 Unless you have a secono ZX81 to _OAD it into, you wil not discover that the tape will not LOAD untll after the data have been cleared out of the computer s memory it is safer to SAVE the data a second time (using GOTO 700), and IIsten to both cop es on the tape to check they make the r ght noises, before throwing away the data n the computer, but even this is not a guarantee that it will load correctly next time.

There is still scope for improvement to the program For nstance if the total amount of tax due is (say) £2 20 less than ast week the program snows the 'tax due this week as - -220 whereas it is entered on the Deduction Card as $220 \mathrm{R}^{\prime}$ (R for 'refund') How would you make I print the latter format instead? The figure for 'this week s pay' may
well be made up of a basic wage plus a bonus or commission and w th superannuation payments etc. deaucted; in whicn case the program shouid ask for these figures separately and caiculate the week s pay from tnem Possibly some of the figures (oasic wage, superannuation contribution) are the same every week, and can be kept in arrays in the way that the employee's name is.

If you have the ZX printer, you can make the program print out a paysl p for each emp oyee.

The Inland Revenue publish algoritnms whereby the f gures for free pay, tax due, etc. can pe ca culated instead of asking the user to look them up. However, for a firm with only a few employees the effort of programming these algorithms and upaatıng them when the tax rules change is probably greater than the effort of looking the figure up in the tables

INTEREST

Another kind of financial calculation that the computer can do is to compare the returns on d fferent kinds of investment. Pernaps you have an ordinary savings account w th a bui ding society that yields 7% interest, tax paid and you think it unlikely you will neea to withdraw your money in the near future. Should you consider transferr ng it to a different kind of account on which you get 825% interest tax paid, but lose 28 days' interest if you make a withdrawa!? The follow ng program calculates the total amount of interest in each case.

```
10 PRINT AT 20,0; "Amount invested (£):"
20 INPUT amt
30 CLS
```


Lines 120 and 130 print the interest at the re evant rates The amount invested s multiplied by the percentage rate of nterest to get the annual interest in pence, this is mu tipl ed by the factor required to get the interest over the relevant per od ($4 n$ weeks or $28 n$ days) which is rounded to the nearest penny and converted to pounds. The interest rate s written into the program rather than oeing asked for as input because it is expected that a program of th s nature will be fa.rly ephemeral - written for a particular task and then thrown away - and there is no point in making it more general than t needs to De for that task. Also, the user s probab y the same person as the programmer and can quite easily a ter line 120 or 130 if required; indeed it wil us Jally be sufficient to replace lines 10 to 30 with a LET command setting amt to the sum you are tnınking of invest ng (or reinvesting) and unless you are going to make a copy of the results on the pr.nter the captions printed by ines 40 to 70 are not rea ly necessary either In this example both forms of investment pay simp e interest calcu ated dany, ess tax at the standard rate (which you cannot claim back if you are not paying tax, but
you do have to top up if you are pay ng tax at a higher rate).
A bank deposit account m ght pay 10.5% on wh ch you wou o then have to pay tax. So If the rate of tax is 30% you will oniy nave 70% of the nterest left after you nave paid tax This is therefore calculated as

$$
\begin{aligned}
& 130 \text { PRINT INT (amt * } 10.5 * 0.7 * n * 28 / 365 \\
& +0.5) / 100
\end{aligned}
$$

You forfelt 7 days' interest fyou do not give notice of a withdrawal, and you can see the effect of this by

$$
\begin{aligned}
& 130 \text { PRINT LNT (amt * } 10.5 * 0.7 *(n * 28-7) / 365 \\
&+0.5) / 100
\end{aligned}
$$

It is a so important to know how often the interest is paid. Suppose that the ordınary account pays interest every three months and the h gh yield account once a year, and that n each case you have the interest pa dinto the account so that it is in effect compound ratner than simpe interest. The nterest for the first three months on the ordinary account is therefore itself earn ng interest for the rema ning three quarters of the year, while that for the high yield account is not The following program compares an account paying quarterly at the rate of 7% per annum against one paying annually at the rate of 8.25% per annum but w th no .nterest being paid for the first 28 days (a very subtle difference from the eariler example in which it was the last 28 days for which no interest was paid). We assume that the quarters are respectively $90,91,92$, and 92 days ong, the first being 91 n a leap year, and that the investment is made 30 days after the start of the first quarter of a year; amt is the amount invested, ball the balance n the ordinary account
oal2 in the high yield account, and int2 the interest accrued on the nigh yie d account but not que to be paid unti the end of the year, days 1 is the number of days in the quarter for which nterest wi I be paid on the ordınary account, days2 on the high yieid account, and days3 the number of cays in the year.

L nes 10 to 70 are as before except trat weeks' on line 60 is replaced by 'qtr yr' Lines 100 onwards are replaced by

100	LET ball $=$ amt
110	LET bal2 = amt
120	LET int2 $=0$
130	LET qtr $=1$
140	LET yr $=84$
200	DIM d(4)
210	LET $\mathrm{d}(1)=91$
220	LET d(2) $=91$
230	LET d (3) $=92$
240	LET $\mathrm{d}(4)=92$
250	LET days $1=\mathrm{d}(1)-30$
260	LET days $2=$ days $1-28$
270	LET days $3=366$
300	```LET ball = ball + INT (ball * 7 * days 1/days 3 + 0.5) / 100```
310	$\begin{aligned} & \text { LET int } 2=\text { int } 2+\text { INT }(\text { bal2 * } 8.25 * \\ & \text { days } 2 / \text { days } 3+0.5) / 100 \end{aligned}$
320	PRINT " "; qtr; " "; yr;
330	PRINT TAB 8; ball-amt;
340	PRINT TAB 20; bal2+int2-amt
350	LET qtr = qtr+l
360	IF qtr $<=4$ THEN GOTO 600
400	REM here at end of year
410	LET bal2 $=$ bal2 + int2

```
420 LET int2 = 0
4 3 0 ~ L E T ~ q t r ~ = ~ 1 ~
4 4 0 ~ L E T ~ d a y s ~ 3 ~ = ~ 3 6 5 ~
450 LET d(1)=90
460 LET yr = yr+1
470 IF yr/4 \diamond INT (yr/4) THEN GOTO 600
500 LET days 3 = 366
5 1 0 ~ L E T ~ d ( 1 ) ~ = ~ 9 1 ~
600 REM set up for next quarter
6 1 0 ~ L E T ~ d a y s 1 ~ = ~ d ( q t r ) ~ ( ) ~
620 LET days2 = daysl
630 GOTO 300
```

On the ZX81 the program stops with report code 5 after 18 lines but you can get further output by using the CONT. nue commana The Spectrum asks you whether to scroll the screen: use Y or ENTER to see the next screenful of outplt, N or SPACE (for BREAK) to stop.

In all the above you can get the figures more prettly aligned under each otner by using the subroutines from the programs earl er in this chapter and in Chapter 10 You could also show the output pictoria ly as a graph or histogram, Lsing the techniques introauced in Cnapter 7.

The cescriptions assumed yol were the iender but the same princ ples apply fyou are the borrower. You might, for instance, want to buy a b gger and better computer, and want to compare the cost of pay ng by credit cara (interest free for the frst few weeks, then interest compounded monthly) w th that of increasing the mortgage on your house (much lower interest rate, but no interest free period and probably 'arrangement fees to be pad) Another poss bil ty is an overdraft at your bank: the amount of money you would normally keep in your current account
red Jces the amount of the overdraft but you may also nave to allow for an increase in bank charges, and the program should take account of these factors

0

KEEPING RECORIDS

Near y all computers have the ab lity to keep data on 'backing store', wh ch usually consists of magnetıc d sc or tape. There are tnree main reasons for using backing store to increase the amount of memory avaiable to preserve data wh le the computer is sw tched off and to allow data to be removed from the complter for safe keeping or so that it can be loaded into another computer For the compler to have free access to the data on a tape it must be able to contro the movement of the tape past the heads On tape drives intended for use by computers al the controls (record rewind playback, etc.) are operated electronical y by the computer so that the computer can search the tape for a particular record and read that record into its memory when requ red Cassette tape recorders intended primarily for audio use have contro s which are operated mecnanically from pushbuttons on the recorder, a.though most have the facility to connect a 'remote pause' switch that wil stop the motor Some personal computers (though not the ZX computers) make use of this 'remote pause' facı ity to provide a measure of control of the tape The computer can read a record from the tape and then stop the tape unt I it is ready to read the next record, but t cannot rewind the tape nor can t cnange between the 'write (or record) and 'read' (or 'p ayback) modes If the computer can connect to two cassette recorders it can read records from one update them, and wr te the upcated records out to the other.

The only form of backing store provided with the ZX81 and Spectrum is cassette tape withol any 'remote pause' facilty thas been announced that there is an optional 'microdrive' for the Spectrum over which the computer will have full control, but at the time of writing few details are available.

Because the program does not have any control over the tape recorder, t cannot adopt the approach of 'read a record, process it, read another process it, elc ' While it was processing the f rst record (wh ch might taxe some time if it nvolved asking for input from the user) it could miss the second record. Therefore we have to adopt the approach of reading all the data into memory first, then processing it, then wr ting the new data out to tape again as n the second version of the payrol program in Chapter 9. This means that any kind of 'data base' application has to De restr cted to the amount of data that can be held in the computer's main memory.

The simplest way of discovering how much data will $f t$ into the computer is to DIMens on an appropriate set of arrays and see how big they can be made before error 4 occurs As a rougn gu de, a 2×81 w th the add on RAM pack nas about 15000 bytes avalable for the BASIC program and data, without the RAM раск it has on y about 700 or less, depend ng how much there is on the screen The TSi000 without a RAM pack has about 1000 bytes more than the European ZX81 The smal.er ($16 k$) Spectrum has about 9000 ava lab e, and the larger (48 K) Spectrum has about 41000 A typical BASIC program takes very roughly 20 bytes per commana, and the remainder of the space is ava able for data characters take one byte each, numbers
take five.
Taking as an example the 'bank account program which follows the program itself requ res about 2500 bytes, and each record cons sts of 16 characters and 2 numbers a tota of 26 bytes. Therefore, the ZX81 w th the add-on RAM pack can cope with up to about 480 records, the 16 K Spectrum about 250, and the $48 K$ Spectrım about 1480. The unextended ZX81 does not even have room for the programl The later vers on of the program (the one with the menu) is about 3000 bytes onger and thus leaves room for about 120 fewer records.

BANK ACCOUNTS

A fairly typıca examp e of personaı recoro-keep ng is keeping track of a bank account The computer record not only gives an up to date picture of your f nances it allows you to plan anead by loading the data into the computer and aading entries for the transactions you expect to do n the next few weeks or months (You should, of course, be carefil not to save this fictitiols future bank account on the tape in place of the real one) You can also easily check t against the bank s version when your statement arrives

Th s program is wr tten for the Spectrum and
MHCRODRIVE - an attacrment for the Spectrinn similar to a
wasecta thes bit en endives hoop of tope instend of the mome
Thus reoh-to-red cossetio and using a rether fastor deta rethe
to provido some of the freipicathet thooy timeryendor
other machines
outputs your balance n red when you are overdrawn To save space on the screen, a single column s Jsed for the amount of al entries, cred tentries being shown in black and debit entries n red (Your bank statement uses separate columns for credit and debit entries)

Many banks do not charge for transactions prov ded a certain min mum balance is ma ntained n the account The program uses a yellow background for the balance f it is below this m nimum (unless t is actually overarawn), as a warning that you w II have to pay charges Some banks require a minımum cleared ba ance, you can get an approximate idea of what your c eared balance is likely to de by delaying al credit entries by four working days. For instance if you go into the bank on a Tnursday and draw $£ 50$ cash and pay in a $£ 75$ cheque, you shou d make the $£ 50$ debit entry for that day but make the $£ 75$ cred.t entry for the fo lowing Wednesday.

10	REM bank account
20	LET next entry $=2$
30	LET max entry $=200$
40	DIM dS (max entry,5): REM dates
50	DIM es(max entry,11): REM details
60	DIM a(max entry) : REM amounts
70	DIM b(max entry) : REM balances
100	INPUT "Minimum for free banking: "; min free
110	LET min free $=1 N T($ min free * $100+0.5$)
120	INPUT "Starting date (5 chs): "; d\$ (1)
130	LET e\$(1) = "Balance fwd"
140	INPUT "Starting balance: "; b(1)
150	LET $b(1)=$ INT (b(1) * $100+0.5$)
200	REM draw "statement" form

```
210 INK 0: PAPER 7: CLS
220 POKE 23692,20
230 FOR n = 1 TO next entry - 1
240 GOSUB 1000
250 NEXT n
300 REM here to add an entry
310 INPUT "Make an entry? (Y/N) "; r$
320 IF r$="N" OR r$="n" THEN COTO 620
330 IF r$\diamond"Y" AND r$○"y" THEN GOTO 210
340 TF next entry >= max entry THEN GOTO 600
400 REM make next entry
410 INPUT "Date (5 chs): "; d$$(next entry)
4 2 0 ~ I N P U T ~ " D e t a i l s ~ ( 1 1 ~ c h s ) : ~ ' ; ~ e \$ ( n e x t ~ e n t r y ) ~
430 INPUT "Amount: "; x: LET x = ABS x
440 INPUT "Credit or debit? (C/D): "; r$
450 IF r$="C" OR r$="c" THEN GOTO 480
460 IF r$@'D" AND r$O"d" THEN GOTO 440
470 LET x = -x
480 LET a(next entry) = INT (x * 100 + 0.5)
490 LET b(next entry) = b(next entry - 1)
    + a(next entry)
500 LET n = next entry: LET next entry = n+1
510 GOSUB 1000
520 GOTO 300
600 REM here if arrays full
610 PRINT "Sorry, no more room."
620 REM here when finished
630 INPUT "Save on tape? (Y/N) "; r$
640 LF r$="N" OR r$="n" THEN GOTO 9999
6 5 0 ~ I F ~ r \$ < ~ " Y " ~ A N D ~ r \$ > ~ " y " ~ T H E N ~ G O T O ~ 6 3 0 ~
6 6 0 \text { SAVE "Bank" LINE 200}
6 7 0 \text { PRINT "Replay tape to verify"}
6 8 0 \text { VERIFY "Bank"}
6 9 0 ~ G O T O ~ 9 9 9 9 ~
1000 REM add entry n to statement on screen
```

1010 IF PEEK 23692 > 20 THEN POKE 23692, 14
1020
1030
PRINT AT 21, 0: PRINT AT 0, $0 ;$

L nes 10 to 150 simp y set up the arrays and fII in the first entry. Two character arrays ho d the date and the descript on of each entry (chq and the cheque number for a debit entry which is a payment by cheque, 'salary for a cred t entry which is your montnly salary, etc); two numeric arrays hold the amount of the entry (pos tive for a creait entry, negative for a debit entry) and the current balance. The Jatter is not strictly necessary, as it can be calcu ated by adding up al the 'amount' figures, but it can be useful if
ad ustments have to be made, to simply alter the 'balance' figures w thout actual y nserting the extra entries. (When your bank statement arrives yo. might f nd that, because of paying bank charges say, or receiving dividends on shares, the two do not tally, and you may not w sh to insert extra records to deal with them) To e im nate the separate 'balance' figures delete lines 70 and 490 and add

```
    140 INPUT "Starting balance: "; a(1)
150 LET a(1) = INT (a(1) * 100 + 0.5)
```

225 LET balance $=0$
1065 LET balance $=$ balance $+a(n)$
1070 LET $\mathrm{w}=8$: LET $\mathrm{v}=$ balance

Lines 200 to 250 write out the existing entries to the screen with the nelp of the subroutine on lines 1000 onwaras, wh ch scro Is the entries up the screen wh le maintain ng the headings at the top of the screen and the lines marking the ind vidual columns. Scrolling stops per odically, the user being asked to press a key when he has read what is on the screen; I ne 220 prevents this happening before anything has been written to the screen (try the program without to apprec ate this) and line 1010 arranges that the 'pages' that the user sees overlap by a few lines.

Lines 300 to 520 add a new entry to the records and to the screen, and lines 630 to 690 save the new state of affairs on tape

It is important to get the r ght number of spaces n the character str ng literals line 1030 has two spaces between the words 'Date' and 'Detalls', five between
'Details and 'Amount ', and one between Amount' and 'Ba ance'. The two commas at the end ensure that the second line on the screen is c eared of anytning that has been scrolled up into it The string on line 2020 has two spaces and six asterisks and that on ine 2030 has f ve spaces before the zero.

The subroutine start ng at line 2000 writes out the amount or balance correctly al gned (assum.ng it is in pence and is a whole number) or writes a row of asterisks f the figure is too large Line 2030 arranges for the string $v \$$ to be of the correct length and puts a zero in the tens-of-pence column if the figure s ess than ten pence. Line 2050 prints it, comp ete with its decimal point, in red (colour 2) if v was negative and in black (co our 0) otherwise

To adapt the program for the $\mathrm{ZX81}$, apart from the changes to INPUT and to lines with more than one command which should by now be familiar, we need to change the output format to use the less sophisticated faci ities that the 2×81 provides The main differences are. (a) We cannot use red for negat ve figures, probably the best compromise s to use white-on-black as in

2050 LET $v \$=v \$(1$ TO $w-3)+{ }^{1} \cdot{ }^{\prime \prime}+v \$(w-2$ TO $w-1)$
2052 IF v >= 0 THEN GOTO 2058
2054 FOR i=1 TO w
2055 LET v\$(i) $=$ CHR\$ ($128+$ CODE v\$(i))
2056 NEXT i
2058 PRINT v\$;
(b) DRAW is not avai able for the lines separat ng the columns from each other We can use the pixel graphics to draw rather thicker I nes, or the d vision can be made in
some other way, for instance

1030	PRINT AT 0,0;	
1035	PRINT "Date : Details	: Amount: Balance ${ }^{\text {" }}$
1040	PRINT "-----:	---------
1050	PRINT AT 20,0; dS (n)	; e\$(n); ':";
1060	LET $w=6$	
1062	LET $v=a(n)$	
1064	gosub 2000	
1070	LET $w=7$	
1075	LET $\mathrm{v}=\mathrm{a}(\mathrm{n})$	
1080	PRINT ":";	

Note that, whatever method is used, w must be one less than in the Spectrum version.
(c) There s no direct equivalent of the ye low background used to show that the balance nas fal en below the minirum for free banking. However, I can be markea by a character in the space between the 'Amount' and 'Ba ance' columns as in
1080 LET v\$ = ":"
1082 IF V $\langle 0$ OR V $\rangle=$ min free THEN GOTO 1086
1084 LET V $=$ "*"
1086 PRINT v\$;
(a) Explicit scroling (using the SCROLL command) must be used instead of that implied by the PRINT commands on line 1020 , thus

1020 SCROLL

Also the commanas on I nes 220 and 1010 (which control the Scrol?' message on the Spectrum) must be replaced by something like

```
220 LET scroll count = 19
1010 LET scroll count = scroll count - I
1012 IF scroll count > O THEN GOTO 1020
1014 LET scroll count = 14
1016 PRINT AT 21,0; "Hit ""NEWLINE"" to scroll"
1018 INPUT v$
```

to allow the user to indicate when he has read one pageful and the program can go on to the next althougn it s arguable that the ZX81 prints numbers so slowly that he has plenty of time to read them anyway!
(e) The same changes are needed to SAVE etc (lınes 660 to 680) as in the payro I program n Chapter 9.

EXTRA FACILITIES

There are a number of facı ities that it would be useful to add to this program, and which are indeed typica of this kind of datapase app ication for example the ability to a ter records insert records. delete records list the records starting at a particular place, and scroll the listıng down as well as up.

In all the programs so far, the program has followed a we l-def ned sequence of calculations and asked the user for input when it was required. The programmer, through the program was controlling the sequence of events, and the user's role was entirely passive. Of course, the user has Jltimate control in that he can choose not to run the program and can abort the program at any time (Note that we do not say that the computer is controlling anytning. the computer is not responsible for the way a program behaves any more than a tape recorder is responsible for
the views expressed by a voice recorded on a tape.) In the next example we have a somewnat dfferent situation in which we require the user to choose what tasks the program shall perform and in what order Once a particular function has been chosen, however, the programmer stı I controls how it s carried out

The user could be offered the abil ty to type commanos to the program much n the way the programmer types commands for the BASIC, out this would require the user to learn the 'language' in which the commands are expressed and in particular to learn just what commands are avalable; it would also require the program to interpret the commands (which wou o presumably be typed n as character strings) and, as we saw in the earl er chapters, this is I ke y to lead to either a rather complicated program (aifficult for the programmer and possib y using up an emoarrassingly large amount of the computer's memory) or else an over-rigid format for the commands (tedious for the user)

The usual method followed in this k nd of s tuat on is to offer the user a 'menu' of avai able facilities The user selects one fac lity from this men」, and the program then asks the user for the necessary data n just the same way as in the earlier programs in this way the user is shown exactly what facil ties are avaliable and the course taken by the program is directed by s mple (mostly s ngle-character) responses.

For the Dank account program we m ght nave the follow ng, ines 10 to 150 being the same as before.

[^3]215 PRINT
220 PRINT "2 View last page of statement"
225 PRINT
230 PRINT "3 Add an entry to the end"
235 PRINT
240 PRINT " 4 Add an entry in the middle"
245 PRINT
250 PRINT "5 Remove an entry"
255 PRINT
260 PRINT "6 Alter an entry"
265 PRINT
270 PRINT "7 Print statement out"
275 PRINT
280 PRINT "8 Save data on cassette tape"
285 PRINT
290 PRINT "9 Exit from program"
300 INPUT "Select item number: "; \mathbf{n}
310 LET $n=$ INT $(n+0.5)$
320 โF $n<1$ OR n>9 THEN GOTO 300
330 CLS
340 GOTO 1000 * n
L ne 340 umps to line 1000 if item 1 is se ected, 2000 if item 2, and so on. L ne 310 ensures that the ine jumped to is one of 10002000,3000 , etc: otherwise the user might type (say) 473 and cause the program to jump to line 4730 with consequences that are unl key to be heipfl. Aiternatively line 310 could insist on a whole number, by doing
\[

$$
\begin{gathered}
310 \text { IF n }<\text { INT n THEN PRINT AT } 19,0 ; \\
\text { "Item number must not include } a \text { ", } \\
\text { " fraction": GOTO } 300
\end{gathered}
$$
\]

5 mi arly line 320 could give the user a message, which wou dindicate that a number in the range 1 to 9 is
expected, before jumping back to line 300.
The part of the program that deals with eacn item must finisn by jumping to I ne 200; alternatively we could replace I ne 340 with

$$
\begin{aligned}
& 340 \text { GOSUB } 1000 * \text { n } \\
& 350 \text { GOTO } 200
\end{aligned}
$$

so that a RETLRN command is usea instead of GOTO 200, which at first sight appears to be rather neater and give a more well-structured' appearance. However, in the case of ttem 9 we do not w sh to return to line 200 and so ought to remove the unwanted information from the GOSLB stack. In the Spectrum this can be done us ng CLEAR (which will aiso throw away all the arrays etc) but in the ZX81 only NEW (which throws everytning away) wil do it We should add

335 LF $\mathrm{n}=9$ THEN GOTO 9999

so that item 9 is treated specially and avoids puttıng anyth ng on the GOSLB stack in the f rst place

Assuming that we reta n the or ginal I ne 340, the rest of the program can be as fo lows

500	REM add entry n to stateme
510	IF PEEK $23692>20$ THEN POKE 23692, 14
520	PRINT AT 21,0: PRINT
530	PRTNT AT 0,0; "Date Details Amount Balance"
540	PLOT 0,164: DRAW 255,0
550	PRINT AT 20,0; d\$(n); " 1 ; e\$(n)
560	LET Wm 7 : LET $v=a(n)$: GOSUB 700
570	LET w=8: LET v=b(n)
580	IF v$\rangle=0$ AND v < min free THEN PAPER
590	GOSUB 700: PAPER 7

600	PLOT 44,8: DRAW 0,167
610	PLOT 137,8: DRAW 0,167
620	PLOT 193,8: DRAW 0,167
630	RETURN
700	REM write v pence in w characters ($2<\mathrm{w}<9$)
710	LET v \$ $=$ STR\$ ABS v
720	LF LEN $\mathrm{v} \$ \gg \mathrm{w}$ THEN LET $\mathrm{v} \$$ $=$ " ******" (2 TO w)
730	LET v\$ = " $0^{\prime \prime}$ (9-w TO 7-LEN v\$) + v\$
740	REM now $\mathrm{v} \$$ is $\mathrm{w}-1$ chs long \& last 2 chs are digits
750	$\begin{aligned} & \text { PRINT INK } 2 \text { AND } v<0 \text {; v } \$(1 \text { TO } w-3) ; " . " ; \\ & \quad v \$(w-2 \text { TO } w-1) ; \end{aligned}$
760	RETURN
1000	REM Display statement from start
1010	LET $\mathrm{m}=1$
1020	GOTO 2030
2000	REM Display last page of statement
2010	LET m = next entry $=18$
2020	LF m<1 THEN LET m=1
2030	REM Display statement from mth entry
2040	POKE 23692,20
2050	FOR $\mathrm{n}=1$ TO next entry - 1
2060	cosub 500
2070	NEXT 1
2100	REM Wait for user then go to 200
2110	INPUT "Hit ENTER for main menu: "; r\$
2120	GOTO 200
3000	REM Add entry at end
3010	IF next entry $>=$ max entry THEN COTO 4020
3020	LET $\mathrm{n}=$ next entry
3030	gosub 3500
3040	LET next entry $=$ next entry +1
3050	GOTO 2000: REM to display new entry
3500	REM Input entry number n

3520 INPUT "Details (11 chs): "; e§(n)
3530 INPUT "Amount: "; x
3540 LET $\mathrm{x}=\operatorname{INT}(0.5+100 *$ ABS x$)$
3550 INPUT "Credit or debit? (C/D): "; $\mathbf{r} \$$
3560 IF $\mathbf{r} \$==^{\prime \prime} \mathrm{C}^{\prime \prime}$ OR $\mathbf{r} \$=$ " $\mathrm{c}^{\prime \prime}$ THEN GOTO 3590
3570 IF r\$○'D" AND r\$○"d" THEN GOTO 3550
3580 LET $\mathrm{x}=-\mathrm{x}$
3590 LET $a(n)=m$
3600 LET $b(n)=b(n-1)+x$
3610 RETURN
4000 REM Insert entry
4010 IF next entry < max entry THEN GOTO 4100
4020 REM here if no room to insert
4030 PRINT "No room for any more records"
4040 GOTO 2100
4100 REM here if room to insert entry
4110 LET m\$ = "Insert before": GOSUB 4500
4120 LF $n=0$ THEN GOTO 200
4130 FOR $i=$ next entry To n STEP -1

$4150 \operatorname{LET} a(i+1)=a(i): \operatorname{LET} b(i+1)=b(i)$
4160 NEXT i
4170 LET next entry $=$ next entry +1
4180 GOSUB 3500
4190 GOTO 6100
4500 REM Find record \& set n to its number, or
4501 REM to zero if not found
4502 REM Enter with m\$ showing what to do
with it
4510 PRINT "Note: you must give the date"
4520 PRINT " EXACTLY as it is shown"
4530 PRINT " on the statement"
4540 INPUT ($\mathrm{m} \$+^{\prime \prime}$ entry dated: "); $\mathrm{r} \$$
4550 LET r\$ = (r\$+" ") (TO 5)

4560 FOR $\mathrm{n}=1$ TO next entry -1
4570 IF $\mathrm{d} \$(\mathrm{n})=\mathrm{r} \$$ THEN GOTO 4620
4580 NEXT n
4590 INPUT "Not found. Try again? (Y/N) '; r\$
4600 IF $\mathrm{r} \$ \mathbf{m}^{\prime \prime} \mathrm{Y}{ }^{\prime \prime}$ OR $\mathrm{r} \$=$ "'y" y^{17} THEN GOTO 4510
4610 LET $\mathrm{n}=0$: RETURN
4620 REM Found record, $n=n u m b e r$, see if another
4630 FOR $i=n+1$ TO next entry - 1
4640 LF d\$(i) $=$ r\$ THEN GOTO 4700
4650 NEXT i
4660 RETURN: REM identified unamblguously
4700 REM here if more than one with the same date
4710 LET min $=$ n
4720 POKE 23692,20
4730 REM write out relevant part of statement
4740 FOR $\mathrm{n}=\mathrm{m}$ TO $\mathrm{m}+17$
4750 IF n $>=$ next entry THEN GOTO 4780
4760 GOSUB 500
4770 NEXT n
4780 INPUT "Entry number? (1 = first on",
"screen, $2=$ second, etc) "; n
4790 LET $n=m+n-1$
4800 RETURN
5000 REM Delete entry
5010 LET m\$ = "Delete": GOSUB 4500
5020 IF $\mathrm{n}=0$ THEN GOTO 200
5030 FOR $1=n$ TO next entry -2

5050 LET $a(i)=a(i+1):$ LET $b(i)=b(i+1)$
5060 NEXT i
5070 LET next entry $=$ next entry -1
5080 GOTO 6100
6000 REM alter entry
6010 LET m\$ = "Rep1ace": GOSUB 4500

6020 IF $\mathrm{I}=0$ THEN GOTO 200
6030 GOSUB 3500
6100 REM recalculate balances
6110 INPUT "Recalculate subsequent balances?"; " (Y/N) "; r \$
6120 IF $\mathbf{r} \$ \mathrm{~m}^{\prime \prime} \mathrm{N}^{\prime \prime}$ OR $\mathrm{r} \$ \mathrm{I}^{\prime \prime} \mathrm{n}$ " THEN GOTO 200
6130 IF r\$○"Y" AND r\$ $\bigotimes^{\prime \prime} y^{\text {" }}$ THEN GOTO 6110
6140 FOR $i=n$ TO next entry - 1
6150 LET $b(1)=b(1-1)+a(1)$
6160 NEXT 1
6170 GOTO 200
7000 REM output statement to printer
7010 IF IN $251 \diamond 255$ THEN GOTO 7100
7020 PRINT "You must connect a ZX printer to"
7030 PRINT " be able to use this facility."
7040 GOTO 2100
7100 REM here if we do have a printer
7101 REM set up characters for the ruled lines
7110 FOR $1=0$ TO 15
7120 POKE USR "a" + i, BIN 00001000
7125 POKE USR "c" + 1, BIN 01000000
7130 POKE USR "e" +1 , BIN 00000000
7140 NEXT 1
7150 POKE USR " $b^{\prime \prime}+3$, BIN 11111111
7155 POKE USR " $\mathrm{d}^{\prime}+3$, BIN 11111111
7160 POKE USR " f " +3 , BIN 11111111
7170 LPRINT "Date |Details |Amount| Ralance"
7180 LPRINT
7200 FOR $n=1$ TO next entry - 1
7210 LPRINT d\$(n); "I"; e\$(n); "1";
7220 LET w=6: LET $\mathrm{v}=\mathrm{a}(\mathrm{n})$: GOSUB 7500
7230 LET $\mathrm{r} \$=" \boldsymbol{\prime}=$ LET $\mathrm{v}=\mathrm{b}(\mathrm{n})$
7240 IF $v>=0$ AND $v<\min$ free THEN LET $r \$=" * "$
7250 LPRINT $\mathbf{~} \$$;
7260 LET w=7: GOSUB 7500

```
7270 NEXT n
7280 GOTO 200
7500 REM wLite v pence in w characters (2<w<8)
7510 LET v$ = STR$ ABS v
7520 LF LEN v$ >= w THEN LET v$ = " ******"
    (2 TO w)
7530 LET v$ = " 0"(8-w TO 6-LEN v$) + v$
7540 LPRINT INVERSE v<0; v$(l TO w-3); ".";
    v$(w-2 T0 w-1);
7550 RETURN
8000 REM Save on tape
8 0 1 0 ~ S A V E ~ " B a n k " ~ L I N E ~ 2 0 0 ~
8020 PRINT "Replay tape to verify"
8030 VERIFY "Bank"
8040 GOTO 200
9000 REM exit
9010 PRINT "Finished."
9 0 2 0 ~ P R ~ I N T ~
9030 PRINT "To re-enter, do GOTO 200"
```

Note that the loop on I nes 5030 to 5060, which copies the recoros back to close up the gap that would otherw se have been left by a de eted record works forwards through the recoras from the deleted record to the end, whereas the loop on lines 4130 to 4160 , which copies them forwards to open up a gap into which a new record can be nsterted, works backwards from the end to the point of nsertion Consider what would happen if line 4130 was

```
FOR i = n TO next entry
```

so that the program worked forwards through the records: the first time round the loop record $n+1$ would be replaced by a copy of record n; the secona time round record $n+2$ would be replaced by a copy of this new record $n+1$ which
is the same as record n ; the third time round recora $n+3$ would be repiaced by a copy of the new record $n+2$, wnich is the same as record n, and so on The end effect s that we have a large number of copies of record n and all the ater records have peen lost. It is always necessary when shifting blocks of data round in th s way to take care that you move the data n the correct sequence and never re-use the space occupied by something until after you have moved it

The subrout ne starting at line 4500 asks the user to identify a record by giv ng its date (which line 4550 ensures is exactly 5 characters long) if there are several records with the same date the user is asked to dentify the required one in a portion of the data that is displayed on the screen for the purpose. This assumes that every record will have a date and that the records will be in date order; if the assumption is false the program wil not actual y crash but the user might not easily be able to ident fy the required record. An alternat ve would be to display the statement with a marker against the 'current record' rather like that against the current line' in the list ng when a ZX BASIC program is being edited, th s could be moved around by the cursor control keys (read via INKEY\$) and cause the display to scroll when it gets near the top or bottom of the screen

The input and display routines could be mocified so that if no date is input the date is assumed to be the same as that on the preceding entry, and when an entry is output its date is om tted if it is the same as that on the previous entry (unless it is the f rst one on the screen)

After mak ng an alteration in the m adle of the data, the user is offered the opportunity of nav ng all the balance' f gures after the point of alteration recalculated (lines 6100
to 6160) Further extensions to the program which you should consider are to allow the user to nput an expl cit 'baiance figure, and to aliow a group of several entries to be deleted or amended.

Line 7010 tests whetner the $\mathbf{Z X}$ pr nter is present The ZX81 does not have the IN function, but a very simple machine code routine can be used instead: t consists of the six bytes

219, 251, 79, 6, 0, 201
which we can add to the front of the program in a REM command as

```
1 REM <= CLS ?! TAN
```

be ng carefu to use exactly the right characters (looked up in Append x A of the manual). There is a space character between the graphics character and TAN, but nowhere eise To get CLS, first type THEN (to get into K mode), then type CLS, then go back and rub the THEN out alternatively type CLS mmediately after the line number and then go back and type REM < = afterwaras. The question mark represents the character with code 79, wh ch you cannot type directly: use any character when first typing the line in. and after it has been added to the program do

$$
\text { POKE } 16516,79
$$

to insert the correct code. Now USR 16514 can be used in place of IN 251 in line 7010.

L nes 7110 to 7160 set up user-defined graphics for drawing I nes on the printer similar to those used on the screen. The graphics-snift A is used for the I ne between the
'Date' and 'Details' columns C for the other two lines. When you type the program n, these characters wil probably appear as capital A and cap tal C, but after the computer has obeyed lines 7110 to 7160 (wh ch w.ll only happen if you have a ZX pr nter and nvoke item 7 unless you do a dehberate GOTO 7110) they w Il appear as the appropriate vertica bar symbols. The frst p us-shaped symbol on line 7180 is graphics-shift b, the other two are $d s$, and the horizontal-lıne characters are fs.

The subroutine at sines 500 to 630 cou d be rearranged to use these graphics characters also, but it would still be necessary to ensure that the lines dividing the columns from each other extenced from top to bottom of the screen, even when there was only one record to be displayed.

KEEPIING SCORE ATT GAMIES

Many games invo ve a certann amount of ar thmetic and record-keeping, and the computer can be used for this. The follow ing program keeps score at darts, the total score for three darts is entered as a s ngle number, although because ZX BASIC lets you enter any expression rather than restr cting you to a I teral number tne user can type, for instance,

$$
16+3 * 19+50
$$

If the three darts are a 16 , a treble 19 , and a bull
The program s written for the Spectrum, but the only changes required for the ZX81 are om ss on of the colour controls such as 'INK 4, and the aiterations (to INPUT and to lines containing more than one commana) that should by now be famuliar from the earleer chapters

```
10 REM darts chalker
20 DIM n$(2,15): DIM n(2): REM name & its length
30 DIM s(2): REM score
40 INPUT "Name of 1st team? "; s$
50 LET n$(1) = s$: LET n(1) = LEN s$
60 INPUT "Name of 2nd team? "; s$
70 LET n$(2) = s$: LET n(2) = LEN s$
80 INPUT "Starting score? "; start
90 INK 7: PAPER O: BORDER O
100 REM start game
110 CLS: PRINT n$(1); TAB 16; n$(2)
120 PRINT
```

```
130 FOR i = 1 TO 2
140 LET s(1) = start
150 LET s$ = '"': GOSUB 1000
160 NEXT i
200 REM each side's throw
210 FOR i = 1 TO 2
220 INPLT (n$̧(i,l TO n(i))+"'s score? "); score
230 IF score=0 OR scare > s(i) OR
        score =s(i)-1 THEN GOTO 270
240 LET s(i) = s(i) - score
250 LET s$ = STR$ score: GOSUB 1000
260 IF s(1) =0 THEN GOTO 300
270 NEXT i
280 GOTO 210
300 REM here when i'th side has wor
310 PRINT
320 PRINT FLASH 1; n$(1); " wins!"
330 INPUT "Another game? (Y/N) "; r$
340 IF r$<>"Y" AND r$\diamond"y" THEN GOTO 9999
350 INPUT (n$(1)+" to start? (Y/N) "; r$
360 IF r$="Y" OR r$="y" THEN GOTO 100
370 IF r$< "N" AND r$< "n" THEN GOTO 350
380 LET r$=n$(1): LET n$(1)=n$(2): LET n$(2)=r$
390 GOTO 100
1000 REM print score s$ and new total for
1001 REM side number i
1002 REM leaves s$ = total
1010 PRINT INK 4; TAB (16*i-12-LEN s$); s$;
1020 LET s$ = STR$ s(i)
1030 PRINT TAB (16*i-6-LEN s$); 8$;
1040 RETURN
    The program prints two columns for each side the
lefthand column being the actual scores (in green chalk)
and the rghthand column be ng the amount left (in white) It
does not print anything if the score is zero or 'bust'.
```

To keep a count of the games won by each side, and d splay t in red at the top of the screen the folowing lines can be added to the program. Note that when the array g is DIMensioned its elements $g(1)$ and $g(2)$ are set to zero

25 DIM $g(2)$: REM games won

115 PRINT INK 2; $\mathrm{g}(1)$; TAB $16 ; \mathrm{g}(2)$
305 LET $g(i)=g(i)+1$
385 LET score $=g(1)$: LET $g(1)=g(2)$:
LET $g(2)=s c o r e$
If the two sides take it in turns to throw first you can miss oul I nes 350 to 370. f the loser of one game throws f rst for the next, you can put

360 IF $1=2$ THEN GOTO 100
n their stead
If you replace I ne 1030 w th
1030 PRINT TAB ($16{ }^{*} \mathrm{i}-6-\mathrm{LEN} \mathrm{s} \$$); PAPER $\mathrm{s}(\mathrm{i})=170$ OR $s(i)=167$ OR $s(i)=164$ OR $s(i)<162$ AND s(i)<>159; s\$
then the score is on a blue background instead of black if a three-dart fin sh is availabe How would you modify the program so that tlisted al the possibie three-dart finishes from the next piayer?

To reauce the number of occasions on wh ch the players have to watt for the scorer to catch up, we need to make it as easy as possible to input the scores The followng modification allows each dart to be entered
separately, or two or three can be entered at once; all the input can be done w thout pressing any shift keys. The user is expected to use a single space to separate one dart from the next if more than one is entered at a time, and not to use spaces n any other circumstances, this must be clearly explained in documentation or n a message on the screen when the program is started The reason for th s apparently 'user-unfriendly' approach is to allow the input to be typed as quickly as possible.

The score is typed as a number which may be preceded by D or X to ind.cate a double or T for a treble, B (for bul) may be used instead of 25. Thus double top may De entered as 40 or D20 or X20, treble nıneteen as 57 or T19, and a bullseye as 50 or D25 or X25 or DB or XB.

We rep ace line 220 with
220 Gosub 2000
and the subroutine s

2000	REM input score for side
2010	LET \mathbf{r} \$ $=$ "'": LET score=0
2020	POKE 23658,8: REM set caps lock
2030	LET dS ="first": COSUB 2100
2040	LET dS ="second": GOSUB 2100
2050	LET dS $=$ "third"
2100	REM input one dart and add to SCORE
2101	REM leaves unused data in r $\$$ for next time
2110	IF I \$ $\mathrm{F}^{\prime \prime \prime \prime}$ THEN GOTO 2140
2120	IF $\mathbf{r} \$(1)=$ " " THEN LET r \$=r\$(2 TO) : GOTO 2150
2130	BEEP . 2,47 : BEEP .35,31: BEEP 4,47
2140	INPUT (score;" ";n\$(i);"s "; d\$;" dart: ");r\$

2150	IF r \$="'r THEN RETURN
2160	IF $\mathbf{r} \$(1)=$ " $"$ THEN RETURN
2170	LET m=1
2180	LF $\mathbf{r} \$(1)=$ "D" OR $\mathbf{r} \$(1)=1 \mathrm{X"}$ THEN LET m=2: GOTO 2210
2190	IF $\mathrm{r} \$(1)\left\langle>\right.$ " $\mathrm{T}^{\prime \prime}$ THEN GOTO 2220
2200	LET $\mathrm{m}=3$
2210	LET r \$ $=\mathrm{r}$ \$(2 TO)
2220	IF $\mathrm{r} \$(1)=1 \mathrm{~B}$ " THEN LET $\mathrm{n}=25$: GOTO 2290
2230	LET $n=$ CODE \mathbf{r} \$ - 48
2240	IF $\mathrm{n}<0$ OR $\mathrm{n}>9$ THEN GOTO 2130
2250	LET $\mathbf{r} \$=\mathrm{r}$ ($\mathbf{2}^{\text {T TO }}$)
2260	LET n2 = CODE rs - 48
2270	IF n2<0 OR n2>9 THEN GOTO 2300
2280	LET $\mathrm{n}=10 \mathrm{n}_{\mathrm{n}}+\mathrm{n} 2$
2290	LET $\boldsymbol{r} \$=\boldsymbol{r} \$(2 \mathrm{TO})$
2300	IF \mathbf{r} \$ = 'et' THEN GOTO 2320
2310	if $\mathrm{r} \$(1)$ 〉> " THEN GOTO 2130
2320	LET score $=$ score $+\mathrm{m}^{\star} \mathrm{n}$
2330	RETURN

Consider how the program can be enhanced to al ow T (for 'top') to be typed instead of 20, so that DT or XT means double top or 40, and TT means treble top or 60 We can process T in the same way as B by adding

2225 IF $\mathrm{r} \$(1)=1 \mathrm{~T}^{1 \prime}$ THEN LET $\mathrm{n}=20$: GOTO 2290

but this on its own is not enough if the nput string consists simply of "T" for top' the test at ine 2190 wil assume it means 'treb e' and expect it to De fo lowed by a number or B or T . At ine 2240 the program finas that it is not, and 'complains'. This is an example of the adage 'an enhancement is a change to a program as a result of which it no onger works'. We must add
in wh ch we assume T means 'top' f it is at the end of the string or followed by a space, 'treble' f it is fol owed by a letter or a digit.

The program as written here does not do an exhaust.ve check for errors; those that will slip by nc ude further characters in the string $\$ \$$ after the third dart has been read, and invaiid scores sLch as 23 or 77 or T25 or $\times 99$.
Suggestions for further development are:
(a) Recognise when a side wins with its first or second dart,
(b) Recognise when a s de goes bust (i.e. reduces the amount left to 1 or to a negative number) with its first or second dart, and do not ask for the remaining ones;
(c) Only allow a s de to win fits last dart was a double a sing e or treble that reduces the score to zero counts as bust';
(d) f the amount left is one of $50,4038,36, \ldots 2$ show it as X25, X20, X19 X18. X 1 to indicate that a one-dart finisn is possible;
(e) Show the amount left after each dart, unless it s more tnan 170.

MAH-JONGG

Another game wnich requires a fair amount of aritnmet.c in the scoring is mah-jongg It is a game for four players which is in many ways s muar to canasta but instead of caras t is played w th 'tiles' made of bamboo and ivory or (increas ngly nowadays) of p ast c Each hand ends
either when one player wins or when all the t les have been used up. ' n the latter case no scores are colnted but otherwise a I four players count up the values of the comb nat ons of tiles they nold each player receives the value of his hand from each other prayer except that the winning player does not pay anything out. There is a further complicat on that the player who 's East wind' pays and receives double

Suppose for example that player A wns w th a score of 22 B scores 48 C is East wind and scores 4 and D scores 6 Then A receives 22 from B, 44 from C, anc 22 from D. and (being the winner of this hana) pays noth ng out, so he has a net gain of 88 B recelves 96 from C and 48 from D and pays 22 to A 8 to C , and 6 to D , for a net ga n of 108 C receives 8 from each of B and D, and pays 44 to $A, 96$ to B, and 12 to D, for a net loss of 136 , and D receives 6 from B and 12 from C, and pays 22 to $\mathrm{A}, 48$ to B , and 8 to C , for a net loss of 60 . Whi e the scorer s working all this out, the other three players are 'bui ding the wall' i.e getting the tiles reacy for the next hand

The fo lowing program keeps account of the state of play. It the player who is East wind w ns the hand, he s East w ind again the next time, otherwise the next piayer becomes East w nd The d splay shows which wind each p ayer corresponds to, both by name ana by number, and puts an asterisk by the one that is 'wind of the round (The number is needed for scoring the f owers and seasons; if the flowers and seasons are not numbered in your set, you wi! want to put therr names on the screen above the names of the winds. Which is w ind of the round has a minor effect on the scoring) Below the ρ ayers' names t shows the scores
for the most recent hand (with an asterisk by the w nning player's score) and the total points for each player Whether you regard these as pence, pounds, or just numbers depends on the xind of stakes you like to play for.

10	REM Mah-jongg scoring
20	DIM n\$(4,7): DIM $\mathrm{n}(4)$: REM players' names
30	DIM s(4): REM score this hand
40	DIM t(4): REM total score
50	DIM w\$ $(4,5)$: REM winds
60	LET w\$(1)=" East": LET w\$(2)="South"
70	LET w\$(3)=" West": LET w\$(4)="North"
100	FOR i=1 TO 4
110	INPUT (w\$(i);" wind player's name? "); s\$
120	LET n (i ($=\mathrm{s}$ S : LET $\mathrm{n}(\mathrm{i})=$ LEN s \$
130	NEXT i
140	LET e wind $=1$: REM Player who is East wind
150	LET w round $=1$: REM wind of the round
160	LET winner $=0$: REM winning player, 0 if none
200	REM here at start of each hand
210	cosub 2000: gosub 2300
270	INPUT "Winner? (Give number of wind,", "or zero if no winnex) "; winner
230	LET wimner $=$ INT (wimner+0.5)
240	IF winner<0 OR winner>4 THEN GOTO 220
250	IF winner $=0$ THEN GOTO 700
260	LET winner $=$ winner + e wind - 1
270	IF winner>4 THEN LET winner $=$ winner 4
300	FOR $i=1$ TO 4
310	
320	LET $s(i)=$ INT $(s(i)+0.5)$
330	NEXT i
400	REM Display scores to check
410	GOSUB 2000: gosub 2200

```
    420 INPUT "Scores correct? (Y/N) "; r\$
    430 IF \(\mathrm{r} \$=\) "N" OR \(\mathbf{r} \$=\) "п" THEN GOTO 220
    440 IF r\$<"Y" AND r\$○"y" THEN GOTO 420
    500 REM here if OK, work out new totals etc
    510 FOR i=1 TO 3
    520 FOR j=i+l TO 4
    530 REM work out net amount \(\mathbf{j}\) pays to 1
    540 LET \(\mathrm{p}=\mathrm{s}(\mathrm{i})-\mathrm{s}(\mathrm{j})\)
    550 IF \(1=\) winner THEN LET \(p=s(i)\)
    560 IF \(j=\) winner THEN LET \(p=-s(j)\)
    570 IF i \(=e\) wind OR \(j=e\) wind THEN LET \(p=2 * p\)
    580 LET t(i) \(=t(i)+p\)
    590 LET \(t(j)=t(j)-p\)
    600 NEXT 3
    610 NEXT i
    700 REM see if winds change
    710 TF winner \(=e\) wind THEN GOTO 800
    720 LET e wind \(=\) e wind +1
    730 IF e wind <= 4 THEN GOTO 800
    740 REM end of round
    750 LET e wind \(=1\)
    760 LET w round \(=\) w round +1
    770 IF w round \(>4\) THEN LET w round \(=1\)
    800 REM display new position
    810 GOSUB 2000: GOSUB 2200: GOSUB 2300
    820 GOTO 220
2000 REM display headings of scoresheet
2010 CLS
2020 FOR \(i=1\) TO 4
2030 LET \(j=i-e\) wind +1 : IF \(j<1\) THEN
        LET \(j=j+4\)
```



```
2050 PRINT j; f\$; w\$(j); " ";
2060 NEXT i
2070 PRINT: PRINT
```

2100	REM names
2110	FOR i=1 TO 4
2120	PRINT n \$ (1); " ";
2130	NEXT i
2140	PRINT: PRINT
2150	RETURN
2200	REM display scores last hand
2210	FOR $i=1$ TO 4
2220	LET f\$ ${ }^{\prime \prime}$ ": IF i=winner THEN LE'T f \$ $=$ "*'"
2230	LET v\$ = STR\$ s(i)
2240	PRINT " "(LEN v\$ TO 5); v\$; f\$; " ";
2250	NEXT i
2260	PRINT: PRINT
2270	RETUR.
2300	REM display total scores
2310	FOR i=1 T0 4
2320	LET v\$ $=$ STR\$ t(i)
2330	IF v \$ (1) > "0" THEN LET v\$ $=$ " 4 " + v\$
2340	PRINT" "(LEN v\$ TO 6); v\$; " ";
2350	NEXT i
2360	PRINT: PRINT
2370	RETURS

Once the scores for the ndividual hands have been added $\mu \mathrm{p}$, a I the scorer has to do is type them into the computer, and the computer does a ithe arithmetic The scorer then has no excuse not to nelp with bu lding the wall In the same way that the darts scor ng program was enhanced to ailow the individ jal dart scores to be input this program coutd be adapted so that the various pungs kongs, flowers, seasons, etc. are .nput separately The amount of detal the scorer would need to type in to do the job thorough y s so arge that its probably not worth the effort, especia iy consider ng that the ZX BASIC allows you
to type in a number in a form such as

$$
(4+4+8+16+20) * 2 * 2
$$

If you do not want to do the adding up and doubl ng yourself.

Similar tecnniques can be used to write a program for scoring at pridge. In rubber bridge, for instance, the program should ask for the contract (which s de, suit number of tricks, whether doubled) and then for the number of tricks actually made, it is then quite simple to work out the scores, being carefil to keep separately the scores above and be ow the line The program must a.so allow for extra scores to be added, e g for honours it should keep track of, and show on the screen, which side is vulnerable and when a rubber is won

BOARD GAMES ETTC: FOR TIWO PLAMERS

There are many games which involve two peop e who move alternately, with a board or some other means of showing the current state of the game This chapter deals in particular with games in wh ch the outcome depends solely on the players choice of moves, these include not only board games such as chess and draughts (or checkers), but also games such as nim which do not require a specia board or set of pieces. Games which nolude chance e ements such as throw ing d ce or turn ng up cards from a pack are mentioned briefly at the end of the chapter.

A game which is s mple enough to demonstrate the principles involved without requirıng a very large program is noughts and crosses The following program (written for the Spectrum but eas:ly converted for the ZX81) a lows two people to play nougnts and crosses without us ng any paper or pencil.

500	REM noughts and crosses
550	REM define graphics shift A to be same as on 2×81
560	FOR $i=U S R ~ " a{ }^{\text {" }}$ TO USR " $\mathrm{a}^{\prime \prime}+6$ STEP 2
570	$\text { POKE } i \text {, BIN 10101010: POKE } 1+1 \text {, }$ $\text { BIN } 01010101 \text {; NEXT } 1$
700	REM draw the "board"
710	CLS
720	FOR $1=5$ TO 15
730	FOR $j=-8$ TO 12 STEP 4
740	PRINT AT i,j+5; "A"; AT j,i+5; "A"
750	NEXT 1: NEXT 1

760	PRINT AT 3,11; ${ }^{11} 1$ 2 3"
770	PRINT AT 6,8; "a"; AT 10,8; "b"; AT 14,8; "c"
800	DIM b\$(3,3): REM board matrix
810	LET moves $=0:$ REM number of moves so far
820	LET P \$ = "X": REM player whose move it is
900	REM play game
910	INPUT (p\$);"'s move? "; m\$
920	IF LEN m\$ $\diamond 2$ THEN GOTO 910
930	LET $\mathrm{x}=1$: LET $\mathrm{y}=2$
940	IF mS (1 < $=13 \mathrm{l}$ (THEN LET $\mathrm{x}=2$: LET $\mathrm{y}=1$
950	LET $i=\operatorname{CODE}$ m\$(x$)-\mathrm{CODE}$ " $\mathrm{A}^{\prime}-1$
960	IF $1>3$ THEN LET $1=1$ - (CODE "a" - CODE "A")
970	LET $j=\operatorname{CODE}$ m\$ $(\mathrm{y})-\mathrm{CODE}$ "0"
980	IF $i<1$ OR $i>3$ THEN GOTO 910
990	IF $\mathrm{j}<1$ OR $j>3$ THEN GOTO 910
1000	IF $b \$(i, j)\langle$ " " THEN GOTO 910
1010	LET b\$ $(i, j)=\mathrm{p}$ \$
1020	LET moves $=$ moves+1
1400	REM display move on board
1410	PRINT AT 2+4*i,7+4*j; p\$
1500	REM check for win
1505	REM check rows
1510	FOR $n=1$ TO 3: FOR m=1 TO 3
1520	IF bs (n, m) < $\mathrm{p}^{\text {p }}$ S THEN GOTO 1550
1530	NEXT m
1540	GOTO 1740
1550	NEXT n
1560	REM check columns
1570	FOR $\mathrm{n}=1$ TO 3: FOR m=1 TO 3
1580	IF bS (m,n) > p\$ THEN GOTO 1610
1590	NEXT m
1600	GOTO 1730
1610	NEXT 17

1620	REM check diagonals
1630	IF $b \$(1,1)=p \$$ AND $b \$(2,2)=p \$$ AND bs $(3,3)=p \$$ THEN GOTO 1720
1640	IF bs $(1,3)=p \$$ AND $b \$(2,2)=p \$$ AND $b s(3,1)=p \$$ THEN GOTO 1700
1650	LET pS = CHR \$ (CODE "X' + CODE '0" - CODE p\$)
1660	IF moves<9 THEN GOT0 900
1670	PRINT AT 21, 0; "Game drawn"
1680	GOTO 1820
1700	REM cross through winning line
1710	PLOT 84,52: DRAW 80,80: G0TO 1800
1720	PLOT 84,132: DRAW 80,-80: COTO 1800
1730	PLOT $60+32 *_{n}, 132$: DRAW $0,-80:$ GOTO 1800
1740	PLOT 84,156-32*n: DRAW 80,0
1800	REM here when game won
1810	PRINT AT 21,0; p\$;" wins"
1820	INPUT "Another game? (Y/N) "; a\$
1830	IF aS="Y" OR aS="y" THEN GOTO 700
1840	IF aS< " n " AND a\$ $\mathrm{O}^{\prime \prime} \mathrm{N}$ " THEN GOTO 1820

The As in line 740 are in graph.cs sh ft , after the program is first run they w Il be seen to have changed to grey squares The character string on ine 760 has three spaces between the 1 and the 2, and three more between the 2 and the 3

The move s nput in the form of a etter and a dig t, Deing the 'map reference of the square in which the symbol s to be placed The letter and d.git may be .ne ther order, and the letter may be nupper or ower case for example the righthand square in the middle row may be identif ed as B3' or 'b3 or 3B' or '3b' The program should explain this to the user f a wrong format s given, so that lines 920, 980 , 990 , and 1000 should not jump directiy to 910 but first output a suitable message

The state of the game is stored n the array $b \$$
which nas one element for each of the nine squares in the 3×3 grid Each element holds e ther an X or an O or a space. Making a move consists of writ ng the appropriate symbol in the appropriate e ement of $D \$$; nav ng made a move we look to see f the player who made the move has won, and if he has not we offer the other p ayer a move.

Although this may seem an obvious way of storing the posit on, it is by no means the only way Make the following changes to the program add

```
600 REM define value of each square
610 DATA 1344, 4160, 16449
620 DATA 1040, 4369, 16400
630 DATA 1029, 4100, 16644
6 4 0 \text { DIM v (3,3)}
650 FOR i=1 TO 3: FOR j=1 TO 3
6 6 0 \operatorname { R E A D ~ v ( i , j ) }
670 NEXT j: NEXT i
```

replace I nes 800 to 910 by
800 DIM $m(2,5)$: REM moves played
810 LET move $=1$: REM current move number
890 REM each player moves, $p=1$ for $X, p=2$ for 0
900 FOR $p=1$ TO 2
910 INPUT "XO"(p); "s move? "; m\$
and replace lines 1000 to 1810 by

```
1000 LET k = v(i,j)
1010 FOR n = l TO move
1020 IF m(1,n)=k OR m(2,n)=k THEN GOTO 910
1030 NEXT n
1040 LET m(p,move) = k
```

```
1400 REM add move to board
1410 PRINT AT 2+4*i,7+4*j; "XO"(p)
1500 REM check for win (3 in a row)
1510 LET s=0
1520 FOR i=1 TO move
1530 LET s = s + m(p,i)
1540 NEXT i
1550 FOR i=1 TO 8
1560 LET k = INT (s/4)
1570 IF s-k*4 = 3 THEN GOTO 1750
1580 LET s = k
1590 NEXT i
1600 IF move=5 THEN PRINT AT 21,0; "Game drawn":
                                    GOTO 1820
1610 NEXT p
1620 LET move = move + 1
1630 GOTO 900
1700 REM cross through winning line
1711 DATA 84, 52, 80, 80
1712 DATA 84, 60, 80, 0
1713 DATA 84, 92, 80, 0
1714 DATA 84, 124, 80, 0
1715 DATA 84, 132, 80, -80
1716 DATA 92, 132, 0, -80
1717 DATA 124, 132, 0, -80
1718 DATA 156, 132, 0, -80
1750 RESTORE 1710+1
1760 READ x,y,dx,dy
1770 PLOT x,y: DRAW dx,dy
1800 REM here when game won
1810 PRLNT AT 21,0; "XO"(p); " wins"
```

Altnough the new program behaves n just the same way as far as the user s concerned, the way in which it stores the state of the game is very different. Instead of keeping a record of the symbol that is in each square, t keeps a record of the moves that have been made; moreover it Jses a rather peculiar set of numbers to represent the nine possible squares in which each player can place his symbol.

There are eignt 'ines' along which a winning set of three symbols can lie, three horizonta, three vertical and two diagonal The number of symbos a player nas on any given I ne can be 0,1,2 or 3 We give the lines values each of which is four times the ast v.z $1,4,16,64,256,1024$. 4096 and 16 384, we arbitrarily choose to allocate them in the order

1 diagona bottom left to top right,
4 bottom norizontal line,
16 miadle horizontal line;
64 top horizontal line;
256 diagonal top left to bottom right, 1024 lefthand vertica line; 4096 miacle vertical line; 16384 righthand vertical line.

The value of each square s the sum of the values of al: the lines it appears n thus the top lefthana square nas the value $64+256+1024$ and the square n the middle of the bottom row has the value $4+4096$ The compiete diagram s given below

Note that instead of simply load ng the values nto v w th the READ command we could have calculated them by

```
600 REM define value of each square
610 DIM v (3,3)
620 LET v (3,1)=1: LET v (2,2)=1: LET v(1,3)=1
630 LET j=4: FOR i=3 TO 1 STEP -1
640 FOR n=1 TO 3: LET v(i,n)=v(i,n)+j: NEXT a
650 LET j=j*4: NEXT i
660 FOR n=1 TO 3: LET v (n,n)=v(n,n)+j; NEXT n
670 FOR i=1 TO 3: LET j=j*4
680 FOR n=1 TO 3: LET v(n,i)=v(n,i)+j: NEXT n
600 NEXT i
```

At I ne 1000 in the new program we store in k the val ue of the square the player has chosen and then (lines 1010 to 1030) see if either player has used that square already. If not the move is valid and is added to the record of moves and to the picture.

In the earlier program, the code to see if a line of three nas been made is very straigntforward: for each row,
column, and diagonal it looks to see if all three squares contain the symbol of the player who has just moved The code in the new program is shorter but it is less easy to see wnat is go ng on. F rst we add up all the moves the player has made: ines 1510 to 1540 set s equal to the total. Then we repeatedly divide this total by four, k is the quotient, and $s-k^{*} 4$ is the rema nder, so line 1570 looks each time to see if the remainder is 3 Remember that s is the total of the scores of all the squares n which the player s symbol has been placed, and each square scores 1 if it $s n$ the bottom- eft-to-top-right diagona, 4 if it is in the bottom row, 16 if it is in the middle row, and so on All the scores except for the d agonal are multiples of 4 , all except that and the bottom row are mult ples of 16, and so on.

The first time the program d vides s by 4 , therefore, the remaincer is the number of moves that were n the Dottom- eft-to-top-right diagonal if this is 3 then the payer nas occup ed all three squares n the diagonal and has won, Ines 1750 to 1770 read the co-ord nates of the line through this diagonal (from ine 1711) and draw it Note that the player cannot p ay in more than three squares along the diagonal, and thus cannot score enough in is to 'carry over into the 4 s .
f the first remainder is not 3 , s is set to one quarter of its prev ous value i.e the bottom row now scores 1, the m adle row 4 , the top row 16 , and so on. The diagonal that we have already dealt w th no longer scores at al, On its second time through ine 1570, the program looks at the remainder when this new sis divided by 4,1 e at the number of sq-ares occupied in the bottom row. As before, if it is 3 we Jump to I ne 1750 to draw througn the w nn ng I ne

This time t is 2 so the DATA are taken from line 1712
Each time round the loop the count of squares occupied in another row is separated out until all e ght nave been considered If one of them proves to have a I three squares occup ed by the player, the game is won and at ine 1770 the program craws tnrough the w nning I ne.

PLAYING AGAINST THE COMP JTER

Having programmed the computer to make moves that are dictated to t, and to recognise when one side has won. the next step is to make the program able to play one side itself. For example we may add the follow ng to the noughts and crosses program.

```
590 LET auto = 2
905 IF p=auto THEN GOTO 1100
1 0 5 0 ~ G O T O ~ 1 4 0 0 ~
1100 REM computer's move
1110 LET i = INT (RND * 3)
1120 LET j = INT (RND * 3)
1130 GOTO 1000
```

and change line 1020 to Jump to line 905 instead of 910 if the square is alreacy occup ed Line 590 defines that the program wil play second you may prefer to set to 1 instead, so that the program wil p ay first or to ask the user whether the program should play first (auto $=1$) or second (auto $=2$) or not at all (auto=0).

In this version, the prograrr's moves are purely random it keeps croosing a random square until t finds one that s not a ready occupied, and does not make any
effort to form a line of three. If you occupy two squares n a ine of three and the third is free, your opponent should move in the third square, but the program is as likely to move in any of the other avalable squares and let you win. n short, the program does not make any attempt to win the game, nor even to defend itself when it is losing. This makes t a rather unsatisfactory opponent, as it is much too easy to beat.

You can use a s mi ar techn que to that on lines 1510 to 1590 to make the program ook for two in a row (in which $s-k^{*} 4=2$), looking first for a row in which it can make a winning move (one n which it scores 2 and you score none) and then for one in wh ch you w.ll make a w nning move if it does not get there first (one in which you score 2 and it scores none). Oniy f no such row s found will it move randomly. Hav ng decided to move in a particular row, it must of course then discover which square to choose: after

$$
\operatorname{LET} k=\operatorname{INT}(v(i, j) / n) / 4
$$

the value of

$$
\mathrm{k}\langle>\text { INT } \mathrm{k}
$$

w ll be true if square (i, j) is in the row, column or diagonal that scores n and false if it is not, and t wil not take long for the program to simpiy try al the squares that are not yet occup ed until the correct one is found.

The program would not then play I ke a complete diot but you would sti I be able to beat it fa rly often, and it would only beat you if you were both careless and unlucky at the same time.

For the program to be able to play more competently it needs to be able to look ahead and see what further moves wil be possible from each of the positions it can move to. For instance, cons der the following position in which it s O's move; the squares are numbered in the same way as in the program:

If O moves into square $b 1 X$ is then able to move into square c3 giving the position

from which X can win because he can comp ete a line by playing at etther a1 or $c 2$, if O blocks one of them by playing at a1, say, X can still play at $c 2$ and win before O has a chance to complete the line n row a.

Thus although the move in 01 would not be seen as a losing move by the program just described, we can see that if O plays this move then he will lose un ess his
opponent is very careless. Indeed, of the six possible moves in this posit on four ($a 2, b 1 \quad b 3, c 2$) are losing moves so that if you are X in this position you have a 2 to 1 chance of beating the program.
(f you make your first move in the centre, then the program will move elther in a corner square such as a3 or n a centre-edge square such as 22 . In the former case you can, as we have seen, win two games out of three by playing in the opposite corner in the latter case you can always $w n$ by playing anywhere except directly opposite - if the program has p ayed in a2 you can wn if you play n any square except $c 2$ Because the program plays randomly if you start n the centre every time then, on average, out of every six games the program w Il play in a corner square in three, two of wh ch you w II win, and in a centre-edge square n three, a I three of which you wil win. On average, then you shou d win five out of six games, so the odas are 5 to 1 in your favour.)

If the program is to find the 'best' move in any position then it must be able to ascribe a value to eacn poss ble move, and have objective criteria for calcu atıng this va ue. n fact we tend to talk intercnangeably about the value of a move and the value of a position: the value of a move is the same thing as the value of the position moved to In many two-person games, noluaing noughts and crosses, the possible values are simply 'win , 'draw', and lose', which are often represented as 1,0 , and -1 . (In other games it can matter not just whetner you win or lose but also by what margin you may have a choice of three moves, al of which lose, but if one loses you $£ 1$ and the others lose you £5 you will choose the £1 move.)

The rue used by a program to find the value of a pos tion (except one at the end of the game for which we know the value anyway) is the va ue of a position to the player whose turn it is to move is the greatest of the values of the moves he has available to him.

Thas if it is your move and you nave a winning move available to you then you are n a wnning position, even if you have a lot of other moves avai able whicn do not win From your opponent's point of view, of course, the situation is reversed if there sone move available which w ! result in him iosing then it is a losing position (althougn he can a ways hope that you wil not spot the vital move)

The basic structure of a routıne which finds the value of a position in this way is:

```
define "value of (p)" as:
```

```
if end of game then [calculate value directly]
else: let v = worst possible value for the
                                current player
                    now let q be, in turn, each position
                                we can move to
    For each q, 1et v2 = value of (q), and
        if v2 is better than v then
        let v = v2
when all moves have been considered,
        value is v.
```

This causes two main problems when we try to
implement it in BASIC. First, the rout ne s 'recursive', which means that it is defined n terms of itse f Suppose we have a position p1 from which we can move to $p 2, p 3$, or $p 4$, and suppose $p 2$ is a drawn position (at the end of a game) but p3 is a position (not at the end of a game) which turns out to be lost. When value of $(p 3)$ is worked out, variable v is used to hold 'value of the best move from p3 so far found (in this case 'lose), but we must not overwrite the varıable v wh ch holds 'value of the best move from p1 so far found' (in this case 'draw') Languages which are 'b ock structured, such as Algol and Pascal, take care of this kind of problem more or less automaticaliy, but in BASIC we need to make provision for it in the program.

Secondly, this innocent-ooking litt e routine can take an enormous amount of t me to run Suppose we are looking at the f rst move in a game of noughts and crosses: there are nine possible moves, so the rout ne is called for each of them Within each of these nine calls, the routine is called again for each of the second player's eight poss ble moves a total of 9×8 or 72 . With n each of these 72 calls, the routine is called again for each of the f rst player's seven possib e second moves, a total of 72×7 or 504 calls at this level. With n these we have $504 \times 6=3024$ calls to find the vaiue of the second player's second move, wh ch n turn involves 15120 calls to find the varue of the first player's third move Of these, 2880 wl be for 'end-of-game' positions in which the first player has won but the otner 12 240 al give rise to further calls' it can be shown that for each one there will be at least 13 but less than 64 further cal s

Adding up all the cal s at the different levels we can see that there wil be at least 177850 (but ess than

802 090) cal s, every one of which must at least check to see whether the game has been won If we reckon that this w II take around a huncredth of a second each time, it means that the program w II take between half an hour and two hours to decide on its first move In fact the time per call is likely to de nearer a tenth of a second than a hundredth. so the program cou a take anytning $u p$ to 20 hours over its first move if it piays first, and 2 hours if it plays second.

There are two ways that this time can be reduced. t is clearly helpful if we can reduce the time taken to discover if a position is a winning position, but it is equaly clear that we must make a sign ficant requction n the number of positions that the program cons ders

The method of identifying w nning posit ons used in the second version of the program in this chapter works very well in machine code and in some programming languages This is because the number s wnich the program works out on lines 1510 to 1540 is held inside the computer as a bit string 16 bits ong with 2 bits for each row, and the computer can in two or three operatons (which work on a bit str ng as a whole) find out whether any row has the value 3

[^4]However, in BASIC we have to break s down into e ght numbers, and moreover we have to co this using the 'd vide' operator, which is one of the slower ones.
(The new program given below in fact retains the old method in the part that actually makes the moves Th s is not strictly necessary although t does g ve a check that the part of the program that chooses the computer's move is not 'cneating'. I was done to avoid changing the program more than is necessary to add the new facil ty)

The program below uses the fol owing arrays:
$p(9)$ holds the content of each of the squares as 1 for $X-1$ for O, zero if empty The squares are numberea 1, 2, . , 9 rather than $(1,1),(1,2) \quad(3,3)$ to save time. $w(8)$ saves the value of v (which is essentialiy the v in the informa descript on of the routine above) at each 'leve,' of cal
n (9) similar y saves I, which keeps track of which move we are considering.
$r(45)$ consists of five $n u m b e r s$ for each square, peing the number of each line (row co umn or d agonal) the square is in , fo lowed by enough zeros to make up five numbers (see I nes 2010 to 2090) Again, one subscr pt rather than two is used for speed.
$c(8)$ counts the symbols in eacn line 3 for tnree X_{s} (so X has won), 2 for two Xs (so X can win f it is his move), 1 for one X or two Xs and an $\mathrm{O}, 0$ for no symbos at al, 1 for one O or two Os and an $X,-2$ for two Os, -3 for three Os $s(8,3)$ shows which squares make up each line (three squares to each of the eight ines see ines 2100 to 2130 of the program). In this case there would be little advantage in making it use a single subscript.

The lines of squares are in the same order as before but numbered 1 to 8 so that 1 and 5 are the diagonals, 2 to 4 the rows, and 6 to 8 the columns.

The rout ne has been put at the top of the program to reduce the time taken for GOTO and GOSUB, as explained in an earlier chapter. t works as fo lows

GOSUB 100 calculates and stores $n v$, the value of the position after player q has moved in square I, q is 1 if the player is $X,-1$ if the player is O The value is 1 if the posit on s a win for $X,-1 \mathrm{f}$ it is a win for O , zero if it is a draw.

After updatıng array p isets about updatıng array c Array r has already been loaded with the data from lines 2010 to 2090 Suppose for instance that $t=3$ so that $i \times 5-4$ $=11 ; j$ will be set to 11 so the program reads the f rst of the numbers loaded from line 2030, and we repeat lines 110 to 130 with $r(1)$ being in turn 1,4 , and 8 becalse square number 3 , which is at the top r ght, is in ines 1 (diagonal), 4 (top row), and 8 (righthand column). Each t me we update one of the elements of c, we check if the line now has two or three of the current player's symbols in it. On ine 150 we recognise the position as a win $f n$ is at least 2 , wh ch means that elther there s now a row of three or else there is more than one row of 2 , as in

when X has fust moved each of the diagonals has two X,
and whicnever of the pottom corners O plays in X can play in the other and wn. Note that the top row only scores 1 and thus does not count as having two Xs
.f there is Just one ine that scores 2, the opponent must play in the third square in that line; line 170 finds which square s stil free thus after X s move in

O must pay in the top rignthana corner and the program does not waste t me consider ng the other f ve squares

Another test which reduces the number of posit ons considered is at the end of line 240 , which looks to see f a winning move for the relevant player has been found if it has, we nave a winning pos tion for that player and do not need to look at any further moves

The code to be added to the earler program is as follows Only line 1040 replaces an existing line, the rest is additional to the previous code.

```
    10 GOTO 500
    90 REM set v = value of move i
100 LET p(i)=q: LET j=i*5-4: LET n=0
110 LET k=c(r(j)): LET c(r(j))=k+q:
    IF k=q THEN LET n=a+1: LET n2=j
120 IF k=q+q THEN LET n=2
130 LET }\textrm{j}=\textrm{j}+1\mathrm{ : IF }r(j)<>0 THEN GOTO 11
140 IF n=0 THEN GOTO 210
150 IF n>1 THEN LET v=q: COTO 320: REM win
```

$160 \operatorname{LET} \mathrm{n}(\mathrm{m})=1:$ LET $\mathrm{q}=-\mathrm{q}: \operatorname{LET} m=\mathrm{m}+1$: REM opponent's move forced
170 LET $i=s(r(n 2), n): I F p(i)<>0$ THEN LET $\mathrm{n}=\mathrm{n}+1$: GOTO 170
180 GOSUB 100: GOTO 310
200 REM look at all opponent's moves
210 IF $\mathrm{m}>7$ THEN LET $\mathrm{v}=0$: GOTO 320
220 LET $n(m)=1$; LET $m=m+1$: LET $w(m)=q$: LET $q=-q$: LET $i=1$
230 TF $\mathrm{p}(1)$ 〈 0 THEN GOTO 260
240 GOSUB 100: IF $v=q$ THEN GOTO 310
250 IF $\mathrm{v}=0$ THEN LET $\mathrm{w}(\mathrm{m})=0$
260 LET i=i+1: IF $1<10$ THEN GOTO 230
270 LET $v=w(m)$
300 REM now $v=$ value; undo move \& exit
310 LET $m=m-1$: LET $q=-q:$ LET $i=n(m)$
320 LET $j=i * 5-4$
330 LET $c(r(j))=c(r(j))-q:$ LET $j=j+1$:
IF $\mathbf{r}(\mathrm{j})>0$ THEN GOTO 330
340 LET $p(i)=0$: RETURN
500 REM
501 REM start of program proper
510 LET $q=0$: LET $m=0$: LET $\mathrm{i}=0$: LET $\mathrm{k}=0$: REM so they are first in v^{\prime} bles area
520 DIM $\mathrm{p}(9)$: DIM $w(8):$ DIM $n(9):$ DIM $\mathrm{r}(45)$: DIM c(8): DIM s(8,3)
530 RESTORE 2000
540 FOR $\mathrm{n}=1$ TO 45: READ $\mathrm{r}(\mathrm{n})$: NEXT n
550 FOR $i=1$ TO 3: FOR $n=1$ TO 8: READ $s(n, i)$:
NEXT n : NEXT i
560 FOR $i=U S R$ "a" TO USR "a"+6 STEP 2
570 POKE i, BIN 10101010: POKE i+1, BTV 01010101: NEXT i
590 LET aut. $=2$
905 IF p=auto THEN GOTO 1110

```
1040 GOTO 1400
1100 REM computer's move
1110 LET \(\mathrm{m}=2\) * move \(^{2} \mathrm{p}-2\) : LET \(\mathrm{q}=3-\mathrm{p}-\mathrm{p}\) : LET \(\mathrm{i}=1\)
1130 FOR \(n=1\) TO B: \(\operatorname{IF} \mathrm{c}(\mathrm{n})=\mathrm{q}+\mathrm{q}\) THEN GOTO 1230
1140 NEXT n
1150 FOR \(n=1\) TO 8: IF \(c(n)=-q-q\) THEN GOTO 1230
1160 NEXT n
1170 REM evaluate each possible move
1180 IF \(\mathrm{p}(\mathrm{i})<>0\) THEN GOTO 1210
1190 GOSUB 10: TF \(\mathrm{v}=\mathrm{q}\) THEN LET i2=1: GOTO 1370
1200 TF \(\mathrm{v}=0\) THEN LET i2=1
1210 LET \(i=1+1:\) IF \(i<10\) THEN GOTO 1180
1220 GOTO 1370
1230 LET 12=n
1300 REM move in row i2
1310 IF \(\mathrm{p}(\mathrm{s}(\mathrm{i} 2), \mathrm{i})\) ) <> O THEN LET \(\mathrm{i}=\mathrm{i}+\mathrm{l}:\) GOTO 1310
1320 LET i2=s(i2,i)
1350 REM move in square i2
1370 LET \(i=\operatorname{INT}((12+2) / 3): \operatorname{LET} j=12-i * 3+3\)
1400 REM move in square ( \(i, j\) )
1410 PRINT AT 2+4*i,7+4*j; "XO"(p)
1420 LET \(\mathrm{m}(\mathrm{p}\), move \()=\mathrm{v}(\mathrm{i}, \mathrm{j})\)
1430 LET q = 3-p-p
1440 LET \(p\left(3 *_{i}+j-3\right)=q\)
1450 LET \(\mathrm{n}=15 * \mathrm{i}+5\) * \(_{\mathrm{j}}-19\)
1460 LET \(k=c(r(n)): \operatorname{LET} c(r(n))=k+q\)
1470 LET \(\mathrm{n}=\mathrm{n}+1\) : IF \(\mathrm{r}(\mathrm{n})\) 》 0 THEN GOTO 1460
2000 REM lines each square is in
2010 DATA 4,5,6,0,0
2020 DATA 4, 7,0,0,0
2030 DATA 1,4,8,0,0
2040 DATA 3, \(6,0,0,0\)
```

2050 DATA $1,3,5,7,0$
2060 DATA $3,8,0,0,0$
2070 DATA $1,2,6,0,0$
2080 DATA $2,7,0,0,0$
2090 DATA $2,5,8,0,0$
2100
2110 REM squares in each line (read dowawards)
2120
2130

This vers on (wh ch is written so that the computer p ays second) st Il looks at more posit ons than it needs to It does not recognise symmetrical posit ons for instance if your first move is in the centre, the program finds the va ue of moving in each of the eight remaining squares even though al the corner squares must nave the same value, as must al the centre edge squares. By a more carefu analysis of how the ines of squares are occup ed, t could ident fy drawn positions, and winnıng moves, sooner
(To win, you need two intersecting lines in each of which there are none of your opponent's symbois and $\jmath\lrcorner$ st one of your own, which must not be in the square which is common to botn lines If this situation exists, the move in the square that is common to both ines is a w nning move and no other moves need to be considered A position in which neither s de has two such lines available is drawn. If the current player does not have two such ines avallable and the first move we look at achieves a draw, the position is drawn and we do not need to look at the otner moves as we know none of them can win)

The program takes several minutes over its first move and if it was changed so that the computer moved
f.rst rather than second it would take about n ne times as long. However, we can add

```
1020 IF m<3 THEN LET 12=5: GOTO 1350
1360 IF p(i2) <> 0 THEN LET i2=9: REM if
    from 1020 with m=2 & sq 5 occ'd
```

so that if it moves first it always starts n the centre and f it moves second it moves in the centre unless you have already moved there in which case it goes in one of the corners. This dramaticaly reduces the time required for the program to decide on its f rst move. It also makes the quest on of symmetry much less important, as it is in the earliest stages of the game that the symmetrica positions mostly occur.

You might like to see a l the varıous posit ons the program considers during its de iberations. this can be done by add ng

90 LET pos=0

335 PRINT AT 20, pos+4;m;: FOR $x=3$ TO 9 STEP 3:

```
PRINT AT x/3+18,pos;: FOR k=x-2 TO x:
PRINT " " AND p(k)=0; "0" AND p(k)<0;
"X" AND p(k)>0;: NEXT k: NEXT x:
PRINT " ";v;:
LET pos=pos+6: IF pos>28 THEN
LET pos=0:
PRINT ".".! IF PEEK 23692>12 THEN
POKE 23692,12
```

which prints out the position, move number, and value before returning from each cal of the subroutine

Jnfortunately it also destroys the display of the board and ncreases the time the program takes to run.

Although xeep ng extra cata about the pos tion can help reauce the amount of calcu ation, it is important to remember that although it saves work it a so creates extra work mainta ning the extra data structures For instance, suppose that nstead of the array p, wh ch shows what is in each square, we кept a I st of the squares that have not yet been occuped Then for the e ghth or n nth move in the game the program would not need to search through p ooking for the one or two remaining squares. But the effort of mainta ning the list wou d be more than the small amount of looping around I nes 230 and 260 that would be saved In contrast to the earl er programs which hard y ever won and often lost, this program never oses. As an opponent you might find this even more unsatisfactory, but it is a fau t of the game rather than of the program Some poss bie improvements include choos ng a move at random from among the avallabie moves (excluaing of course. those moves that would lose) instead of the present reg me of always tak ng the last one found and perhaps making occasional random moves which might be losing moves (so the program dehaves more like a human payer) It could a so take account of having a fal ible opponent by preferring moves from which a win could occur if its opponent made a mistake for nstance all the possible second moves for X atter

are drawn, but whereas most of them more or less force a draw, playing in the bottom lefthand corner gives O plenty of opportunity to maxe a losing move.

OTHER GAMES

Other two-person games such as cness, go draughts, and othello, are programmed in essent al y the same way The computer works out the value of the var ous available moves using the algorithm given earlier, and the number of pos tions to be considered has to be kept withın reasonabie bounds The main techn ques we used here were to treat the open ng moves of the game specia ly relying on past experience rather than analysing the postion afresh every time; to recognise when a p ayer's move is forced; and to recognise won and drawn positions as early as possib e.

Except with very simp e games like noughts and crosses it s also necessary to limit how many moves ahead the program ooks. (n the program above, once we had eliminated the first two moves the length of the game limited it to looking about six moves ahead) When it reaches the $\lim t$, it has to use some other measure of the 'value' of a position, in chess this might take account of the number of pieces each side has on the board, wh ch pieces are en prise, and the extent to which each s de has contro of the centre of the board The program needs to be somewhat flex ble about where the limit comes not stopping in the middle of a sequence of captures or whi e a player is in check.
n general you snould expect that to write a
program tnat p ays a game as complex as chess at a l
competent y you will need to use a language that is rather more effic ent than ZX BASIC.

For games that invo ve a rancom element, the amount of looking ahead that can be done is severe y constrainea by not know ing what card w li be turned up next or what number will come $\lrcorner p$ at the next throw of the dice. The program can of course, consider all the poss ble outcomes of the random element but this is likely to cause a big increase in the number of positions to be looked at, and hence decrease the distance ahead that the program can ook in a reasonable time. The program's performance therefore depends much more on considering the apparent worth of a position than on considering the moves that can be made from it how this 'apparent worth' can best de calculated will depend very much on the game and t is d fic silt to give any general rules for it except to re terate that it must be able to be calculated from numerical properties of the pos tion and cannot nclude any subjective crteria.

ANIMIATIOA

The main im tatıon to providıng moving pictures on the TV screen is the slowness of the ZX BASIC langlage. In most cases a fair amount of calculation is needea to proauce each frame of a mov ng p cture and it is Jnreailst c to expect to be able to do it in the 25th of a second or so that would be needed to produce a picture that appears to move smoothly.

For some kinds of moving display, you do not need to change the p cture this often. To d splay a clock, for instance, you only need to change the p cture once per second the manual contains a su.table program (at the start of Cnapter 19 in the $\mathbf{Z X 8 1}$ manual Chapter 18 in the Spectrum man all) for one which contains only a second hand, and one of the exercises at the end of that chapter suggests you should extend the program to draw the hour and minute hands as well

To get an dea of how fast the Spectrum can draw and rearaw things, use the fol owing 'נffy' program (A 'iffy' program is a short program that is wr tten quickly and is ntenced to be ephemeral Hence, for instance, we do not bother to put captions in the INPUT command)

```
10 OVER 1
20 INPUT k,s
30 LET n = TNT (176/k) - 1
40 LET m = (n+1) * (k-1)
50 FOR i=s TO 255 STEP s
60 FOR j=0 TO m STEP n+1
```

```
    7 0 ~ P L O T ~ i , j : ~ D R A W ~ 0 , n
    80 PLOT i-s,j: DRAW 0,n
    90 NEXT j
100 NEXT 1
110 GOTO 20
```

Th s draws a ine up the screen in κ segments and moves it across the screen in steps of s pixel-widths at at me (It also, rather messily, eaves a line at each side of the screen this can be eliminated by adding

```
43 FOR j=0 TO m STEP n+1
```

45 PLOT 0,j: DRAW 0,n
47 NEXT j
103 FOR j=0 TO m STEP n+1
105 PLOT i-s,j: DRAW 0,n
107 NEXT j
but you might not th nk it worth the effort)
By experimenting with different values of k and s you can see flst how fast (or not so fast!) the computer can move things around on the screen When k is small it has very little effect on the speed because most of the time s taken up actual y draw ng the I ne, but as k gets larger the various overheaus such as interpreting the DRAW and PLOT commands become more mportant. You could investigate the effect of line length by INPUTI ng a thurd parameter, isay, and replacing n with I in lines 60 and 70 (and 45 and 105 if you have them), or by s mply rep acing n in these lines by a constant.

For the ZX81 a sımi ar program can be used
10 SLOW
20 INPUT k

```
30 INPUT s
40 LET n = INT (44/k)
50 LET m = n * (k-1)
6 0 ~ F O R ~ i = s ~ T O ~ 6 3 ~ S T E P ~ s ~
70 FOR j = 0 TO m STEP n
80 PLOT i,j
90 UNPLOT i-s,j
100 NEXF j
110 NEXT 1
120 GOTO 20
```

Again, it shows how a very small amount of redraw ng takes a not ceable amount of time It has to run in SLOW mode, because otherwise you do not see anything until it has f nished

The fol owing program for the Spectrum draws a matchstick figure wh ch wa ks across the screen.

10 DIM $u(7)$: DIM $v(7)$: REM parans for current figure
20 DIM $t(7):$ DIM $w(7):$ REM params for previous figure
30 DIM $q(7)$: REM preserves old $u()$ in calculations
40 DIM $x(7)$: DIM $y(7)$: REM params for first figure
100 REM parameters for start of stride
110 LET $x(1)=40: \operatorname{LET} y(1)=30$
120 LET $x(2)=-2.5 * \operatorname{SQR} 3: \operatorname{LET} y(2)=-2.5$
130 LET $x(3)=-20:$ LET $y(3)=-8 * x(2)$
140 LET $x(4)=x(1)+x(3):$

$$
\operatorname{LET} y(4)=y(1)+y(3)+1
$$

$150 \operatorname{LET} x(5)=-10: \operatorname{LET} y(5)=4 * x(2)$
160 LET $\mathrm{x}(6)=-10:$ LET $\mathrm{y}(6)=\mathrm{y}(5)$

```
170 LET \(x(7)=5: \operatorname{LET} y(7)=\) 〕
200 REM initlalise "previous figure"
210 FOR i=1 TO 7
220 LET \(t(i)=x(i): \operatorname{LET} W(i)=y(i)\)
230 NEXT 1
300 REM set up coefficients for rotations
301 REM the number following \(c\) or \(s\) is in
        degrees
310 LET c3 \(=\operatorname{COS}(\) PI /60) : LET s3 \(=\operatorname{SIN}(\) PI \(/ 60)\)
320 LET c4 \(=\operatorname{COS}(P I / 45):\) LET \(84=\operatorname{SIN}(P I / 45)\)
330 LET c7 \(=\operatorname{COS}(7 * P I / 180):\)
LET \(87=\) SIN (7*PI/180)
340 LET c \(10=\operatorname{COS}(\mathrm{PI} / 18)\) : LET s \(10=\operatorname{SIN}(\mathrm{PI} / 18)\)
400 REM now draw first figure
410 OVER I
420 PLOT \(x(1)-x(2), y(1)-y(2):\) DRAW \(x(2), y(2):\)
DRAW \(x(3), y(3)\)
430 DRAW \(\mathrm{x}(5), \mathrm{y}(5)\) : DRAW \(\mathrm{x}(6), \mathrm{y}(6)\) :
        DRAW \(x(7), y(7)\)
440 PLOT \(x(4), y(4):\) DRAW 0,40: DRAW 7, \(\mathbf{~} 22\) :
        DRAW 24,3
450 PLOT \(\mathrm{x}(4), \mathrm{y}(4)+40\) : DRAW 15, 15: DRAW \(-15,15\) :
        DRAW \(-15,-15\) : DRAW 15,-15: DRAW \(-7,-25\) :
        DRAW 23,-7
    500 FOR \(1=2\) TO 7
    510 LET \(u(i)=x(i): \operatorname{LET} v(i)=y(i)\)
520 NEXT 1
600 REM here to draw each subsequent figure
610 FOR \(i=1\) TO 20
620 FOR \(j=2\) TO 7: LET \(q(j)=u(j): \operatorname{NEXT} j\)
700 REM update params for next figure
710 IF i<11 THEN LET \(u(2)=c 3 * u(2)+s 3 * v(2):\)
                        LET \(\mathrm{v}(2)=c 3 * \mathrm{v}(2)-s 3 * \mathrm{q}(2)\)
720 LET \(u(3)=c 3 * u(3)+s 3 * v(3)\) :
    LET \(v(3)=c 3 * v(3)-s 3 * q(3)\)
```

730 LET $u(4)=x(1)+u(3): \operatorname{LET} v(4)=y(1)+v(3)$
740 IF i<11 THEN LET $u(5)=c 10 * u(5)-s 10 * v(5)$:
LET $y(5)=c l 0 * v(5)+s 10 * q(5)$
750 IF i>16 THEN LET $u(5)=c 10 * u(5)+s 10 * v(5)$:
LET $v(5)=c 10 * v(5)-s 10 * q(5)$
760 IF i<5 THEN LET $u(6)=c 10 * u(6)+s 10 * v(6)$:
LET $v(6)=c l 0 * v(6)-s 10 * q(6)$
770 IF i>10 THEN LET $\mathbf{u}(6)=\mathrm{cl0} \mathrm{*} \mathrm{u}(6)-\mathrm{s} 10 \mathrm{*}_{\mathrm{v}}(6)$:
LET $v(6)=c 10 * v(6)+s 10 * q(6)$
780 IF i<11 THEN LET $u(7)=c 7 * u(7)+s 7 * v(7):$
LET $v(7)=c 7 * v(7)-s 7 * q(7)$
790 IF $i>10$ THEN LET $u(7)=c 10 * u(7)-s 10 * v(7):$
LET $v(7)=c 10^{*} v(7)+s 10^{*} q(7)$
800 REM undraw old \& draw new
810 PLOT $t(1)-t(2), y(1)-w(2):$ DRAW $t(2), w(2):$
DRAW $t(3)$, w(3): DRAW $t(5)$, w(5):
DRAW $t(6)$, w(6): DRAW $t(7), w(7)$
820 PLOT $x(1)-u(2), y(1)-v(2)$: DRAW $u(2), v(2)$:
DRAW $u(3), v(3)$: DRAW $u(5), v(5)$:
DRAW $u(6), v(6)$: DRAW $u(7), v(7)$
830 PLOT $t(4)$, w(4): DRAW 0,40: DRAW 7,-22:
DRAW 24,3
840 PLOT $u(4), v(4)$: DRAW 0,40: DRAW 7, -22 :
DRAW 24, 3
850 PLOT $t(4)$, $w(4)+40$: DRAW 15, 15: DRAW $-15,15$: DRAW $-15,-15$: DRAW 15,-15: DRAW $-7,-25$: DRAW 23,-7
860 PLOT $\mathbf{u}(4), \mathrm{v}(4)+40$: DRAW 15, 15: DRAW $-15,15$: DRAW $-15,-15$: DRAW 15,-15: DRAW $-7,-25$: DRAW 23,-7
900 FOR $\mathrm{j}=2$ TO 7
$910 \operatorname{LET} t(j)=u(j): \operatorname{LET} w(j)=v(j)$
920 NEXT j
930 LET $t(1)=x(1)$
940 NEXT i

950 LET $x(1)=x(1)+40$
960 GоTO 600
There are 20 separate 'frames' to each stride Lines 100 to 340 set up various parameters and calculate the sines and cosines of the ang es that are going to be needed ($3,4,7$, and 10 degrees) to rotate the vario 1 s parts of the legs from one frame to the next L. nes 400 to 450 draw the f rst frame, and ines 600 to 940 draw each subsequent frame, erasing the previous frame as it goes. A diamond shape is used instead of a c rcle for the figure's head because circles take mucn longer to draw.

The picture moves very slowly and rather jerkily. the program can be altered so that it ca cuites al the parameters ($u, v t, w)$ for eacn frame first and stores them in arrays but this does not make it run much faster as much of the t me is taken up actually drawing the ines

Often the picture does not need to be moved smoothly In Space Invader type games, for instance, the effect is of the phalanx of al ens moving across the screen from eft to right and back aga n. If it was done by moving this part of the picture smoothly back and fortn across the screen, it would require a great deal of work on the part of the computer, but if you look closely you can see that what actualy happens s that the ndividual a sens Jump sideways one at a t me This g ves the effect of a smooth movement of the who e populat on, but n fact only a smal amount of the screen is updated at a t me, and that updat ng invoives a jump of qu te a large distance. You would draw the aliens Lsing PRINT AT and graphics characters rather than with PLOT so the sideways jump would be the width of a character square.

The following ZX81 program generates a picture which, while not containing any movement as such, is constantly changing.

10 PRINT AT RND*21,RND*31; CHR $\$(R N D * 10)$
20 Gото 10
A similar thing can be done in colour on the Spectrum:

10 PRINT AT RND*21, RND*31; PAPER RND*7; " "
20 GOTO 10
Unlike this book, these programs never finish.

The $\mathbf{Z X}$
 PROGRAMMERS' COMPANION

John and
Catherine Grant

O
women

The ZX Programmers' Companion introduces the new programmer to the art and science of programming using the popular ZX machines and equivalent TS machines in the USA.

The instruction manual that comes with the ZX computer has to be an introduction to all the facilities provided on the machine and how they are used. It does not have the space to say much about how to write programs to do particular jobs. The ZX Programmers' Companion complements the manuals by explaining how to set about designing and writing programs for the $\mathbf{Z X}$ computers, and contains many examples of the kind of program that the $\mathbf{Z X}$ user might need. The steps in deciding the most appropriate way to tackle each problem are discussed and, finally, fully documented programs are given.

The authors' company, Nine Tiles Information Handling Ltd, was responsible for writing the instruction manuals and the built-in software for the ZX 81 and Spectrum machines, and this companion volume will be essential reading for all ZX users.

ISBN ロ-52l-27044.-8

[^0]: Cial thet cortrede how fast the computer ruris and keeps the ves. tous perts. of the computer in synchrory. The 780 requirces between three and six clook oycles for each mechino cycle.
 for the 6502 , 15 for the 8049 .
 *ransforea directly between a periphord and min memory?

[^1]: BLOCK STFUCVRED LANGUABE - a langudge in wnicha

 (3 ooncemed) of a single statement or valua. Uuuly a bloc, Feen have fer own 'privato' variable so mevert dem thein' prowiten whanchurieni puat

[^2]: IF q THEN $a+b$ ELSE $b * c$

[^3]: 200 INK 0: PAPER 7: CLS
 210 PRINT " 1 View statement from start"

[^4]: :REGURSION - a à technigue whereby a function or routino *efinco in com of Heelf (e.g. factorial a dufined as tif $n=0$ theis fico n-f.ctorial $n=1$ ') so that duing evaluation (say of factosivel 5) the computer breake off to go through the shme cort a with different deta (to evaluate fectorial 4, 3, ctc).
 ITERATION - the attornative to pecursion, in which He ripos? Fion of part of the code is explicit (as in the FOR loop) rather Then impliad by acell. An iterative dolinionof Antoriel amornt

