
The ZX

PROGRAMMERS’
COMPANION

John and
Catherine Grant

The ZK
PROGRAMMERS’
COMPANION

John and
Catherine Grant

ge

ted
sly

‘
|

Cambridge University Press

Cambridge

London New York New Rochelle

Melbourne Sydney

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
32 East 57th Street, New York, NY 10022, USA
296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia

© Cambridge University Press 1984

First published 1984

Printed in Great Britain at the University Press, Cambridge

Library of Congress catalogue card number: 83-23967

British Library cataloguing in publication data
Grant, John, 1984
The ZX Programmers’ companion.
1. Sinclair ZX81 (Computer)—Programming
2. Sinclair ZX Spectrum (Computer)—Programming
|. Title {I Grant, Catherine
001.64’2 QA76.8.S625
ISBN 0 521 27044 8

DS

Authors’ note

Part! Whatis acomputer?

An historical introduction
What can a personal computer do?

Writing programs

Storing and using data
Input and decisions

Arrays and strings

Programs for others to use

Example programs

Graphical presentation of data

Statistics

Accounting

Keeping records

Keeping score at games

Board games etc. for two players

Animation

AU THORS'INOTE

The programs in this book are written for the ZX

Spectrum or the ZX81 computers. Each program is written

for one of the computers, and an indication given of how to
convert it into the form required for the other. In many cases

only small changes are needed to convert the program for

other microcomputers that support BASIC

The Timex/Sinclair TS1000 is the North American
version of the ZX81, and the TS2000 is the North American
version of the Spectrum. References to the ZX81 or

Spectrum should be understood to apply also to the

corresponding North American version.

The differences between the ZX81 and the

Spectrum are firstly that the TV picture is made up in rather
different ways in the two machines, and secondly that the

Spectrum's BASIC is an ‘extended’ version of the ZX81's.
On the Spectrum the state of each point on the screen is

stored separately, so that high-resolution graphics pictures
can be drawn; on the ZX81 only text and low-resolution

graphics are available. Also, of course, the ZX81’s picture is

in black and white whereas the Spectrum produces a colour
picture (although the colour information is to a rather lower

resolution than the graphics) and even on a monochrome

TV set will produce several different shades of grey.

Apart from the additional commands etc. to

support its graphics facilities the Spectrum’s BASIC
provides the additional commands BEEP, DATA, DEF FN,

MERGE, OUT, READ, RESTORE, and VERIFY, and functions
FN, IN, and VALS as well as lower case letters, the ‘colon’

separator which allows several commands to be put on one

line, and extra facilities in commands CLEAR, INPUT,

LOAD, and SAVE. The ZX81 commands FAST, SCROLL,
SLOW and UNPLOT are not included in the Spectrum's

BASIC because it does not have separate ‘fast’ and ‘slow’
modes and scrolling and unplotting are done in a different
way.

There are some differences in notation between the
two BASICs; the same notation has been used throughout
the book regardless of which version of BASIC is being

used. Lower case letters have been used for the names of
variables (to distinguish them from the ‘tokens’ which are in

capitals) although on the ZX81 only capitals are available.
The following tokens have different spellings on the two
machines:

2X81 Spectrum Used here

CONT CONTINUE CONTINUE

GOSUB GO SUB GOSUB
GOTO GOTO GOTO
RAND RANDOMIZE RANDOMIZE

on t t

PIAIRIT ||

SBABCOMPUTER?

A computer is a machine which

is used to store and process information,

and which is controlled by a ‘program’

stored in the machine along with the other

information. In Part | we look at just

what this means in practice

HISTORICALBIN TRODUCTION

The most direct line of descent to present-day

microcomputers probably starts with the mechanical
calculators first developed by Pascal in the 17th century.
The important difference between computers and
mechanical calculators lies in the ability of a computer to be

‘programmed to carry out a sequence of calculations. The

calculator has to be made to perform each operation

separately (by pressing a key or turning a handle), waiting

until one operation is done before going on to the next, but

once the ‘program’ of operations is stored in the computer's
memory it can work through the sequence over and over
again at its own speed.

nthe 19th century, Charles Babbage tried to build

a programmable mechanical calculator which he called the
analytical engine, but the task proved to be impossible with

the mechanical engineering technology available at the
time. (It is thought that using modern materials and more

accurately machined parts a working analytical engine
could now be built.)

The first working computers were built in the 1940s
using thermionic valves (called ‘tubes’ in North America);

these machines are now referred to as ‘first generation’
computers (see Fig. 1.1). The ‘second generation’

computers of the early 1960s used transistors, and the third
generation used ‘integrated circuits’ in which a dozen or so

transistors were combined on a single silicon ‘chip’. Each
chip was a building-block performing a simple function

(such as amplifying a signal or combining several signals
into one) which previously had to be done by a circuit using

several separate transistors and other components. The
fourth generation, which includes microcomputers, uses

‘large scale’ integrated circuits, LS! for short, in which the

chip contains tens of thousands of transistors. The pattern of

FIG 1.1

Valve —first Transistor — second
generation generation

Small-scale integrated Large-scale integrated
circuit (SSI) — third circuit (LSI) — fourth
generation. generation.

transistors and the connections between them on an
integrated circuit is created in a similar way to the pattern of

connections on a printed circuit board, but on a much
smaller scale.

The invention of LS! circuits can be likened to the
invention of the printing press. Before there were printing

presses, every copy of a book had to be written out by

hand, but with the printing press a whole page (once it had

been typeset) could be printed in a single, quick operation.

The difference between soldering individual components

onto a circuit board and producing an LSI chip is very
similar.

All the first four generations of computers have the

same basic structure shown in Fig. 1.2(a), which was first

described by John von Neumann in the early 1940s. The

memory can be thought of as a huge bank of switches, each

of which can be either on or off; the switches are grouped

into ‘words’, and each word in the memory contains the

same number of switches. Each word has its own ‘address’

which is simply a number that identifies that particular word,

rather in the way that each house in a street has its own
number.

The ‘central processing unit’, or CPU, is able to

look at, or ‘read’, any word in the memory; it can also

attempt to ‘write’ any word (i.e to set up a new pattern of ons

and offs on the switches) but with some kinds of memory,

called ‘read-only’ memory or ROM for short, this attempt will
not succeed.

When we wish to store numbers in the memory, the

on/off state of each switch is used to represent either 0 (in

one state) or 1 (in the other); these are called ‘binary digits’

or ‘bits’ or short. On most present-day computers a word

contains 8 bits and is called a ‘byte’. There are 256 different

BIT — something that can be in one of two states, usually called

‘0’ and '1’. Can refer either to a piece of hardware or to the

abstract ‘0’ or ‘1’ state stored in it
BYTE —a bit string (qv) 8 bits long. Most computers nowadays

process data in units of 1, 2, or 4 bytes at atime.

FIG 1.2
=H Memory

Inputs Outputs

(a)

Outputs

Backing
store

E
HEE

f] Main memory iF

pma\ DMA\

Inputs | H Outputs
ea etery enh pepe aed ae

(c)

combinations of 1s and Os (called ‘bit strings’) that can be
stored in a byte: 00000000, 00000001, 00000010,
00000011, 00000100, and so on up to 11111111. A pair of
bytes (containing a total of 16 bits) will hold one of 65 536

different bit strings. We talk further about representing data

by bit strings in Chapter 3.

The CPU used in the ZX computers is the Z80

which uses 8-bit words stored in separate memory chips

with a total of up to 65 536 different addresses. There are a

further eighteen 8-bit words and four 16-bit words that are

stored in the CPU chip itself and are called ‘registers’. The

CPU sometimes uses two 8-bit words to make up a 16-bit

word. As with all CPUs, the apparently complicated tasks it

performs are composed of large numbers of simple steps

called ‘machine cycles’. It performs about a million

machine cycles every second

The first machine cycle that the CPU performs

reads a byte from the memory; this byte is called an

operation code, or ‘op-code’, and represents one of 256

possible operations that the CPU can perform. The CPU

then performs the indicated operation; if it is something

simple like copying the bit string stored in one register to

another (so that, as it were, the switches that form the

BIT STRING — A number of bits (qv) considered together as a

unit. In a bit string n bits long, there are 2 7 n(n twos multiplied

together) different possible patterns of 1s and Os

REGISTER — hardware for storing a bit string of a fixed length,

usually within a central processor. (In main memory they tend

to be called ‘locations’ instead.)

MACHINE CYCLE — a distinct operation performed by the

CPU, such as fetching (from memory) and interpreting an

instruction code, or storing data in memory. A simple instruc-

tion may require just one machine cycle, a more complex one

maybe half a dozen

second register are set to the same states as those for the

first) it is completed during the same machine cycle and the

next machine cycle reads the next op-code from memory,

reading it from the next address in sequence. Other

possible operations include reading data from the memory,

writing to the memory, deriving a new bit string from existing
ones and storing it in a register or in the memory, and ‘jump’

operations that change the address from which the next
op-code will be read.

A computer is not much use unless it can

communicate with the outside world. The ZX computers do
this chiefly through the keyboard and the TV picture, but

inputs can be taken from anything that produces a
measurable electrical signal and outputs can go to anything

that can be electrically controlled. The CPU reads the inputs

in much the same way that it reads the memory; however

the bit string it receives is not something that was previously

stored but rather an indication of the present state of

something outside the computer. The Z80 uses a

completely separate set of addresses for input/output from
that used for memory, but some other CPUs just have one
set of addresses.

In the ZX computers there is an address such that

five of the bits in the byte read from it correspond to five of

the keys on the keyboard, each being a 0 if the

corresponding key is pressed and a 1 if it is not; seven other

addresses similarly sense the states of the rest of the keys.

The CPU reads these eight addresses in turn to discover

which of the 40 keys on the keyboard are pressed, and is
thus able to see when the user presses a key and react

accordingly. Another bit enables it to see whether the signal

from the cassette tape is at a high or low voltage, this bit

being used during LOAD.

The CPU also writes the outputs in much the same

way that it writes the memory but the bit string, instead of

being simply stored so that it can be read back, is used to

contro! something outside the computer. In the ZX

computers this includes the signal recorded on the cassette

tape during SAVE and the electrical signals that control the

printer.

Sometimes bit strings are copied directly from an

input to the memory, or from the memory to an output as in

Fig. 1.2(b). This is called ‘direct memory access’ or DMA

The Spectrum uses DMA for the TV picture; a part of the

memory is set aside for it, into which the CPU writes the

appropriate bit strings to produce the required effect on the

screen. The DMA circuitry copies the data to the part of the

electronics that generates the video signal. The ZX81 uses

its CPU to output the video signal, and the CPU cannot do
this at the same time as running the BASIC program; the

user is therefore given the choice of SLOW mode, in which

CLOCK CYCLE — one complete cycle of the square wave sig-

nal that controls how fast the computer runs and keeps the var-

ious parts of the computer in synchrony. The Z80 requires

between three and six clock cycles for each machine cycle

(qv), other processors require different numbers, e.g. just one

for the 6502, 15 for the 8048.

DMA — direct memory access: hardware that allows data to be

transferred directly between a peripheral and main memory,

without involving the CPU. This means the CPU can be doing

something else while the transfer is taking place.

the BASIC only runs during that part of the TV signal that
does not contain any data, and FAST mode, in which no TV
picture is generated while the BASIC is running.

Other CPU types differ from the Z80 in the

operations they can perform, the way these are represented

by op-codes, the wordlength of the memory, the number of
different addresses in the memory, and other details. But all

have the basic cycle of

read an instruction from the memory

obey it
read the next instruction

obey it

and so on. Because the instructions are obeyed ina

sequence one after the other, conventional computers are

called ‘sequential’ machines.
Japan, the UK, and the EEC have announced

projects to develop ‘fifth generation’ computers which would
be able to perform a large number of operations at the same

time. These computers are expected to be much better at
tasks that involve looking at a lot of data simultaneously than

the present, sequential, computers; this is covered more

fully in Chapter 2. Whether the computer industry can break
out of the strait-jacket of the von Neumann design remains

to be seen

WHAT DO COMPUTERS DO?

Electronic computers (and calculators) work much
faster than mechanical calculators, so that the typical

present-day computer spends much of its time waiting for a

human operator to give it a command (usually by typing on

a keyboard) even though each command will probably

cause the computer to perform several thousand individual

operations. For example entering the command

PRINT 417/23

into a ZX computer requires the computer to identify that it is

to print something out, to convert the digits 417 into the bit

string that represents the number 417 in the memory, to

identify that one number has to be divided by another, to

convert 23 into the relevant bit string, to do the division

(which is itself built up from addition and subtraction

operations), convert the result back into decimal digits, and

arrange for these digits to be added to the picture on the TV

screen. The speed with which this is done, however, makes

it appear almost instantaneous.

This example raises a number of important points:

a even apparently ‘primitive’ operations such as division are

built up from simpler operations, because the computer can

only do very simple operations, but it does them so quickly

that a large number of them can be used;

SEQUENTIAL MACHINE — a machine controlled by a ‘clock

signal (see ‘clock cycle’). Each time the clock ticks, the

machine does a single operation

FIFTH GENERATION — the next generation of computers

which are intended to have many of the skills that people have

such as being able to understand spoken English. Such a

computer would not be a single sequential machine (qv), but

probably a large number of very simple machines working

together

b much of the work done by the computer is concerned with
putting things into a convenient form for the person using it,

rather than actually carrying out the calculations he (or she)
requests;

c if all these operations had to be done one by one by the

human operator, it would be quicker and easier to do the
division sum by hand,

When electronic computers were first invented, it
was thought that about twenty of them would be sufficient to
do all the calculations that needed to be done in the world.

This estimate was based on the number of calculations that
were done by mathematicians at the time, and there was a
total failure to realise that because computers could do

large numbers of calculations quickly and reliably, it would
become viable to do many tasks on a computer that had

previously been done by other means, as for instance in the
example above.

WHAT ARE THEY USED FOR?

If only twenty (or even two hundred) computers are

needed for ‘number-crunching’, what do all the others do?
The invention of the punched card is attributed to

Hermann Hollerith who was one of the people given the task
of analysing the data collected in the US census of 1880. He

must have found the work rather tedious, because for the

1890 census he invented a system in which the answers
from each census form were recorded by means of holes in

a card.

One column (or group of columns) on the card
would be used for each question on the census form, and

10

there were a number of places within the column where a

hole could be punched according to the answer to the
question. The cards were run through a machine (a ‘sorter’)
which sensed electrically whether there was a hole punched

in a particular column on each card; the card was dropped
into one hopper or another according to where the hole was
punched. The machine also counted how many cards went

into each hopper.

Using the machine tne work was completed in one

third of the time it had taken to do it by hand ten years

previously. (Clearly the authorities had not caught on to the
potential of automated data processing — if they had, the job
could have taken twice as long but produced six times as
many analyses.)

Punched cards were subsequently used for many
data processing applications, particularly centralised
accounting functions in large organisations. Computers

quickly began to be used in punched card systems, where

they provided the ability to perform more complicated
analyses than could be done with card sorters and

tabulators — operations such as taking a number punched
on acard, adding it to anumber punched on a second

card, and punching a new card including the number just

calculated. For instance, a computer could be fed with a
stack of cards containing details of customers’ accounts
and a second stack containing details of payments made
(the stacks having of course already been sorted into an

appropriate order); it would then be able to produce a new
stack of cards containing the updated account details.

As an alternative to individual pieces of cardboard,

the data were often recorded on magnetic tape in a similar

11

format to that used on the cards. Reading a ‘record’ from the
tape produces the same electrical signals to the computer
that the card reader would have produced on reading a

card containing the same data, and such records are often
referred to as ‘card images’. Tapes could however work

rather faster than card readers and were not restricted to a

particular size of record; also a tape was rather easier to

handle than a box of cards containing the same amount of
data.

Present-day computers increasingly use magnetic

discs instead of tape. The data are stored in the same way
as on a tape, that is to say in the form of small areas of

magnetism in a coating made of a suitable magnetic

material, and there are no grooves of the kind used on

gramophone records. The advantage of using discs is that

any of the records on the disc can be read in a fraction of a

second, whereas to read a record on a tape may require

several minutes to wind the tape to the appropriate place.
Magnetic discs are also used as ‘backing store’ to

extend the amount of memory to which the CPU has access.

There are thus several levels of memory, as depicted in Fig.

1.2 (c): from registers, which offer a limited amount of

storage that is very easily accessible, to backing store,

which offers a large amount of storage that takes a

comparatively long time to access.

In spite of the many advances made in data
processing technology over the last thirty years, a very large

proportion of modern ‘fourth generation’ computers are

used to store card images and to do on them the same kind
of operations — sorting cards into a particular order,

counting them, printing out (or ‘listing’) the data from them,

12

extracting cards with particular data values — that were

done on pre-computer punched card equipment and
ndeed by Hollerith in 1890.

PROGRAMMING LANGUAGES

To use a computer for a particular job, it is first

necessary to ‘program’ it by storing in its memory the

required sequence of operations

The first computers were programmed by writing

down the operations to be performed, then writing down the

string of numbers that corresponds to the relevant bit string,

and finally loading this string of numbers into the computer's

memory. This process was tedious and errors were often

made so that the program loaded into the computer did not

RECORD (noun) — a bit string (qv) containing a number of data
items all related in some way: the characters in a line of text,
perhaps, or the catalogue number, stock level, and price of a

particular product.

CARD IMAGE ~a record in a format that corresponds exactly

to a punched card, normally 80 bytes long with the individual
bytes representing the character code punched in each
column of the card

BACKING STORE—memory in which blocks of data from main

memory can be stored and later retrieved; the CPU cannot

read individual bytes directly from backing store but must first

cause the whole block to be copied into main memory

13

do what it was supposed to. (These errors are called ‘bugs’,
and more will be said of them anon.)

It was quickly realised that converting the program

into this string of numbers from a form in which it was

meaningful to a person reading it was just the kind of job for

which you should use a computer. Accordingly,

programming ‘languages’ were developed — formal

notations in which programs could be written (as ‘source

code’) for subsequent translation by special programs
called ‘compilers’ into the bit string (or ‘machine code’) that

represented the appropriate sequence of operations. The

computer would then ‘run’ the program by performing these

operations.

Different machines have different repertoires of

operations that they can perform, and different ways of

representing them in the computer's memory. We talk of

them as having different ‘instruction sets’. At first, each

machine also had its own programming language, or

‘autocode’, but it soon became apparent that it would be

helpful if the same language could be used on all machines

—then programmers would not need to learn a new

language when they moved from one machine to another,

and programs written to run on one machine could be run
on another without needing to be rewritten in the second

machine's programming language.

The first such language, developed in the mid

1950s was Fortran. The name is short for ‘formula translator’
because (as was appropriate for the days in which

computers were used mainly for number-crunching) it was

chiefly concerned with calculating the values of

mathematical formulae. For instance the formula

14

A/B+C * 5

was translated into a sequence of machine code operations

that would divide the number represented by A by that

represented by B, and multiply by 5 the number

represented by C, and add the two results together. (The

asterisk was used because the equipment on which

programs were typed did not have a multiplication sign; we

shall see how the computer finds what numbers A, B, and C

represent in Chapter 3.)

A Fortran program is made up of ‘statements’,

written with one statement on each line, A statement

represents a single action, such as storing the value of a

formula in the computer's memory, although this usually

corresponds to a sequence of several machine operations

as in the example in the previous paragraph. The term

‘statement’ is rather misleading, because for instance

BUG — a mistake in a program or in the design of a piece of

hardware, as a result of which it behaves in a way that is diffe-

rent to that intended. Very occasionally you can pretend you

actually intended it to behave that way all the time, in whic’

case the bug becomes a ‘facility’.

COMPILER — a program which translates text in a high-level
language into a sequence of instructions in machine code or in

an ‘intermediate code’. In the latter case another program

called a ‘code generator’ may translate it into machine code or

it may be ‘interpreted’ directly.

does not state that the value of A is equal to the sum of the
values of B and C, but commands the computer to do the

necessary operations to store B+C as a new value for A.

(This is covered more fully in Chapter 3.)

Fortran is still much used on large computers, but

is not one of the most popular languages for

microcomputers.

Another language first defined in the 1950s was

called ‘Algol’, short for ‘algorithmic language’. ‘Algorithm’

originally meant the Arabic system of numbering (as distinct
from, say, Roman numerals) and arithmetic based on it, so

Algo! was simply a language oriented towards arithmetic; an

‘algorithm’ has now come to mean a step-by-step

specification of how a calculation is to be carried out, and

Algol is of course a language in which such specifications

can be written.

The designers of Algol had three objectives: the

language should be as close as possible to standard

mathematical notation, it should be suitable for describing

algorithms in journals, and it should be possible for a
computer to translate it into machine code. It is noteworthy

that the designers put communication of algorithms

between people before communication from a person to a

computer.

All the versions of Algol use a special symbol,

made up from a colon and an equals sign and called

‘becomes’, to indicate the action of storing anumber in the

memory. Thus

ager bet ic

16

is different from

a=bte

and the latter expresses that the two values are (or happen

to be) equal, and has no connotation of commanding the

computer to change anything in order to make them equal.

The third important early language is Cobol, the

‘common business-oriented language’. It is quite different

from the number-crunching languages, being aimed at the

kind of task that is appropriate to punched-card equipment

and to the manipulation of ‘files’ of card-image records on

magnetic tapes and discs; indeed it has been said that

there are only four Cobol programs — one to read in new

cards, one to check that the data punched on them are

valid, one to sort them and ‘merge’ them with an existing file,

and one to print them (or the new file) out. In contrast with
the Algol aim of using standard mathematical notation,

Cobol uses English words as in

ADD B TO C GIVING A

in an attempt to make programs comprehensible to people

who are not familiar with computers, and who are not

mathematicians. One effect of this is to make even simple

programs rather long; some abbreviations are allowed, but

a program written in the abbreviated form is not likely to

make much sense to an uninitiated reader. Moreover some
Cobol constructions are not all obvious even in their

ALGORITHM — a specification of the individual steps required

to carry out a calculation etc. in the computer.

IRs

unabbreviated form: for example in the part of the program
that describes the heirarchy of data structures used, certain
‘levels’ in the heirarchy (66, 77, and 88) behave very
differently from the others.

All three of the above languages are intended to be

read by people as well as translated into machine code by
computers. However, the features that make programs

easier for people to read also tend to make the language

more verbose, and hence make programs longer to write

and to type. These languages were also intended for an
environment in which the programmer would first think out in

detail how to do the calculation he required, then write it

down in the relevant language, then punch it (or have it

punched) on cards or paper tape. Finally the cards or tape
were read into the computer which translated the program

into machine code and ‘ran’ it. If the program did not work,
some of the cards were replaced or an amended copy of

the paper tape was made, and the new version was tried on
the computer. Often there was a long wait for access to the

computer, so the programmer had plenty of time to reflect
on whether the program was likely to work and a strong
incentive not to be too careless in the writing of it.

During the 1960s there was a move, particularly in

universities, towards ‘multi-access’ (or ‘on-line’) computers

which allowed programmers to type their programs directly

into the computer's memory instead of using cards or paper
tape (which are referred to as ‘off-line’ because typing and

editing of the program are done on equipment not directly
connected to the computer). This made possible

‘interactive’ use of the computer, in which the programmer

could type in a command, have the computer obey it, and

18

look at the result before going on to the next command.

Programming was thus able to become more of a trial-and-

error process than before.

APL (which stands simply for ‘A Programming

Language’) was, like Algo! 60, not originally intended as a
language in which programs would actually be input to a

computer; indeed, it was about eight years after the

invention of the language that it was first used ona

computer. Unlike Algol, it was not intended for

communication of algorithms from one person to another

but rather as a notation which a person would use when

designing an algorithm, so it had to be designed in sucha

way that any particular calculation would require the
minimum of writing. APL is still used very much in this way,

although using a terminal on-line to a computer rather thana

pencil and paper, so the requirement for terseness remains

For this reason, APL uses mathematical notation (a

minus sign, for instance needs only one keystroke, whereas

the word SUBTRACT needs eight, and a ninth for the space

that separates it from the next word) and special symbols

were introduced for various commands for which no

suitable mathematical notation was available. Most of the

ON-LINE — connected directly to the computer, so that data

can be conveyed by electronic signals rather than transported

to and from it on media such as magnetic tape or disc, paper

tape, punched cards, etc

INTERACTIVE — involving a two-way conversation with the

program, rather than simply providing a set of data before the

program runs and getting back a set of results after the prog-

ram has finished

19

symbols are used for several different things, rather in the
way that some words in English are, and the particular
meaning of a symbol! used in a command is determined by
the context.

Because APL is used chiefly for person-to-computer

communication, and because commands are often

ephemeral (that is, once the command has been typed and

the computer has obeyed it — a process which often takes
only a couple of seconds in all — the command is no longer

needed and can be forgotten) the form of a typical APL

program is such that it is extremely difficult for someone

other than the author of the program to see what is going on.

(It is usually equally difficult for the author once he has had a

few weeks to forget how the program was written.)

There is a more or less inevitable trade-off: to make
it easier for a person to understand, the program must have

extra information added to it, and one way or another this

will require extra typing. APL is sometimes called a ‘write-

only’ language because you can write programs in it but you

cannot read them afterwards. Because of the large number
of special symbols, and the powerful facilities they make

available, it takes some time to learn to use APL effectively.

BASIC (an acronym for Beginner's All-purpose

Symbolic Instruction Code) dates from 1964 but only

became really widespread with the advent of

microcomputers in the late 1970s. Like APL it is intended for

interactive use, but as its name suggests it is intended for
people who are new to programming. Therefore it does not

have the powerful facilities of APL, nor the special symbols

that invoke them; commands are introduced by English

words such as PRINT. Some implementations, including

20

those on the ZX computers, reduce the amount of typing by
using a single key for each of these words.

HIGH AND LOW LEVELS

Languages are often described as ‘high-level’ or
‘low-level’. A low-level language is one that specifies the
individual machine operations that are to appear in the

machine code, although (as with an autocode) the form in
which it is written is more helpful to the human reader than a
String of numbers. These languages are often called

‘assembly codes’ and are used where it is important to

control exactly which operations the computer performs,
where the program has to be particularly efficient in its use
of the computer, and where no suitable high-level language
is available on the computer in question.

The program that controls each of the ZX series
computers (checking when keys are pressed on the
keyboard, arranging for the appropriate picture to be shown
onthe TV, obeying BASIC commanas, etc.) is written in

assembly code for all three of these reasons; for instance,
the frequency of the signals recorded on the cassette tape
by the SAVE command depends on the exact sequence of
Operations done during the SAVE process. Careful design

allows more facilities to be fitted into the available memory
and allows commonly used parts of the program to be made
as fast as possible.

High-level languages are supposed to concentrate

on expressing what task needs to be done, and to relieve

the programmer of the need to decide just how the
computer will do it. This is necessary if high-level languages
are to be ‘machine-independent’, i.e. if the same program is

21

to be able to be run on any computer. In practice the most

common languages concern themselves a great deal with

the ‘how’, to the extent that it is rather easy to lose sight of

the ‘what’. This is in some measure inevitable in a general-

purpose language because the only thing the tasks have in

common is that they can be done on a computer: the

language provides a way of describing what the computer

is to do, but cannot do this in a way that is related to the

needs of any particular application.

There are some special-purpose languages that

are used for particular kinds of task, and more general

languages that are more truly high-level are now beginning

to appear; these are called ‘very high-level’ to distinguish

them from the older languages.

Many languages (such as Fortran and Cobol) have

survived far longer than one would expect given the rate at
which other aspects of computer technology are

developing. New computers use existing languages so that

programs written for earlier computers can be run on them

and so that programmers who are familiar with the

languages can use the new computer with the minimum of

retraining; and it is usually easier to use an existing

language (however inconvenient) than to create a new one.

BLOCK STRUCTURED LANGUAGE -— a language in which a

number of statements (or commands) can be grouped

together as a ‘block’ which has the status (as far as the syntax

is concerned) of a single statement or value. Usually a block

can have its own ‘private’ variables, to prevent data being

overwritten when recursion is used.

22

WIHIAIT. PIEIRSIOINIAIL
COMPUTEREDIO?

In the early days of computing there was much
publicity on the subject of how many years it would take a

team of mathematicians to do a set of calculations that a

computer could do in an hour or two. Many people therefore
got the impression that computers could do anything that

mathematicians could do, only faster and more accurately.
But by the mid-1960s researchers into artificial intelligence

had shown that there were other tasks that people
(including mathematicians) could do in a fraction of a
second but which took a computer a quarter of an hour.

In general, computers are good at tasks that

involve simple operations on numbers: copying them from
one place to another, comparing two numbers to see which

is the larger, adding and subtracting them. Except in some

very large computers called ‘array processors’, these

calculations are done one after the other (‘serially' or ‘in
series’) although they are done so quickly that it may look as
if many of them have been done at the same time. At any
instant the computer is only able to consider two or three of

the thousands of numbers it has available in its memory

Computers are good at converting small amounts

of data into large amounts. This does not simply mean that

they are good at producing enormous quantities of paper

covered with numbers, although they have been much used

in this way in the past. Consider for example a page of
teletext displayed on a TV screen. (A teletext page consists

25

‘of 24 lines of text, each line containing 40 ‘characters’;

characters are things like letters of the alphabet, digits,

punctuation marks, and the spaces between words. UK

readers who do not have teletext sets can look at the BBC's

‘Ceefax in vision’ programmes to see some typical teletext

pages.) This kind of text is stored in a computer using one

number for each character, so it needs a total of 960

numbers. When the page is displayed on a TV screen it

consists of 57600 separate dots, and the TV picture can be

stored in a form that uses a number to show the colour and

brightness of each dot, requiring 57600 numbers.

It is a simple calculation to generate the 57 600

numbers that represent the TV picture from the 960

numbers that represent the text, assuming the computer

has available a table giving the pattern of dots that

represents each character, and in fact the ZX computers all

use essentially this method of generating the TV picture

although the details differ somewhat.

People, by contrast, are good at tasks that involve

reducing large amounts of data to smaller amounts; this is

called ‘pattern recognition’. Thus looking at the TV picture of

the page of teletext we recognise patterns formed by the

57 600 points of light on the screen as letters of the alphabet

etc; we do not remember the colour and position of

individual dots, nor even the letters nor the words formed by

them, but the overall appearance of the page and the sense

of the message conveyed by the words.

When we look at a page in this way, we are looking

at the whole page at once, considering the 57600 pieces of

information ‘in parallel’. It is true that if we read through all

the text on the page we read it serially, starting at the top

26

left, but if one part of the page is in a brighter colour, or
flashing on and off, our eye is drawn immediately to this
area, A computer that scanned serially through the picture

would not be aware of a brighter area at the bottom of the
screen until it came to it; on the other hand it would not be
distracted by it while processing the other parts of the

picture.
It is comparatively easy fora computer to convert

the TV picture of a teletext page back into the text form, by
simply looking at each of the 60 dots that make up each

‘character position’ and comparing them in turn with the dot

patterns of each of the available characters; if an exact

match is found then the character in that position has been

identified, if none of them matches exactly then the picture
must have become corrupted in some way. The computer

could even deal with this case by choosing the character

that is ‘nearest’ to the dot pattern, using some simple
tmeasure of ‘nearness’ that can be calculated from the dot
pattern on the screen and the dot pattern for the character
(such as counting how many of the 60 match exactly).

Now suppose that we have the same text printed

on a piece of paper and we hold it in front of a TV camera.
Suppose even that it is handwritten rather than printed, or

that it is being held upside-down. To a person looking at a

TV screen it will appear obviously similar to the teletext form,
and there is not much difficulty in, say, locating the fourth

letter on the third line and identifying it as an ‘e’. But

someone trying to program a computer to examine the

picture, which it has to do a dot at a time, has a real

problem, because the program must first decide where the

individual letters come and then identify each one from a dot

27

pattern which is probably rather different from the 10 by 6

pattern in the teletext.
If the picture is not of a page of text but of, say, a

street, then the problems for the computer are

correspondingly greater. A person does not have any

trouble in recognising, say, a car, but it is not easy to specify
in terms of patterns of light on the screen how a computer

could distinguish the image of a car from any other part of
the picture. Remember that the camera may be seeing the

car from the front or the back or the side, and the car may
be anything from a small red sports car to a large black

saloon.
This example shows that when performing

everyday tasks people use a great deal of ‘cultural’
information (such as just what is, and what is not, a car)
which it is impractical (at least with present-day technology)
to store inside the computer. Consider, for example, the

amount of information that would need to be stored ina

computer controlling a robot for it to be able to go to the

fridge and take out a bottle of milk. This requires

the concept of what a fridge is;
the ability to locate the fridge (including knowing which

room it is in, and being able to distinguish it from the

oven or the dishwasher);

the concept of what a bottle of milk is;
the inference that it is necessary to open the fridge door,

and the knowledge that it is desirable not to leave it open

too long; and
the ability to locate the door handle and open the door,

and to locate the bottle of milk and pick it up.

We should avoid the temptation to think about

28

computers (and robots) as being rather stupid people, and

think of them instead as being rather sophisticated

machines. Asking someone to make you some tea is a very

different act from pressing a button on a machine which

Causes it to dispense a cup of tea, and will remain so no

matter how sophisticated tea machines become

HOME COMPUTERS

Personal computers are normally concerned only

with processing data, and do not directly control or

manipulate physical objects (except for the printer on which

results etc. are printed out, and disc or tape drives on which

data are stored for later use).

There has been some talk in recent years of ‘home

computers’ which can control various things around the

house such as the heating and lighting. While you are away

TELETEXT — text transmitted with a television signal during the
interval between one ‘frame’ of the picture and the next.

normally for display on the screen by a suitably equipped tele-

vision set but also able to be read into the memory of a com-

puter. Not to be confused with teletex.

TELETEX — a telecommunications service similar to telex but

offering a much larger set of characters including lower case

letters, accents, subscripts and superscripts, etc. Not to be

confused with teletext, qv

VIDEOTEX — an interactive service providing text in a similar

formatto teletext (qv) but transmitted over telephone lines. The

user can ask to see pages from a very large ‘data base’ and

can also type information in, e.g. to order air line tickets or to

book theatre seats.

29

the computer can open and close the curtains and turn the

lights on and off to make it look as if the house is occupied,

and perhaps raise the alarm if an intruder is detected; you

can phone it up and (using a device similar to the remote

control for a TV set) tell it when you will be back so that the

heating and perhaps the cooker can be turned on at the

right time. It can be used to enable the electricity company

to control when your water heater is switched on, so that they

can spread the load on the local electricity supply more evenly.

Although interfaces are available for many

persona! computers that would allow them to become home

computers, the other apparatus required is not freely nor

cheeply available. For instance, you are very unlikely to find

that your cooker has anywhere for you to plug in a computer

that would control it; the motors etc required to open and

close curtains of just one window would cost nearly as much

as the computer; the ‘auto-answer’ device that would allow

the computer to respond to telephone calls is likely to be

fairly expensive, and you may find you need a separate

phone line for it.
Itis quite possible that within a decade the

electricity companies will begin to supply home computers

to their customers; the principle use of these home

computers will be for the control of power consumption (as

suggested above) and for automatically reading the meter.

Communication (of control commands to the computer and

of the meter readings from the computer) would probably

be along the power cables rather than through the

telephone system; the same computer would probably also

be able to carry out similar functions for the gas and water

supplies.

30

WORD PROCESSING

We saw in Chapter 1 that all data are stored in the
computer in a form which we think of as a sequence of
numbers. (Chapter 3 will consider this further.) Therefore
the computer can store anything that can be represented as
@ sequence of numbers and do any processing that can be
defined in terms of arithmetic operations on those numbers
(including simply copying them from one place to another in
the computer's memory).

A common use of computers, particularly personal
computers, is the storage and manipulation of text — reports,
letters, and other documents. Suppose you are writing a
feport on some topic or other; you (or your secretary) might
type a draft on your typewriter and send copies to some of
your colleagues for their comments. As a result of their
Comments, and any further thoughts you might have had,
various alterations are made to the draft, and a complete
New copy is typed. If any mistakes are made in the typing,
they must be rubbed out or painted over; it has been
estimated that typists spend about 30% of their time
Correcting mistakes — it only takes a fraction of a second to
press a key to print a character but it takes much longer to
fub the character out again if it is wrong. Also, typists tend to

INTERFACE — the connection between one part of a system
and another. Bugs (qv) often arise because an interface is not
well-defined, so the part of the system on one side of the inter-

misunderstands signals sent across the interface from
other side.

31

type less quickly than they could, for fear of making

mistakes.

A ‘word processor is a special-purpose personal

computer for storing and manipulating text; there are also
programs available that run on general-purpose personal

computers and provide much the same facilities. With a

word processor, you would not need to type the whole

document a second time, just to ‘edit’ the draft stored in the

computer. Typing mistakes are corrected as quickly as they

are made, by pressing a ‘delete’ key which simply means

‘remove that last character from the document’: because at
that stage nothing has been printed on paper, there is no

rubbing out to do
The text is stored by using a number to represent

each character. Essentially this means there is a different

number for each key on the typewriter keyboard; for most

keys there are in fact two numbers, one for the shifted (or

upper case) character and one for the unshifted (or lower

case) character. Note that there are also codes for the keys

that do not actually print anything, such as ‘space’, ‘new

line’, ‘tab’, and ‘backspace’. The sequence of key presses is

stored in the computer as a sequence of these codes.

For example, in the code that is used on almost all

types of personal computer (including the Spectrum but not

the ZX81), the lower case letters have codes a=97, b=98,
c=99, and so on up to y=121 and z=122, the code for a
capital letter is 32 less than the code for the corresponding

lower case letter, and the codes for space and exclamation

mark are 32 and 33 respectively. Thus the sentence

Go away!

32

would be encoded as

Til. Y40 SP, 97, 119, 987, LL, 35

To change it to

Gone away!

we require the computer to copy ail but the first two codes

two places further up the memory and put the codes 110

and 101 (for 'n' and ‘e’) in the gap; this is an example of the

‘editing’ referred to earlier. In practice the codes would be

copied up one place at a time: once when you typed the 'n’

and again when you typed the ‘e’. Suppose you missed the

*e’ key and hit ‘w’ instead; the text would read

Gonw away!

encoded in the computer as

TAR AG Mh Copan BICEP Cr oui

and you would hit the ‘delete’ key to tell the computer to

remove the 119 that has just been inserted and close up the

gap again by copying the remaining six numbers one place

back. All this copying back and forth may appear tedious,

WORD PROCESSOR - a computer doing the job of a type-
writer; the text is stored in the computer and can be vie’

ascreen so that the operator can check that it is correct before

printing it. The text can be kept on backing store

retrieved, updated, and reprinted as required

33

but it is the kind of thing that a computer can do extremely

quickly, and is much easier for the user than having to tell

the computer in advance how many codes are to be

inserted.
The facilities provided by word processors,

therefore, are to type in text, to edit it, to print it out, and to
store it away for future use. For this you need a keyboard to

type on anda screen of some kind to see what you have

typed (all personal computers have these, of course); some

kind of storage device that will preserve the data even when

the computer is switched off (disc is ideal but cassette tape
is acceptable); and a typewriter or other printer of adequate

quality to type the documents out on.
It is this last requirement that makes the ZX

computers unsuitable for word processing (except as noted

in the next paragraph). The basic computer does not have

any means of producing printed output; the add-on ZX

printer uses special paper and the characters it prints do
not approach typewriter quality. You cannot print on your

own letterhead or invoice forms, for example; the best you
can do is to print on the special aluminised paper that the
printer uses and then cut out the text and stick it onto your

own paper — a tedious process which results in an

appearance that will be unacceptable in many situations.

However, it is possible to attach a typewriter-

quality printer to a ZX computer although it requires some
special-purpose electronic circuitry to be constructed. You

can expect that anyone who sells a device of this nature will

also sell the necessary word-processing programs to go

with it.
There are some more advanced facilities that word

34

processors provide. One example is arithmetic on figures in

tables: converting figures from one basis to another ina

report, perhaps, or calculating totals on an invoice. An

example of the first would be a table which listed income
and expenditure for the various different divisions of an

organisation for the last five years. The figures might be

typed in in thousands of dollars, and the table might also

show the expenditure in each case as a percentage of the

corresponding income figure, and profit both in thousands
of dollars and as a percentage of the profit made by the
whole organisation in that year.

The character codes are almost always chosen so

that the value of a digit is equal to the difference between its

code and the code for the digit zero. Thus in the Spectrum

the code for zero is 48, '1’ is 49, ‘2’ is 50, and so on. When
you subtract 48 from a character code, if the result is 6, say,

then the character is ‘6’, If the result is less than zero or more

than 9, the character is not a digit. The word processor can

easily identify where the number begins (usually it will start
at a ‘tab’ character or even a special code inserted by the

user to mark it) and work out its value, and then perform

whatever arithmetic operations the user has requested.

Another common facility is checking for typing

errors by verifying that each word in the document is a

correct spelt word. The words can easily be identified —a

word is simply a group of letters preceded and followed by

codes that are not letters, such as space, new line, and

punctuation — and compared against words held ina

‘dictionary’ file. Allowances can easily be made for letters

being in upper or lower case (for instance by converting

everything to lower case before doing the comparison).

35

Some care is needed in organising the words in the

‘dictionary’ so that they can be found quickly enough, but
this, too, is not.a particularly difficult problem. The system

needs to be able to add words to its dictionary: when a word

is found that is not in the dictionary, the user is asked if this

word is a typing error (in which case the document can be

edited to correct it) or a new word to be added to the

dictionary.

Thus if you mistype ‘ti’ instead of ‘to’ the spelling

checker will tell you that the word ‘ti’ is not in its dictionary
and you can make the necessary correction, but if you type
‘too’ in mistake for ‘to’ the program does not say anything

about it because ‘too’ is also a word in its dictionary.

For the program to detect this kind of error would

require it to be able to parse and, in many cases, in some

sense ‘understand’, sentences in English. This is something
that cannot be reduced to a sequence of simple arithmetic

operations, and although a complicated program running

on a powerful computer would be able to do it sufficiently

well to detect a fair proportion of errors of this kind it is

outside the scope of present-day personal computers.

LIMITATIONS

We have seen that computers in general can do

any jobs that can be described as a sequence of simple

arithmetic operations. This includes not only obviously

numerical processes, such as those involved in keeping

accounts, but also storing and editing text and pictures,

which are represented inside the computer by sequences of

numbers, However it stops short of being able to deal with

the kind of idea or concept that people learn by example

36

rather than from rigorous definitions: we know what a dog is

because from a very early age we have been shown dogs

and pictures of dogs and told ‘this is a dog’, and have learnt

to distinguish a dog from a cat by various features such as

the shape of its head and the texture of its fur, but how can

these criteria be transiated into numbers?
Although computers are able to do calculations

very quickly, it is quite easy to write a program that involves
a huge number of calculations and thus takes a very long

time to run. The effect of increasing the number of
calculations tends to be imperceptible up to a certain point

and then becomes apparent quite suddenly: if the computer

will do 100 000 calculations per second, then anything that

takes less than 10 000 calculations will appear to take
almost no time at all; increasing the number to 50 000

introduces a slight hesitation, 100 000 a much more
noticeable one, and by 300 000 there is a significant delay

while the program runs. Thus the difference between 50 and

500 is not noticeable, but the difference between 50 000

and 500 000 is quite dramatic.

The number of calculations needed to do a given

job can also become very large because of the way in which

more complex operations are defined in terms of simpler

operations. For instance, we may define simple operations

PARSE — to analyse a piece of text to discover its str , SO

that the individual words etc. from which it is made up can be
interpreted in the correct context; for instance, in English, to

divide a sentence into subject, verb, object, etc

37

that consist of 100 calculations each (not at all a large

number, particularly if any repetition is involved) and more

complex operations that consist of 100 of the simpler
operations. Then a program that consisted of 100 of the
more complex operations — not at all a large program —

would do a total of 1 000 000 calculations when it was run.
With ZX BASIC we have very much this kind of

structure: There are simple operations such as fetching a

number that has been stored away in the memory, which

includes finding where it has been stored, or multiplying two
numbers together, which the computer has to do by a kind
of ‘long multiplication’ because it cannot deal with the whole

number in one go. The more complex operations, which are
the BASIC commands, are defined in terms of these simpler

operations, and the BASIC program is built up from BASIC

commands.
Because the computer does so many individual

calculations for each BASIC command, it cannot manage

more than a few hundred commands each second, and a

single command that makes heavy use of certain of the

‘simple’ operations, such as converting a number into

character form (particularly on the ZX81) and calculating
trigonometric (etc.) functions (and particularly the to-the-

power operation), can take a second or more to obey.
More powerful computers are able to do more

calculations each second, and often require fewer individual

calculations to perform a particular operation. They often

(but by no means always) have a more sophisticated means

of translating commands into sequences of individual

calculations than is possible with the resources available to
ZX BASIC, so that fewer such calculations need to be

38

performed to obey a particular command.

Apart from the speed with which the computer

obeys commands, the aspect that is usually most important

is the amount, and type, of memory available. The only type

of memory available to the program in a ZX computer is in

the RAM chips that are inside the computer or (for the

2X81's add-on memory) plugged into the back. This is

‘volatile’ memory: when you switch the computer off, all the

data stored in it are ost

The most common type of ‘non-volatile’ memory,

which will retain the data when you switch the computer off,

is magnetic disc. Data stored on disc have to be read into

RAM before the computer can use them, but the computer

can fetch any part of the data when the program needs it

and store updated records back on the disc when required;

this is covered more fully in Chapter 10.

The only kind of nonvolatile memory available on

the ZX computers at the time of writing is the cassette tape.

This not controlled by the computer, so its use is limited to

the user-controlled operations of storing a complete copy of

a program on the tape (by the SAVE command) and

retrieving it (by the LOAD commana). Fortunately, when the

program is saved the data it is keeping in memory are

saved with it, so that when it is loaded again it can continue

VOLATILE — when applied to memory, means it loses the data

ored in it when the computer is turned off. S

RAN is volatile, although CMOS RAM (which draws vi

current) can be made to appear n atile by supplying

er from a small battery while the main power is off

39

where it left off (there are examples of this in Chapters 9 and

10), but while the program is running it must have all the

data it needs in RAM. A computer with a disc, on the other

hand, does not need to fit all its data into RAM because
when processing a series of data records |t only needs to

have in RAM the records it is actually working on — a record

is transferred back to the disc when it has been finished with

and another one is read into the part of the RAM vacated by

it.

In practice this means that in ‘record-keeping’

applications the maximum total size of the information (or

‘data base’ to use the jargon word) that can be kept is much

smaller in the ZX computers than in a computer with a disc.
Most of the jobs of this kind that are done on a computer are
of a commercial nature, such as stock control, payroll

accounts, and mailing lists; this is because companies are
better able to justify the expenditure on a computer system

and they also tend to have large amounts of data to keep

up-to-date. There are however several personal ‘data base’

applications that could be done on a computer, including

addresses, phone numbers, birthdays, recipes, and bank

(etc.) accounts, as well as membership lists for clubs or

societies.

Fortunately many of these only involve

comparatively smal! amounts of data and so can be viable

on a ZX computer, but because only small amounts of data

are involved it is likely to be just as easy to use a pencil and

notebook as it is to use a computer. The computer is more

likely to be a benefit where some arithmetic is to be done on

the data (as in the example in Chapter 10) than where the
data consists simply of text, such as lists of addresses. Also,

40

you can fill up the space in the computer's memory more

quickly with text than with numbers: if you have the ZX81

with the add-on RAM, for instance, you might have about 13

K of RAM available for your data in which you could fit some

2500 numbers but only about 130 names and addresses or

about a dozen recipes.

DATA BASE — lection of records (qv) holding information

about a particular topic, such as the properties of different

chemicals or a company’s stock records and accounts. If the

records are not all kept in the same computer, it is a ‘distri-

buted’ data base

K—2 f 10 or 1024, not to be confused with k which is 1000. Ifa

computer is described as having 16 K of memory, it means

16 K bytes (which is equal to 16 384 bytes). Just to be confu

ing, when referring to the individual memory chips 16 K usually

means 16 K bits, which is only 2 K (or 2048) b’

PIAR TMI

WRI PROERAIS

43

STORING] DATA

If you write on a piece of paper ‘We have 17
widgets in stock’, this conveys information to anyone looking
at it who can read and understand English. The written

words do not, however, look at all like 17 widgets, or indeed

17 of anything. A Roman might have scratched on a clay
tablet ‘XVII widgeti habemus’, which looks quite different
again.

We are, therefore, quite used to storing information

in forms that do not bear any resemblance to the things

described. We also often leave a large part of the

information to be deduced from the context; for instance a

card in a drawer labelled ‘stock records' may just say
‘widgets... 17°.

Computers also store information in forms that are

convenient for them (not because the computers prefer it

that way, but because it makes life easier for the people who
make them), Computers, as we saw in Chapter 2, are not
good at reading words written on pieces of paper, so the

format of the information is such that it can easily be sensed
and manipulated electronically.

Information written on paper is made up froma
repertoire of shapes: 10 digits, 26 capital letters, 26 lower
case letters, and a number of other symbols including

punctuation marks and accents and signs such as ‘+' and

*%'. We use the letters to make up words, and the words
(together with punctuation marks) to make up sentences.

We use the digits to represent numbers; because there are

45

ten different digits, this is called ‘decimal’ numbering (from

the Latin for ‘ten’). The Romans did not have separate digits,

but used letters (I, V, X, L, C, D, M) in their notation for

numbers.
Sometimes quite different ways of representing the

letters etc. are used, for instance patterns of dots in Braille
or long and short pulses of sound in Morse code. And of

course there are alternative ways of conveying whole words:

most notably in spoken form but also sign language and

shorthand and pictograms.
We saw in Chapter 1 that information inside a

computer is represented in ‘binary’ form as a string of ‘bits’

each of which can take one of two values. The bits may be

stored on magnetic media such as tape and discs (from
which they are read by moving the media past a ‘read head

that converts the magnetic signal into an electrical one;

cassette recorders are an example of this), in the form of

holes in paper tape or cards, and in the form of magnetic or

electrical signals in the computer's ‘main memory’, from

which any bit can be read directly without having to move

any mechanical parts such as a tape drive mechanism.
There are a number of different ways in which bits

are represented on magnetic media, but only the engineers

who design computers need to know the details of them.
The ZX81 uses a system of long and short ‘tone bursts’ very

much like the dots and dashes of Morse code but about a
hundred times faster; a dot represents a 0 and a dasha 1.

O i paper tape and cards, a hole represents a 1 and the
esence of a hole represents a 0. Main memory in the 1960s

consisted of magnetic ‘cores’, magnetised one way round to
represent a 0 and the other way round to represent a 1.

46

Microcomputers use silicon chip memories; these have a
number of ways of storing the bits internally, but at the pins

which form the electrical connection to the rest of the

computer they all use a ‘high’ voltage (above about 2 V) to

represent a 1 and a ‘low’ voltage (below about 1 V) to
represent a 0.

In the same way that letters are grouped together

to form words and sentences, bits are grouped together into

‘bit strings’. A single bit can only be one of two things, a1 or
a 0; sometimes there are only two possible values for the

data we need to store (true or false, present or absent, male

or female) and in this case a single bit is sufficient. A pair of

bits can have one of four values (00, 01, 10, or 11) and can

thus represent data where there are up to four possibilities

Each bit added to a bit string doubles the number of

possible values, so three bits have eight values, four bits
have 16, and so on. A group of eight bits, called a ‘byte’,

can thus make one of 256 values.

It should be emphasised that not only can a bit

string be represented in many different forms (electrical,
Magnetic, etc.) but it can in turn represent many different

things. The 256 different values in a byte can, for instance,

represent the whole numbers 0 to 255, or the whole

numbers —128 to +127, or the fractional numbers 0 to 255/

256 (in steps of 1/256), or the various characters that can be

produced by a printer or shown on a TV screen, or the

different operations that the computer can carry out on the

data, or indeed the members of any set of not more than 256

things. There is nothing in the bit string to show which set of

things is being represented, so a particular byte value could
mean 186, or —70, or (on the ZX81) a white-on-black letter

47

U, or (on many machines including the ZX Spectrum) a
colon, or an instruction to compare the values stored in two

certain places in the computer, or (on the ZX Spectrum) that

a character should be in red on white and flashing; or any

other meaning you care to give it. Only by the context can

you decide which meaning is appropriate.

Almost al! high-level languages use ‘data types’ to

distinguish between different kinds of ‘values’ that can be
represented. The data type does a number of jobs; it

defines which values are inc|uded, which value each

possible bit string corresponds to, how long the bit string is

(i.e. how many bits it contains: there is usually no explicit

indication of where a bit string ends in the way that the end

of a word is shown by a space or punctuation mark) and

which arithmetic ‘operations’ are available.

In ZX BASIC there are just four data types:

numbers, strings, arrays of numbers, and arrays of

characters. Numbers, for instance, occupy 40 bits and
cannot be larger than about 10°°; they are accurate to about

nine decimal digits except that all numbers less than about

10° are stored as zero. The various parts of the program

that do arithmetic on numbers, including those that convert

them to and from the decimal representation, need to agree
on the exact way in which each number is represented by a

40-bit bit string, but the user of the computer wil! not

normally need to be bothered with such details

When a program is translated into machine code,

most of the information that the data type conveys is left

behind. In the same way, a program in a traditional general-

purpose language such as BASIC only conveys a limited

amount of information about the way in which the rather

48

limited repertoire of the data types is used to represent

values encountered in the real world. The programmer may

for instance want to store the amount of one-inch hexagonal

steel bar which a company has in its warehouse; the

computer has no knowledge of steel, bars, hexagons, or

inches, and the data type will probably just indicate that it is

a number. But the number could be the number of pieces,

the total length in feet, the total |ength in metres, or the

weight in imperial or metric or US short tons; it is up to the

programmer to ensure that the correct units are assumed at

each place in the program that the number is used.

DATA TYPE — details of the bit string stored in a variable: how

the computer can find out how long it is, what operations can

be done on it, and how it corresponds to the text form used in

the program.
VALUE - the thing represented by a bit string, whether stored

in a variable or being processed by the program; the informa-

tion required to discover the value, given the bit string, is

included in its data type (qv),

49

VARIABLES

Most computer languages store data in ‘variables’.

Just as in algebra, a variable is something that has a value

that can change, but there the similarity ends. In algebra,

we have things like

y=ax*+bx+c

in which a, b, and c are ‘constants’, which take particular

values, and x and y are ‘variables’ which can take a range of
values. We can draw a graph (as in Chapter 7) showing
which values of y correspond to which values of x. Having

drawn the graph, we can see all the values of x and y at the

same time.

The computer, on the other hand, is essentially a

serial device, and so variables in a computer have to have
their values one at a time. At any one time a variable in a
computer can only have one value, but it may have different

values at different times and this is indeed the essence of

how computers work. In BASIC we say

LET variable = value

and the computer first works out the value and then

‘assigns’ the value to the variable; the variable has this value

until another value is assigned to it.
Something which is particularly confusing at first to

anyone used to the algebraic sort of variable is

LET x = x/2

which looks as of we are wanting x to have a value which is
equal to half of itself (i.e. zero), But look at what the
computer does: it takes the value of x (which must have

50

been assigned to it previously) and divides it by 2, then

assigns this new value to x. To put it another way, x is

assigned a new value which is half its old one. Similarly

LET x = x+1

(which would be nonsense as an algebraic equation)

assigns to x a new value which is one more than its old one.

Although this describes adequately what a variable

does in terms of the notations in the high-level language, it is

worth looking at how a variable is actually stored in the

computer.

Most of the early languages were ‘compiled’ into

machine code; BASIC, as we shall see shortly, is an

exception to this, but the way in which it uses variables is

similar. In a compiled language, a variable has

a aname,
b adata type, and

© arepresentation of the value

The name is used in the program to identify which particular

variable is being talked about (and is for this reason

sometimes called an ‘identifier’) just as the name ‘Joe

VARIABLE — a place in the computer's memory where a bit

string is stored. In most high-level languages, the program-

mer's only direct access to the memory is to store data in, and

retrieve it from, variables: see ‘data type’ and ‘identifier’.

IDENTIFIER — the name given to a variable or other entity ina

program. In most programming languages (though not in ZX

BASIC) the identifier is only used in the text (or ‘source code’)

form of the program, a more direct way of establishing the vari-

able’s type and location being used in the machine code.

51

Bloggs’ would be used to identify a particular person. The

representation is a bit string representing the variable's

value at any time, which is the value most recently assigned
to it. This bit string is often of a fixed length (a fixed number

of bits) so that a particular group of bit cells (i.e. places in
the memory in which bits can be stored) can be set aside to

contain it, and any new value will occupy exactly the same

amount of memory as the old one it replaces.

The data type describes all those things the

compiler needs to know about the value in order to translate
(‘compile’) the program Into machine code, such as how

many bits it requires and what machine instructions to use

when doing arithmetic on it.
The name and data type are thus used when the

program is compiled (at ‘compile time’) while the value is of

course only present when the program is run (at ‘run time’).

The name and data type are not usually available at run

time, although some aspects of the data type will be implicit

in the machine code operations that use the variable.
In languages of the sort just described, there are

two distinct phases — compile and run — and the compile

phase is completed before the run phase begins. In

interactive BASIC, as on the ZX computers, the user is able

to type in part of a program and run it and then type in some
more and run that. Obviously the second part is not

compiled until after the first part has run, so it is not possible

to throw away the ‘name’ and ‘type’ information at the end of

compilation in case more compilation is required later.

In fact most BASICs, including ZX BASIC, differ

from the earlier languages more radically than this in that

they are not compiled at all but interpreted: instead of

52

translating the instructions in the program into machine
instructions which will be obeyed later, the computer obeys

them as it goes along. This means that it is not necessary to

find space in the computer's memory for all the machine

instructions, and it does not have to process any of the

instructions in the program that are not going to be obeyed
(i.e. those that are there to deal with situations that do not

happen to arise in this particular run). On'the other hand, an

instruction that is to be obeyed many times has to be

translated many times whereas in a compiled language it

only gets translated once.

(The ZX BASICs are actually reasonably efficient in

this respect. Keywords such as PRINT are stored as single
codes so that the computer can immediately look up in a

table what kind of action to take rather than having to

identify them from the separate letters P,R,|,N,T. The codes

are only translated into letters when the program is listed on

the screen or printer. Numbers are translated into binary
when they are typed in and the binary is stored alongside

the character form in the program.)
in the ZX computers, all three parts of the

information about a variable are therefore stored together

and are available all the time. String variables are
distinguished from numeric variables in the program by the

dollar sign at the end of the name, and arrays (see below)
are distinguished by the parentheses that follow the name,
so the computer can always tell the data type of a variable

without needing any ‘context’ information. In many

languages, each name must be ‘declared’ before it can be

used; the declaration specifies the data type. Thus in Algol

68

53

BEGIN REAL x, STRING s
‘declares’ that will the variable x will be of type ‘real’. (a
floating point number) and the variable s will be a string. We

can then say

x := 5; s i= "Hello"

but not

s:=5

which would attempt to assign to s a value which it cannot

represent. In BASIC there are no declarations (except
insofar as the DIM command declares the size of an array

as mentioned below) but the data type is deduced from the

form of the name: if it ends in a dollar sign it is a string,

otherwise it is a number, so we can say

LED x S75,
LET s =
LET s$ = "Hello"

but not

LET s$ = 5
LET s = "Hello"

Note, by the way, that s and s$ are different variables even

though their names are similar.

In the ZX BASICs, and in most other BASICs, the
variables are kept jumbled together in one part of memory,

and if a variable that has not been mentioned before is used

it is added to the top of the heap. There are some

restrictions to this process, as follows.

If you try to use the value of (as distinct from assign

to) a variable that does not exist, the ZX BASICs signal an

54

error. This is because it is assumed that you have made

some mistake such as mistyping the name or forgetting to

put in the command that should have assigned a value to it

Therefore, the first time the computer comes across each

name (other than an array) must be to the left of the equals

sign ina LET or FOR commana.

Some BASICs simply assume the value is zero if

the offending variable is a number, or the ‘empty’ string

(which contains no characters) if it is a string. This is helpful

if it is what you intended but it can cause programs to do

some very strange things if it is not.

An array is a group of variables of the same type

that are all collected together under one name; arrays are

dealt with more fully in Chapter 5. The whole group is

created at the same time by a DIM command, which

specifies how many variables are required. Because it does

not also specify a value, all the variables have zero (if

numeric) or the ‘space’ character (otherwise) assigned to

them. The first time the computer comes across each array

name must therefore be in a DIM command, but once it has

obeyed the DIM command you can use the ‘elements’ (the

CHARACTER STRING — a number of characters considered

together (and in a particular order) as a single object (cf. ‘bit

string’). BASIC allows character strings to be manipulated asa

whole or dissected into their individual characters

ARRAY — a collection of variables all of the same type, with a

single identifier (qv). The individual variables (or ‘elements’)

are selected by one or more numbers called ‘subscripts’

because they correspond to numbers in algebra which are

written as subscripts:

55

individual variables from which the array is made up)

without having to assign to them with a LET command first.

Some languages allow you to treat the whole array

as a single value, for instance to assign it to another array.

Its representation is after all simply a (usually) rather large
bit string which happens to consist of the values of the

elements one after the other. It is also quite common to be

able to group variables of different types together into a
‘record’ which again can then be treated as a single value,

the individual variables of which it is made up being the
‘fields’ of the record. These facilities are, however, not

available in BASIC.

ASSIGNMENTS

It was rather glibly stated above that assignment

commands take the form

LET variable = value

without too much being said about how the value was

expressed. The simplest kinds of value are variables and

‘literals’. The current value of a variable is indicated by
simply writing the name of the variable as in

LET x = y

which assigns to variable x a copy of the value in variable y.

56

(In BASIC this will always result in the values of x and y

being the same bit string, but in other languages it is

possible for x and y to be of different types — perhaps two
different ways of representing numbers, in which case the

computer would translate the value from one representation
to the other.)

The value in a variable is thus represented

indirectly by giving the name of the variable; the same name

may correspond to different values at different times if the
variable has been altered in the meantime.

A literal is a value that is represented directly as

itself in the text of the program, and is thus always the same
value whenever the command containing it is obeyed. In

BASIC there are just two types of literal, number and string,
as in

LET x = 42

LET q$ = "What?"

Numbers are of course in decimal notation, and can be a
whole number as in the example above, or with a decimal

point as in 3.162, or in what is often called ‘scientific

notation’ in which a letter E is used to mean ‘times ten to the
power’. Ten to the power nis the number which is written as
a1 with n noughts after it, and ten to the power —n is written

as a 1 with nnoughts before it and a decimal point after the

first nought. Thus 5.4E3 is 5.4 x 1000 or 5400, and 47E-6 is
47 x 0.000001 or 0.000047. Table 3.1 shows the

correspondence between powers of ten and the prefixes
used in metric and SI units, so for instance 1.25 centimetres
is 1.25E—2 metres and 94 MHz is 94E6 Hz.

57

Table 3.1 SI prefixes

d deci- E-1 dadeka- £1
Gecent-= E=2 h hecto- E2
m milli- E-3 k_kilo- ES

myria- E4

@ micro- E-6 M mega- E6

n nano- E-9 G giga- £9

popes "E—12 T tera- ie
f femto- E-15 P peta- E15

a_atto- E=18 E exa- E18

Literal strings are always enclosed in quotes. These
notations are used in almost all computer languages

So far, then, we have seen how a variable can store
numbers and strings that we have typed in and copies of

things that have already been stored in other variables. But

a computer ought to be able to compute, or derive, new

values from existing ones, and the notation used for this is
called an ‘expression’.

Expressions are built up from arithmetic and similar

operations; the symbols that show what operations to do are
called ‘operators’ and the values on which the operations

are done are called ‘operands’. For instance in the

expression x+3 the operator is the plus sign and the

operands are the value of the variable x and the literal value

3. The operation to be done is adding these two values

together, and the value of the whole expression is the result

of this operation, so if, say, the value currently stored in x is

5 then the value of the expression is 5+3, or 8

58

An expression can have more than one operator,

as in

Dre Si 25)

but we have to decide just what the operands are. Is 2+3 an

operand of the multiply operator, so that the value is 5x5 or

25, or is 3*5 an operand of the addition operator so that the

value is 2+15 or 17?
Some languages do all the operations in the order

in which they appear, from left to right, so that in the

example the addition is done first and the result, 5, is an

operand of the multiplication. One or two do them in order

from right to left, but most (including BASIC) use the
concept of ‘priority’. Each operator has a ‘priority’, and the

operators with the highest priority are done first. Operators

with equal priority are done from left to right. Multiplication

has a higher priority than addition, so 3*5 is worked out first

and the result, 15, is then an operand of the plus sign and

the value of the expression is 17.

Just as in ordinary arithmetic or algebra,

parentheses can be used to group things together into a

single operand, as in

(era as ap ee)

OPERATOR — a symbol or identifier indicating an arithmetic or
other operation, similar to a function as far as the computer is

concerned. The parameters are called ‘operands’ and do not

have to be written in parentheses.

59

where the expression in parentheses is an operand of the
multiplication and the value of the whole expression is 25.
Obviously

3% 15

is not a valid expression and so cannot be an operand of a

The priorities are mostly arranged so that an
expression without any parentheses is evaluated in a way
that will appear sensible to the programmer. Multiplication
and division have a higher priority than addition and
subtraction so that an expression such as

a®*x+b-c/x

is evaluated in the same way as the corresponding
algebraic expression

ax + b= O/x

There are a number of other operators, mostly to do with
comparing values to see whether one is bigger than the
other etc. and with combining the results of several such
comparisons, and their priorities are listed near the end of
the manual that comes with the computer,

There is never any harm in using parentheses to
show in what order the operations should be done even
where they are not strictly needed (except, perhaps, if the
computer is so full that there is not room for them).
Therefore, when in doubt (and where someone reading the
program might be in doubt) parenthesise.

A few languages (notably POP-2 and Forth) and
some calculators use ‘reverse Polish notation’ for

60

expressions. Polish notation was invented for use

particularly in formal logic and put the operator first, as in

25% 305 or * F023. 5

meaning respectively ‘add 2 to the result of multiplying 3 by

5’ and ‘multiply the result of adding 2 to 3 by 5’. Reverse

Polish puts the operator last as in

eS Ie Tod or 23 tek

which is more convenient for computers. Both forward

Polish and reverse Polish have the advantage that neither

brackets nor priorities are needed; the order in which

operators and operands appear defines uniquely in what

order the operations are to be done and what their operands
are

Operators such as plus and multiply are called

‘binary’ operators because they have two operands. There

are also ‘unary’ operators that have just one operand; they

are also called ‘prefix’ operators if they are written before the

operand and ‘postfix’ operators if they are written after it

Binary operators (except in Polish notation) are also called

PREFIX OPERATOR — an operator which precedes its

operand, such as‘—' or‘NOT’. In ZX BASIC, 'LOG’, ‘COS', etc.,

are prefix operators whereas in most BASICs they are func-

tions.

POSTFIX OPERATOR — an operator which follows its operand

or operands. In reversed Polish notation, all operators are

postfix operators

61

‘infix’ operators because they are written between their
operands.

BASIC does not have any postfix operators; an
example of a postfix operator in ordinary mathematics is the

exclamation mark used to indicate ‘factorial’ as in ‘4!’ which

means ‘factorial 4' or 4x3x2x 1. In a programming

language that recognised measurements such as length

and weight as data types in their own right (in which case a
computer would be able to be more helpful in the example

involving steel bar earlier in this chapter) postfix operators

such as ‘ft’ and ‘Ib' might be defined to convert ordinary

numbers into a measure of length etc. However, no such

language is available at the present time.

ZX BASIC has two prefix operators of the ordinary
mathematical kind, minus and NOT. (The latter is used in

Boolean arithmetic, described in Chapter 4.) There are also

many prefix operators which are ‘functions’ such as SIN and

COS and LOG: in most BASICs these are written with their
operand in parentheses rather like array elements, as in

SIN(x) or LOG(COS (x))

but in ZX BASIC they have the status of operators so that the

rather more natural form

SIN x or LOG COS x

can be used.

Prefix operators need to have a priority just as infix
operators do, because

SIN x+y couldmean_ SIN (xty)

or (SINx) +y

62

and in fact most of the prefix operators have a priority higher

than any infix operator so that it is the latter meaning that is

used. One exception is NOT, which although it has a higher

priority than the infix Boolean operators comes below the

other infix operators for a reason that will become clear in

Chapter 4, and the other is minus, which comes below ‘to

the power’ so that for instance —x ¢ 2 means —(x f 2) or —x*

and not (—x) f 2 which would be (—x)x(—x) or +x°

GETTING THE ANSWERS OUT

We have now seen how the computer can have

values specified to it, calculate other values from them, and

store all the values away in variables, To use the computer

as a simple calculator we clearly need one more facility

namely the ability to display the values so that the user can

read them, and this is done by the PRINT command

The PRINT command simply consists of the word

PRINT (to see the results on the TV screen, LPRINT to see

them on the printer) followed by the values you want printed,

separated by semicolons. String values are displayed by

sending to the screen (or printer) the characters they

contain. Each character can be thought of as representing a

key being pressed on an electric typewriter; most are

‘printing characters’ and cause the relevant character to be

printed and the ‘print position’ (where the next character will

INFIX OPERATOR -— an operator which has one operand

before it and another after it. The ‘four functions’ add, subtract,
multiply, and divide in normal arithmetic are examples of infix

operators.

63

go if it too is a printing character) to be moved on one place,

but others include ‘space’ (which moves the print position

on without printing anything) and, on the Spectrum, codes
that alter the colour etc. of following printing characters.

Numbers are converted into strings, and the

resulting string values are treated as above. (There is also a
prefix operator STR$ that does the same conversion if you
need it within a program.) Unlike some BASICs, ZX BASIC
does not include any ‘space’ characters in the string into

which a number is converted, so for instance

4 = Be
2 LET z = 42

ele) PRINT z

LET x
LET y

PRINT x;y

both print the same thing. If a comma is used instead of the
semicolon, at least one space will be inserted between the

numbers, in fact sufficient spaces to bring the print position

to the centre of the line or the beginning of the next line

(whichever comes first). Often there will be text to insert

between two numbers anyway, as in

PRINT n;" eggs at ";c;"p/doz cost "5

n¥c/12;"p"

which raises a number of points worthy of remark. Spaces
are included in the pieces of text to separate the numbers

from the words, so that if, say, nis 6 and cis 78 the output

reads

6 eggs at 78p/doz cost 39p

and not (for instance)

6eggs at78p/doz cost39p

64

Although this may be obvious looking at the example

outputs here, it is surprising how often it is forgotten when a

PRINT command is being written. The reason ZX BASIC

does not insert spaces in numbers is that otherwise the

output might look like the following:

6 eggs at 78 p/doz cost 39 p

and inserting spaces in PRINT output is easier than taking

them out. All the above formats are preferable to

number of eggs = 6

cost (p/doz) = 78

total cost (pence) = 39

which may have been appropriate in the days of the

punched card tabulaior and is far too prevalent today.

Finally, note that (unlike Fortran, for instance) BASIC allows

calculated values as well as simply values from variables in

a PRINT command, and the above example is more efficient

(in space to store the program, in time to obey it, and in

reducing the amount of ‘clutter’ the human reader has to

contend with) than

LET total = n*c/12

PRINT n;" eggs at ";c;"p/doz cost "stotal;"p"

which uses two commands instead of one and introduces

an extra variable.

65

DED ANE DECISIONS

In Chapter 3 we considered the commands LET

and PRINT which allow the computer to be used in much the

same way as a desk calculator. That is, calculations (which

are typed in in the form of expressions) can be performed

and the results displayed on the TV screen (with PRINT) or

on the printer (with LPRINT, which is exactly like PRINT) or

stored away for later use (with LET).
Programs consist of sequences of commands;

there are of course commands other than LET and PRINT

and LPRINT, many of which are introduced later in this

section and all of which are described fully in the manual

that comes with the computer. The program is built up from

‘lines’; on the ZX81 there is one command to each line, but

on the Spectrum several commands can be written on one

line, separated by colons. Each line has a line number

which shows where it goes in the program; if you type in a

line without a line number it is obeyed immediately and then

thrown away, but a line that begins with a number is added

to the program and is not obeyed at this stage.

The manual describes the details of how programs

are typed in. The screen is divided into a top part, which is a

‘window’ through which the program can be seen, and an

area at the bottom in which the line currently being typed is

displayed. Therefore, when the program is changed (by

inserting or removing or replacing a line) the result of the

change is immediately apparent, This contrasts with many

BASICs in which the screen merely shows a record of the

67

lines that have been typed recently, although a ‘listing’ of the
program can be displayed in response to a command.

Some computers permit this listing to be altered without

necessarily doing the corresponding alterations to the
program.

A further feature of ZX BASIC is that lines are

entered into the program only if their syntax is correct,

whereas other BASICs will accept anything and only check
it when the program is run. Syntax is concerned with the

way words etc. are put together to form commands;

semantics are concerned with the meaning of the command
and semantic correctness usually depends on the context

within which the command is obeyed. Thus

LET x$ = SQR y and _ LET > THEN IF

are syntactically incorrect and would be rejected, while

LET x = SQR y

is syntactically correct and is accepted into the program,

but may fail at run time if the value of y is negative or if y

does not exist at all. This still applies even if the semantics

do not in practice happen to depend on the context, so that

LET x = SQR -1

is accepted as syntactically correct even though it will
always fail at run time.

Natural languages such as English also have
syntax and semantics. For instance ‘The fat cat on the mat’

is syntactically not a sentence because it does not include a

verb. ‘The green sky is sleeping furiously’ is syntactically
correct but semantically does not appear to make sense.

68

The computer does not reject incorrect commands it does

not understand because it gets a pedantic satisfaction from

making you do it again properly, but because any sense

that it might make of the command might not be what you

intend, for instance

LET x$ = SQR y

could have been typed in mistake for

LET x§ = STRS y Of LET x$ = STRS SQR y

or LET x = SQR y

and the computer is not intelligent enough to be able to

decide that any particular one is more likely.

In the same way that the text of this book is divided

into paragraphs, it is helpful if a program can be divided

visually into separate sections. The REM command (short

for ‘remark’) is provided for this purpose: it instructs the

computer to ignore the rest of the line, which can then be

used for a description of what the following piece of code

does, for the benefit of the human reader. (On the Spectrum,

SYNTAX — the structure of a language, which tells you the con-

text within which to interpret the various words that appear ina

statement (cf. ‘parse’). For instance, the syntax of ‘The cat ate

a mouse on the mat’ shows which of the things appearing in

the sentence (the cat, the mouse, the mat) did the eating and

which it was that got eaten.

SEMANTICS — the meanings of individual words and phrases

in a language, within the framework defined by the syntax, qv.

The syntax defines that the cat ate the mouse, and the seman-

tics defines what a cat is, and what a mouse is.

69

note that it ignores the whole of the rest of the line, even

though if you type a colon as part of the remark it goes into K
mode as if it was expecting another command.)

On the Spectrum, a blank line can be inserted into
the program by typing a line consisting of the line number

and a space. (There has to be something following the line

number because otherwise the line with that number (if any)

will be deleted from the program, and nothing will be

inserted.) On the ZX81 the nearest thing to a blank line is a
line containing the keyword REM and nothing else.

Unfortunately, even by being careful to lay out the
program in a ‘well-structured’ way we cannot entirely

overcome BASIC's essentially ‘write-only’ nature (see

Chapter 1). But if we cannot make it easy for other people to

understand how a program works we can still make it easy
for them to use it without needing to see the command lines

from which it is made up at all.

Often two quite separate people are concerned
with a program, the programmer who writes it and the user

who will run it. The user simply wants his data processed,

and is concerned only with the data values and not at all

with the variables in which the programmer chooses to store

them. Moreover he will not want to type any more than is

necessary.
The INPUT command is the means whereby the

user enters data into the computer. With the LET command,
the programmer is able to assign a value to any variable at

any time: the programmer controls the order in which the
assignments are done, and must be assumed to

understand the effects of them. With the INPUT command, it
is still the programmer who decides what variables are to be

70

assigned to and at what stage; it is however the user who

provides the values to be assigned.
An INPUT command consists of the keyword

INPUT and a variable (although on the Spectrum more

elaborate forms are also possible), and the effect is just the

same as aLET command except that the value is typed in

by the user instead of being included as part of the

command. In most BASICs (and indeed in most other computer

languages) the input value must be a literal, but in the ZX

BASIC it can be anything that could appear to the right of

the equals sign in a LET command. This is useful for typing

in values such as PI/2 and in circumstances where the user

knows the names of some of the variables available at that

point in the program, but it also permits cheating in

programs that give practice in arithmetic by asking the

answers to sums. (This problem can be avoided on the

Spectrum by using INPUT LINE, checking that the line

contains nothing but digits and then using VAL to convert it

to a number; ordinary string input will not do because the

user can rub out the quotes and use STR$. Of course in

many circumstances where this kind of program is used the

pupil will have nothing to gain by such cheating anyway.)

When the INPUT command is obeyed, the user is

presented with the ‘L‘ cursor at the bottom left of the screen,

enclosed in quotes if a string is required or on its own ifa

number is required. It is easy for the programmer, who is

familiar with the way the program works, to forget that the

user will often not have any idea what the computer is

asking and hence not know what to reply. Itis therefore

important to get into the habit of always putting a message

on the screen indicating what value is being requested. On

71

the Spectrum this can be done as part of the INPUT

command, but on the ZX81 it must be done by preceding
the INPUT command with a PRINT command. It is important

to word the message in terms that the user will understand.

Suppose a variable r holds the percentage rate of interest
payable on an investment: a suitable message when
INPUTting ris ‘Type in the percentage rate of interest per

annum’ or ‘Interest rate (percent per annum)?’ and definitely
not ‘Value of r?’ even though this is how the programmer
thinks of it.

DECISIONS

When the computer is being used as a calculator,
commands are typed in one by one and each command is
obeyed before the next one is typed. There is no clear

distinction between the roles of the programmer, who
decides what commands are to be obeyed by the

computer, and the user, who supplies the data for those

commands. In particular, results from earlier commands, or

data not directly used in the calculations, may influence the

choice of which commands are given subsequently. For

instance, income tax might be deducted at different rates

depending on the tota! amount of income; interest on
different kinds of bank account may be calculated in
different ways.

Where the action to be taken by the computer

depends on things that will not be known until the program

is run, the programmer has to allow for all the possible

circumstances. (Programs often fail because a combination

of circumstances arises that the programmer did not think
of.) The IF command is used to switch the computer to one

72

course of action or another depending on a value which it
calculates. This is only useful if the calculated value is not
known when the program is written; one example of this is a

value which is input by the user when the program is run (or

is calculated from one that is). Another very common

example occurs in a ‘loop’, which is a sequence of

commands that is obeyed repeatedly until some condition is
fulfilled: at the end of the sequence the computer tests to

see whether it should repeat it or go on to the next part of the
program. This is a little different from the case where the

programmer specifies alternative courses of action, one or
the other of which will be taken depending on the

circumstances, because both courses are taken when the
program is run, but at different times.

The IF command takes the form

IF condition THEN line

in which ‘line’ represents anything that could be a command

line (though without a line number, of course). If the

condition is satisfied, the line following THEN is obeyed,

otherwise it is ignored, just as a line starting with REM is
ignored. For instance

IF x=y THEN LET x=5

tests if the values of x and y are equal: if so, 5 is assigned to

X but if not the LET command is ignored and x retains its
former value. On the Spectrum, where several commands

can be put on one line, note that the whole line is ignored if

the condition is not satisfied; most of the BASICs that allow

several commands on aline do this, but there are a few
which only ignore the first command after the THEN, so that

73

IF x=y THEN LET x=5: LET y=4

would assign 4 to y whether or not x and y were equal. This
is rather like the priority of operators in expressions — on the

Spectrum the colon has a higher priority than THEN, but in

some BASICs it has a lower priority.

Some BASICs, and many other languages, allow
an ELSE part which is obeyed only if the condition is not

satisfied, as in

IF x>0 THEN LET y=x ELSE LET y=-x

but ZX BASIC does not.

The condition usually takes the form

value comparison value

in which the two values are of the same type (numbers or

strings) and the comparison operator is one of

o > ic a= SS o

meaning respectively ‘equal to’, ‘greater than’, ‘less than’,

‘greater than or equal to’, ‘less than or equal to’, and ‘greater

than or less than.’ The last three may also be thought of as

‘not less than’, ‘not greater than’, and ‘not equal to’.
It is convenient to think of the comparison

operators as yielding a ‘Boolean’ value — TRUE or FALSE —

the former if the condition is satisfied, the latter if it is not.

(More is said about Boolean arithmetic later in this chapter.)

Thus x=5 is TRUE if x holds the value 5 and FALSE if x holds
any other value; x>3 is TRUE if x holds a value which is
greater than 3 (such as 4 or 597.6 or 3.000001), and FALSE

if it holds the value 3 or any value less than 3 (such as 0 or

74

2.9 or —47), If the condition is TRUE the part after THEN is

obeyed; if the condition is FALSE it is ignored

The comparison operators can appear in

expressions in the same way as ordinary arithmetic

operators; the comparison operators have a lower priority so

that expressions such as

x*y > m5

have the obvious meaning.
In some languages a separate data type is used

for Boolean values, but in ZX BASIC they are stored as

numbers, with zero representing FALSE and any other value

representing TRUE. Any Boolean value generated by the

computer uses 1 to represent TRUE.

Boolean values can be stored in numeric variables

just like any other numbers, so we can write

LET smaller = x<y

LET p = x=3

LET p=x=3

to assign 1 to the variable smaller if the value in x is less

than that in y and 0 otherwise, and to assign 1 to p if x holds

the value 3 and 0 otherwise. The third line of course means

the same as the second as far as the computer is

BOOLEAN — Boolean arithmetic uses the two ‘truth values’ true

and false instead of the numbers used in the algebra with

which most people are more familiar. It is thus helpful for

describing calculations on values th an be stored ina

single bit.

75

concerned, but a person reading it is more likely to be
misled into thinking that it sets both p and x to the value 3.

Using these variables we can write commands like

IF smaller THEN PRINT x;" is smaller"

IF p THEN LET x = y+5

and in fact between the IF and the THEN we can use
anything that has a numeric value — if the value is zero the

part to the right of the THEN is ignored, if the value is

nonzero it is obeyed.
In ordinary mathematics, we are used to writing

things like

1<x<5

to mean x is greater than or equal to 1 and less than or

equal to 5, i.e. xis in the range 1 to 5 inclusive. In ZX BASIC

we can write

Eee een

and we might expect it to mean the same, but on closer

consideration this turns out not to be so. The two operators
are of the same priority, so are done from left to right.

Therfore the value of ‘1 <=x’ is worked out as either TRUE
(1) or FALSE (0), which then goes on to be the left operand

of the second ‘<=’ operator. The expression thus reduces

to either ‘0 <=5’ or ‘1 <= 5’, and in either case yields

TRUE! So

IF 1 <= x <= 5 THEN

PRINT "Value is in range"

76

always prints the message ‘Value is in range’ whether x is in

the range 1 to 5 or not.
A final caveat on the comparison of numbers

concerns values that have been derived from calculations in
which some of the numbers used were not stored exactly in

the computer. The only numbers that are stored exactly are
whole numbers less than about 4 000 000 000 and numbers

(within the range the arithmetic allows) that are the result of

multiplying or dividing these by powers of two, viz. by 2, 4,

8, 16, 32, 64, etc. Furthermore, literal numbers written with a

decimal point or an E are always liable to be inaccurate

because of the method the BASIC uses to convert them
from the decimal form in which they are typed to the binary

form used inside the computer.
The comparison operators work by subtracting one

operand from the other and seeing whether the result is zero

or positive or negative. The details of how this is done, in

particular the ‘rounding’ of operands and results to 32 bits or
about 91/2 decimal digits, have some very curious effects.

For instance the literal 0.25 is converted into binary by
working out (2+5x0.1)x0.1 but the constant 0.1 cannot be

represented exactly in binary and the final result is about

5107"! less than one-quarter. The division sum V is
however worked out exactly. It happens that when one of

these numbers is subtracted from the other the result is
rounded up by the same amount of about 5x 107", so that

VYa—0.25 yields about 10~'° while 0.25— V4 yields O. It
follows that 0.25= 1/4 is TRUE but 14=0.25 is FALSE!

In any programming language it is always wise to

allow for the possibility that numbers (other than whole
numbers below a certain size) may be inexact, and for

TL

instance to replace

IF x=y THEN ...

by something like

IF ABS (x-y) < 1E-8 THEN ...

if x and y are known to be between about 0.5 and 10, or

IF ABS (x-y) < 1E-8 * ABS x THEN ...

if we have little idea what size they will be.

As well as using Boolean values in IF commands
we can use them in Boolean arithmetic, which was invented

by the French mathematician George Boole. Remember that
we have just two values, zero representing FALSE and any
value greater than zero representing TRUE; we will assume

for the moment that none of the values we encounter will be
negative.

If x and y are two such values then xxy is zero if

either x or y is zero; if both are nonzero then xxy is nonzero

also. Similarly x+y is zero if x and y are both zero but if
either is greater than zero then (because neither of them is

negative) the sum is greater than zero also.

in Boolean arithmetic the multiply operator is also

called AND, so that x AND y is TRUE only if x and y are both

TRUE; the addition operator is also called OR because x OR
yis TRUE if xis TRUE or yis TRUE, or both are.

Although Boolean arithmetic would work
satisfactorily in most cases using the ordinary arithmetic

add and multiply operators, as in

IF (y>l) + smaller * (p<3) THEN... ,

78

the operators AND and OR as in

IF y>1 OR smaller AND p<3 THEN ...

are also provided. These have the correct effect even if their

operands are negative or so large that adding or multiplying
would result in a value too large to store in the computer.

The third Boolean operator that is available in ZX
BASIC is NOT, which is a prefix operator with only one

operand. NOT x has the value 1 if xis 0, and 0 otherwise, so

NOT xis TRUE if, and only if, x is not TRUE.

The priorities of the Boolean operators are chosen
as follows. AND has a higher priority than OR in the same

way that multiply has a higher priority than add, so that the
operations are grouped in the same way in each of the two
examples above. NOT, being a prefix operator, has a higher
priority than either of these, but all the Boolean operators

have a lower priority than the comparison operators so that
the parentheses can be omitted in the second example
above.

A somewhat devious use of AND allows the

equivalent of the ‘conditional expressions’ that are provided

in some other languages. The value of x AND y is in fact the

same as x if yis TRUE, and zero if y is FALSE. Thus for

instance the value of

(atb AND q) + (b*c AND NOT q)

is (a+b) +O if gis TRUE, and 0+(b*c) if q is false, so that

the whole expression has the effect of

IF q THEN a+b ELSE b*c

79

The left operand of AND (though not of OR) may also be a

string, in which case if the right operand is FALSE the value

of the expression is the empty string (a string with no
characters in it). The ‘+’ operator between two strings

means ‘concatenate’, and concatenating the empty string

(like adding zero to anumber) has no effect. Therefore,
exactly the same construction may be used as with

numbers; for example

(a$ AND x=y) + (bS AND x<>y)

has the effect of

IF x=y THEN a$ ELSE b$

A slightly more elaborate example is

("greater" AND x>y) + ("less"

AND x<y) + ("equal AND x=y)

Unlike the conditional expressions in most languages, it is

not necessary to have the ELSE part, so we can write

PRINT x;"" is ";"not " AND x>y;"equal to "3y

and

PRINT x;" inch"; "es" AND x<>1

in ZX BASIC.

80

STTIRIINIGIS}

In Chapter 3 we saw briefly that an ‘array’ is a

group of variables all of the same type, collected together
under one name. The invidual variables are called

‘elements’ of the array and are selected by a number called

an ‘index’ or ‘subscript’; it is called a subscript because in

ordinary mathematical notation a subscript would be used,
as in v3 or bp, but on the computers that run BASIC we

cannot write subscripts in this form so it is putin

parentheses instead, as in v(3) or b(n).

Each array is said to have a particular number of

‘dimensions’. For a one-dimensional array we imagine all the
elements being laid out along a line, for a two-dimensional

array they form a rectangle, for a three-dimensional array

they form a cuboid. For four or more dimensions we need to

go into hyperspace, but the idea is the same. The

‘dimensions’ of a three-dimensional array, for example, are

the length and width and height of the cuboid, i.e. the
number of elements in each direction.

The DIM command is used to create (i.e. reserve
space for) an array, and specifies its dimensions. Thus

DIM v(10)

sets up a one-dimensional array v with elements v(1),

v(2),... V(10); and

DIM c(4,3,2)

83

sets up a three-dimensional array with elements c(1,1,1),

Clk) oul, |) etle,2), CUluaal) pela,2),C(2,1il)}.. < .;
c(4,3,2). Elements are always numbered from 1 upwards in
each dimension.

!f the name of the array ends in a dollar sign, the

elements of the array are characters instead of numbers, so

DIM c$(4,3,2)

sets up a three-dimensional array of characters. It can also,

however, be used as a 4X3 (and hence two-dimensional)

array of strings, each string being exactly two characters

long (because in this case the last dimension of the

character array is 2).

The maximum size of an array depends on the

amount of storage available in the computer. An array of

numbers takes four bytes for the name etc., plus two for

each dimension and five for each element; an array of

characters is similar except that only one byte is taken for
each element. For example:

DIMa(10) 44+2x1+5x10= 56bytes
DIM a$(10) 44+2x14+1x10= 16bytes
DIM a$(6, 100) 4+2x2+1x(6x100)= 608bytes
DIM a(3,3,3,6) 4+2x4+5x(3x3x3x6)= 822bytes
DIM aS(6,6,6,6,6)

4+2x5+1x(6x6x6x6x6)= 7790bytes
DIM a(9,9,9,9) 4+2x4+5x(9x9x9xQ) = 32817 bytes

If the other things competing for space (the
program, other variables, display file, etc.) are all quite
small, then the approximate amount of space available is as

shown in Table 5.1. As an indication of what can be stored
in it, the table also shows the dimensions of a two-

84

dimensional numeric array of approximately this size.

Table 5.1. Storage space

Computer Total RAM Bytes 2-Darray
available

ZX81 (European) 1K 8g00 (12, 13)
TS1000 2K 1800 (12,30)

ZX81 + 16K RAM pack 16K 15400 (30, 100)

Spectrum 16K 8700 (30,58)
Spectrum 48K 41500 (83, 100)

As an example of how an array might be used in a

program, suppose you want to store the pattern of colours

on a Rubik's cube.

DIM c(6,3,3)

creates an array c in which you can store the 3x3 pattern of

colours on each of the six faces: c(1,1,1) might be at the top
left of the front face, c(1,1,3) at the top right, c(1,3,2) centre

bottom, and so on. How you choose the numbers and
orientations of the other faces may well make a substantial

difference to how easy it is to write routines to do the various

rotations that are possible with the real cube: in the worst

case you would have to write a separate piece of code to

deal with each face.
It is sometimes convenient to use an array as a

‘look-up table’, where the translation from one value to
another cannot be calculated easily using the normal

arithmetic operations and functions. For instance, suppose

you decide to number the cube as follows:

85

(3,2,3) (3,3,3) 3,1,3)
(3,1,2) (3,2,2) (3,3.2)
Gian) left side (3,1,1) (3,2,1) (3,3,1) right side

(231) (252,9)(2 A), 1), 0,2) 1,3) (5,33) (6,3,2)(5;3; 1)
Me aoseteT (1,2,1) (1,2,2) (1,2,3) (5,2,3) (5,2,2) (5,2,1)

(2,3,3) (2,2,3) (2,1,3) (1,3,1) (1,3,2) (1,3,3) (5,1,3) (5,1,2) (5,1,1)

(4,3,3) (4,3,2) (4,3,1)
bottom (4,2,3) (4,2,2) (4,2,1)

(4,1,3) (4,1,2) (4,1,1)

(6,3,1) (6,2,1) (6,1,1)
back (6,3,2) (6,2,2) (6,1,2)

(6,3,3) (6,2,3) (6,1,3)

Then if you look at any face f with (f,1,1) in the top lefthand

corner the colours on that and the adjacent faces are stored
in the following elements of c:

(61,1)°(62;1)- (63,1)

Chast pat hla) 1,2) oh) 1353)

(2) han =(he2) Geis) (Ge3
3) (6S) 8.2) 6333)" G13)

(b,3,3) (b,3,2) (6,3,1)

The values.of ¢, /, 6, and r are different for each f. For

instance if f=1, indicating that you are looking at the front
face, then t=3, [=2, b=4, and r=5. If f=2, so you are

looking at the left side, then t=1, /=3, b=6, and r=4. Note

that you had to look at it sideways to get the (2,1,1) element

in the top lefthand corner. If we store the values of t, |, b, and

86

rfor each fin four 6-element arrays, we can find them easily

when required for operations such as rotating one face, and

all the faces can be dealt with by the same piece of code.
On the Spectrum we can write

10 DIM t(6): DIM '1(6): DIM b(6): DIM r(6)
20 FOR i=1 TO 6
30 READ t(i), 1(i), b(i), r(i)
40 NEXT i
SQ DATATI 254555 la Oat ge esl NON Oa hss

Ae Gin imag ens

but on the ZX81 the DIM commands have to be on separate
lines and READ and DATA are not available. (Chapter 22 of

the ZX81 manual shows a way round this.)

Once these arrays are set up, we know that the

colour above (f, 1 /) is c(¢(A),/,1), for instance, and that to the

right of (f,/,3) is c(r(f), 4—i,3).

YOU DO NOT ALWAYS NEED ARRAYS

There are, however, situations in which an array is

not the right way to deal with repetitive data.

Suppose we have to find the mean of a list of

numbers x; to X,, which is the result of adding all the

numbers together and then dividing by n. Acommon

approach to this is to divide the program up as

read in the numbers

calculate the mean

write out the answer

and the program might go something like

87

10 PRINT “How many numbers? "

20 INPUT n

30 DIM x(n)
40 PRINT "Now type in the numbers"

50 FOR i=l TO n

60 INPUT x(i)

70 NEXT n

100 LET sum = 0
110 FOR i=l TOn

120 LET sum = sumtx(i)

130 NEXT i

140 PRINT "Mean is ";sum/n

This program has two FOR-loops in it, but actually there is

no reason why we cannot amalgamate them and replace

lines 50 to 130 by

50 LET sum=0
60 FOR i=l TO n

70 INPUT x(i)

120. LET sum = sumtx(i)
130 NEXT i

But now look at what is happening: the program reads the

first number into x(1) and then adds it on to sum, it never

uses x(1) again but goes on to read the next number into

x(2), and so on. Each time round it uses a new element of x

which it then never uses again, so it could instead have just

one variable and use it over and over again, as in

50 LET sum=0
60 FOR i=l TOn

70 INPUT x
120 LET sum = sumtx

130 NEXT i

88

Now we do not need line 30 either; if nis at all large, a great

dea! of space has been saved. This version of the program
does a small amount of calculation between reading one

number and asking for the next, but the time it takes to do

this is not likely to be noticeable. The original version did

much of its calculation after the last number has been input,

and if nis large there may well be a noticeable pause

between typing in the last number and seeing the answer on

the screen.
Sometimes a bit of algebraic manipulation of the

original problem can make the programming more efficient.
If we also want to work out the standard deviation, s, using

the formula

s? = sumsqdev | (n—1)

where sumsaqdev is the sum from 1 ton of (x,—mean)?, then

we Can only begin to calculate it after we have worked out

the mean, and we therefore need to store all the numbers (in
the array x) in order to work out sumsqdev at the end of the

program. But note that

(x,—mean)? = x2 — 2 X x, X mean + mean?

so the formula can be rewritten as

s° = (sumsq — 2 x sum X mean + n X mean*)/(n—1)

where sumsgq is the sum of x4, which can of course be

calculated as the numbers are being read in. Replacing

mean by sum/n we get

s* = (sumsq — 2 x sum? /n +n x sum? /n?)/(n—1)

89

which reduces to

s* = (sumsq — sum?/n) / (n—1)

Here is the program modified to work out the

standard deviation as well. It is also modified to avoid

asking the user how many numbers there will be, and to

echo the numbers on the screen so that the user can always

see the last 20 or so numbers he typed. It is written for the

Spectrum; the main modification required for the ZX81 is to

insert a SCROLL command in front of each PRINT (except

for those before line 100) and to change ENTER to

NEWLINE in lines 40 and 50.

10 PRINT AT 10,0; "Mean and standard deviation"
20 PRINT

30 PRINT "Type each number terminated"
40 PRINT "by ENTER."
50 PRINT "Then type ENTER again."
60 PRINT

70 LET sum=0
80 LET sumsq=0

90 LET n=0

100 INPUT x$

110 IF x$=""'' THEN GOTO 190

120 LET x=VAL x$

130 LET n=ntl

P40 -PRINE nse “3z

150 LET sum=sum+x
160 LET sumsq=sumsqtx*x
170 GOTO 100

180 REM

181 REM here to print mean and s.d.

182 REM
190 IF n=0 THEN GOTO 280

90

200 PRINT
210 PRINT " Mean "; sum/n
220 IF n=1 THEN GOTO 280

230 LET v = (sumsq - (sum*sum/n)) / (n-1)
240 PRINT " Variance "; v
250 PRINT "Standard devn "; SQR v

260 REM now check this is really the end

270 PRINT

280 PRINT "Any more numbers? (reply Y or N)"

290 INPUT x$
300 IF x$="Y" OR x$="y'' THEN GOTO 100

310 IF x$<>"N'" AND x$<>"n"' THEN GOTO 280

PROCESSING TEXT

The operations that are typically done on arrays of
numbers are fairly familiar to most people: ordinary

arithmetic on individual elements, and totalling rows and

columns. The computer does these operations in very much

the same way that people do them, but rather faster.

Operations on character arrays and strings are

unfamiliar because the computer's view of a character

string is quite different from a person's, The character string
is converted into a string of numbers on which simple
arithmetic operations are then done; this is a rather

laborious method, but it is the ony one available, and the

computer's speed at doing the arithmetic that is involved

makes it much less laborious than it would be for a person.
The numbers (or ‘codes’) into which the various

characters are translated are listed in Appendix A of the

2X81 and Spectrum manuals. Because of the way the TV

picture is made, the codes used in the ‘display file’ on the

91

ZX81 had to be the numbers 0 to 63 for ordinary characters
and 118 for ‘newline’. (The display file is the representation,

stored in the memory, of the picture on the TV screen; on the

ZX81 this consists of a list of character codes with a
‘newline’ code to mark the end of each line.) The codes
were chosen in a way that seemed convenient; for instance

the digit n has code 28+n and the nth letter of the alphabet

has code 37+n. Again because of the way the hardware

makes the TV picture, adding 128 to the code fora

character produces that same character but in white-on-

black instead of black-on-white.

The same codes that are used in the display file

are used in the other places that characters are stored, for

instance in the text of the program and in variables, and
some of the codes that cannot be used in the display file are

used to represent ‘tokens’ such as the keywords LET and
PRINT and THEN; in particular, adding 192 to the code for a

letter gives the code of the keyword that shares a key with
that letter on the keyboard (for instance letter G is code 44,

44+192=236, and code 236 is GOTO which is on the same

key as G).
The Spectrum display file does not store character

codes directly, and therefore does not restrict the choice of

character codes. However, the Spectrum was always
intended to support the serial interface add-on which allows

data to be exchanged with other data processing
equipment, and the Spectrum character codes have

therefore been chosen to be, as far as possible, compatible

with devices using various international standard codes:
ASCII and ISO-7 and the newer codes for videotex (also

called viewdata), teletex (a kind of super-telex for word

92

processors), and teletext (which is broadcast along with
television pictures).

We have already seen how a string can be stored,
printed out, and joined onto another string, but BASIC also

allows you to dissect a string and look at the individual
characters or groups of characters it contains. ZX BASIC’s

method for doing this is called ‘slicing’ in the manual; this is
the name used for a similar facility for dissecting arrays in
Algol 68, but it can be used on strings as well as on
character arrays. Like the functions LEFT$, MID$, and
RIGHTS in other BASICs, it lets you select a part of the string
starting in a specified place and of a specified length.

However, a part of the string is specified purely in terms of

the number of characters from the start of the string: if the
string contains a sentence in English, say, then to select the

second word you must first find where it is. The following
piece of program assigns to w$ the nth word of the

sentence in s$:

100 LET k=0
110 FOR i=l TO n
120 LET k=k+1
130 IF s$(k)=" " THEN GOTO 120
140 LET j=k
150 LET k=k+1
160 IF s$(k)<>" " THEN GOTO 150
170 NEXT n
180 LET w$ = s$(4j TO k-1)

Lines 120 and 130 move k on to the start of the word, which
we remember as /, then lines 150 to 160 move it to the

character after the end of the word. Starting from there, we

search for the next word, and repeat the process until the

93

nth word is found. If we run off the end of the string, the

program will stop with error code 3.
The operator LEN gives the length of a string, so

line 160 above could have read

160 IF LEN s$>=k THEN IF s$(k)<>" " THEN GOTO 150

to prevent error 3 happening on the last word. The operator

VAL interprets the contents of a string as a numeric

expression and yields its value, and on the Spectrum VAL$

is also available, which does the same job for an expression

that yields a string, but there is no facility to obey a whole

command contained in a string.
(Note, by the way, that

160 IF LEN s$>=k AND s$(k)<>" " THEN GOTO 150

would still give error 3 at the end of the string because s$(k)

would still get evaluated whatever the value of the left

operand of AND.)
As was indicated in Chapter 2, examining the

individual characters in a string is a long way from the kind

of processing people do when looking at a piece of text; it is
not possible to stand back and look at the whole string at

one go. The piece of program above dissects a string into
individual words, but using a rather simple-minded
definition of ‘word’: the kind of thing a user might type in real

life is

"Fred,Joe and Jim."

94

so we need to extend the program to recognise “Fred” and
“Joe” as two words (the program as written reckons the first
word is “Fred,Joe”) and to separate “Jim” from the full stop.
On the Spectrum, we also have to cope with the fact that

letters can be in upper or lower case: “THE” and “The” and

“the” must be recognised as the same word even though

they are different strings. If the program is to make any

attempt to interpret a whole sentence written in English, it

needs to have some kind of ‘dictionary’ to tell it the

meanings of all the words the user might possibly type

Because of the difficulty of writing a program that
can interpret English sentences correctly, it is often better to

present choices to the user in the form of a ‘menu’ rather

than ask a question and attempt to interpret the answer. For
instance, the program

10 PRINT "Where is the Vatican?"
20 INPUT c$
30 IF c$ <> "Rome" THEN PRINT "Wrong!"

will print ‘Wrong!’ if the user types any of the following:

"ROME" "Rome." " Rome’ "It is in Rome."

although none of them could be considered to be a wrong
answer. The program could be modified to make some

attempt at picking out the word ‘Rome’ from these answers,

perhaps as follows (lines 30 to 50 are not needed on the
ZX81 which does not have lower case letters):

10 PRINT "Where is the Vatican?"
20 INPUT c$
30 FOR i=l TO LEN cs:

REM convert to upper case

95

IF c$(i) >= "a" AND c$(i) <= "z'"' THEN LET

ce$(i) = CHRS (CODE c$(i) - CODE "a" + CODE "A')

NEXT i -

FOR i=l TO LEN c$ - 3

IF c§(i TO i+3) = "ROME" THEN GOTO 100

NEXT i

PRINT "Wrong!"

This won't print ‘Wrong!’ if the reply contains the letters

R,O.M,E together anywhere in it, which is somewhat over-

generous as it means that ‘Cromer’ would be taken to be a

correct answer. We can allow for this by adding, perhaps,

95
100

110

120

GOTO 130
REM check "ROME" isn’t part of a longer

word
IF i>l THEN IF c$(i-1) >= "A" AND

e$(i-1) <= '"Z'' THEN GOTO 80

IF i < LEN c$ — 3 THEN IF c$(it4) >= "A"

AND c$(it+4) <= "Z'' THEN GOTO 80

but this will still not trap

"50 miles north of Rome."

as a wrong answer. To be sure there is no confusion, the

‘menu’ approach is preferable, as in

96

PRINT "Where is the Vatican?"
PRINT

PRINT "1. Florence"
PRINT "2. Monte Carlo"

PRINT "3. Norwich"

60 PRINT "4. Rome"

70 PRINT "5. Naples"

80 PRINT
90 PRINT "Type the number corresponding"

100 PRINT "to the correct answer."
110 INPUT city
120 IF city <> INT city THEN GOTO 80 :

REM not a whole number

130 IF city < 0.9 OR city > 5.1 THEN GOTO 80 :

REM not in range 1 to 5

140 IF city <> 4 THEN PRINT "Wrong!"

Restricting the user's choice is perhaps undesirable in this
kind of quiz game (because if he just guesses he has one

chance in five of being right), but in more typical situations
where the program is asking the user what he wants it to do

next it is usually helpful.

97

6]

EROERAMS en ONEERS

So long as you are using your personal computer

as a glorified calculator, or to produce pictures on the TV

screen, or even for it to play simple games with you, it does

not matter too much how your programs are written

provided they fit in the amount of memory you have

available and produce the required results. But if you are
writing a large or complicated program, or one that other

people will use, or one that someone else will later need to

modify, or one in which it is important to be reasonably sure

that the results correspond correctly to the input data, then

there are a number of guidelines that should be followed.

Actually, if you are writing ‘serious’ programs you
probably should not be using BASIC at all. Several
languages are available on cassette for the ZX computers. If

you buy one, make sure you know whether it implements the

whole language or only parts of it, also check how much of
the computer's memory it takes up. Preferably read the
reviews in the microcomputer magazines. Remember that

each time you switch off the computer you lose what is in the
memory, so you will have to read the cassette in afresh each

time you want to use it: only BASIC js in the machine when

you switch on.

As the name, Beginner's All-purpose Symbolic

Instruction Code, implies, BASIC is intended as a way of

introducing people to computers and programming, in the

expectation that they will later graduate to programming in

other languages. But, as many people in the software

99

industry have noted (not least the members of the Alvey

committee which reported recently to the UK government on
certain aspects of computing in the 1980s), BASIC can get

you into some very bad habits

STRUCTURED PROGRAMMING

The larger a program is, the more difficult it

becomes to keep track of the effect of any particular

commands on the rest of the program, or the state of play as

regards things that other parts of the program should be
updating. Questions arise such as: Is it all right to use

variable j, or is there some other part of the program that has

left something stored there which it is expecting to be able

to retrieve later on? Has nextvalue (which is supposed to

hold the value that the program will look at next) been

updated yet, or are there circumstances in which it still

holds a value that has already been dealt with? Can we print

a message here without obliterating, or otherwise interfering
with, something written by another part of the program?

Techniques for limiting these kinds of problem

have two main components:

1. Break the program up into pieces of manageable size.

It is not possible to be very precise as to how big is
‘manageable’: up to perhaps 40 or 50 commands in

average circumstances, but a straightforward process
which happens to require a lot of commands can take more,

a complicated one should be limited to rather fewer.

2. Use comments to show what each piece does, what

resources it uses, etc.

100

There are usually things that are true throughout the

program, and can be documented in a comment at the top

of the program (if that does not take up too much memory)

or outside the computer altogether (if you can be sure it will

not get lost); for example in a program to play a board game

such as chess there will probably be an array which holds

the current position and a variable which shows whose
move it is: the documentation should define how the

information is encoded in them. Then when writing the part
of the program that displays the board on the screen you

need refer only to this documentation; it is not necessary to
look at the part of the program that sets up the initial position

nor at the part that updates the position when a move is
made. Similarly, the comments on individual parts of the
program can assume that you already know the information

that is in this ‘global’ documentation, and need not repeat it.

Incidentally, the design of just how the information

is to be represented in the memory (called the ‘data

structure’) is the most important part of most non-trivial

programs. Once this has been done, the program usually
falls automatically into a number of sections each of which is

concerned with updating a part of the data structure to take

account of a change in the thing represented, such as

making a move in a chess game or adding anew
transaction to a bank balance. If the data structure has been
well designed, these operations should be fairly easy. When

designing the data structure you should always try to use a
representation that will be convenient for the program. In
particular consider how you can avoid making the number

of different operations (and hence the number of different

sections in the program) unnecessarily large. In the chess

101

game, for instance, do you just need one routine for ‘make a
move’, or do you need separate routines for ‘white’s move’

and ‘black’s move’? If you favour having just one, however, it
is going to be significantly more complicated than either of

the separate ones? If so, it might be better to use two after

all.

During the 1970s the term ‘structured

programming’ became current. This is a technique whereby

you describe the task your program has to do in terms of
‘lower-level’ tasks; the description should be of manageable

size, i.e. less than a page. For the chess game this might be

1. set up initial position, set ‘white to move’, ask whether

computer is to play black or white or both or (if two people
are using it as a kind of electronic chess board) neither;

2. display board on TV screen, indicate whose move it is;

3. if the player cannot move, indicate ‘checkmate’ or

‘stalemate’ and go to 7;

4, If it is the computer's move, work out what the move
should be; if the user's move, ask for the move to be input;

5. make the move, or if it is ‘resigns’ go to 7;

6. swap from ‘white to move’ to ‘black to move’ or vice versa,
and go to 2;

7. show (on the screen) which player has lost, and ask

whether another game is to be played; if so go to 1.

Each of these seven tasks is in turn described in terms of
lower-level tasks, and so on until all the tasks have been

defined as sequences of commands in BASIC (or whatever

programming language is being used — but for the purpose

of this book we will assume it is BASIC).

A feature of BASIC which very few other languages

102

share is that each line of the program has a number, and

you may as well make use of this to assist understanding of
the program by using line numbers from 1000 up for step 1,
2000 up for step 2, and so on. If step 2 consists of six lower-

level steps, these should start at 2100, 2200, . . ., 2600; line

2000 should contain a REMark indicating what step 2 does.

Some structured-programming purists would insist
on a more Girect manifestation of the top level in the

program, as in

10 GOSUB 1000

20 GOSUB 2000
30 GOSUB 3000: IF done THEN GOTO 70
40 GOSUB 4000

50 GOSUB 5000: IF done THEN GOTO 70
60 GOSUB 6000
62 GOTO 20

70 GOSUB 7000: IF another THEN GOTO 10
72 GOTO 9999

They would also insist on eliminating all GOTOs from the

program. In the ‘block-structured’ languages, particularly

the newer ones, such as Algol 68, Pascal, BCPL, and C,
facilities are provided which can replace most uses of
GOTO: in the example above, lines 20 to 65 would be

bracketed together as a ‘block’ in some way (which

depends on the language), the GOTOs on lines 30 and 50

would take the form of ‘exit fram the block’ commands and

that on line 62 would be shown as ‘repeat the block’. Lines

10 to 70 would be another block (with the first block ‘nested’
inside it), with the IF... GOTO replaced by a command of
the form ‘repeat while (another)'. We can do some of these

103

things in BASIC, as in

10 FOR a = O TO O STEP -l

15 GOSUB 1000

20 GOSUB 110

70 GOSUB 7000

72 LET a = another: REM go round again if TRUE

75 NEXT a
78 STOP

110 FOR b = O TO | STEP 0

120 GOSUB 2000
130 GOSUB 3000: IF done THEN RETURN

140 GOSUB 4000
150 GOSUB 5000: IF done THEN RETURN

160 GOSUB 6000
170 NEXT b

but this does not really seer to make what the program is

doing any clearer.

Many of the advocates of structured programming

concentrate on the elimination of GOTOs with almost

religious fervour (sometimes actually quoting Genesis

chapter 11 verse 7 in which, in the Authorised Version, God

says ‘Go to, let us go down, and there confound their

language, that they may not understand one another's

speech’ as evidence that it is GOTOs that make programs
incomprehensible). However, it is possible to find very clear

and comprehensible programs that use GOTOs, and very

obscure and muddled ones that do not.

But if you are writing in ZX BASIC you do not really
have any sensible alternative to using GOTOs, and you
should be aware of how to use them and how not use them.

In most languages, if you wish to GOTO a

104

command that command must have a ‘label’. A label is very
much like the name of a variable, in that it identifies the part

of the memory in which the line is stored; usually it has the

same form as a variable name (letter followed by letters and/

or digits) though in Fortran it is anumber. Many compilers
have the ability to generate a ‘cross-reference’ table which
shows where each label is used. When you are looking at a

piece of the program, either to check whether it is correct or
to see whether a change you are proposing to make will

upset something else, you can be sure (1) that the only

ways into the piece of program are at the top and at each

label, and (2) that each place from which it is entered can

be found in the cross-reference table. You can therefore be

certain of being able to check every context in which the

piece of program can be used.

In BASIC, every line has a line number and is

therefore potentially the target of aGOTO. No cross-
referencer is provided in the standard firmware, although it

would not be too difficult to write a crude one in BASIC.
(Look in Chapters 27 and 28 of the manual in the case of the

2X81, and Chapters 24 and 25 in the case of the Spectrum,
to find where to PEEK and what to look for there; in each

case Appendix A tells you that the code for GOTO is 236.)

The problem is made worse by the availability of commands
like

GOTO (#+5)*100

which is liable to GOTO anywhere — remember that jis not

necessarily a whole number nor is it necessarily positive, it

could for instance be —3.53 in which case the command
reduces to GOTO 147, and if there is no line 147 it will

105

GOTO the next highest line number.
It is therefore most important to put a REMark at

any place that is liable to be GOne TO from any other part of

the program. This also applies (indeed rather more so) to

places that are the target of a GOSUB,; in this case the

REMark should make clear what the end effect of the

GOSUB will be (i.e. what will have been done by the time the

RETURN is reached).

Another criticism often levelled at GOTOs is that
indiscriminate use leads to a program which, if you trace all

the paths the computer can follow through it, looks like a

plate of spaghetti. (It has also been said that the more

extreme forms of ‘structured programming’, with their many

separate layers of program, resemble a dish of lasagne,
which is just as difficult to see through.) We have found that

a good rule that helps avoid this kind of problem is

Backwards jumps should only be used for loops.

A backwards jump is one that GOes TO a command that

precedes it in the program, such as

120 IF n<>0 THEN GOTO 100

(100 being before 120). A loop is a sequence of commands

that is obeyed several times, for example

100 INPUT n

110 LET total = total+n

120 IF n<>0 THEN GOTO 100

in which lines 100 to 120 are obeyed repeatedly until a zero
value is input. (We assume that a message such as ‘type in
the numbers, terminated by a zero’ is printed before the

106

loop is entered.) Clearly there has to be a backwards jump
at some point in the loop (unless FOR . . . NEXT is used,

which is not very appropriate here). But the program should

be arranged such that there are no backwards jumps

except those from the middle or end of a loop back to the

beginning. For example, suppose you have to take different

action at a certain point if the variable x contains the value

zero:

240 IF x=0 THEN GOTO 2500

260 [action if x is nonzero]

280 [next part of program]

2500 REM here from 240 if x=0
2520 [action if x is zero]
2540 GOTO 280

This contains a backwards jump on line 2540, and we can

see that if there are many sections like lines 2500 to 2540

scattered around the program it will have the spaghetti-like

structure alluded to earlier. However, we can rearrange it as

240 IF x<>0 THEN GOTO 270

250 [action if x is zero]

260 GOTO 280

270 [action if x is nonzero]
280 [next part of program]

LOOP - a part of a program that is obeyed over and over

again; also used as a verb, meaning to obey a sequence of

commands repeatedly. Acommon consequence of a bug (qv)

is that the program stays in a loop forever.

107

which has no backwards jumps, and has a much cleaner
structure (similar, in fact, to the form the program would take

in a'GOTO-less’ language) so that we can see what it does
without having to keep track of odd bits of program in other
parts of the listing.

RELIABILITY

The novice programmer is usually surprised, the first time
he lets someone else try out a program he has just written,

to discover just how easily it can be made to fail, and indeed
how difficult it is for the guinea-pig user to get it to work at
all.

Usually the problem is that the user's input is not
quite in the form that the programmer expected. Perhaps

when asked to type a list of words he puts commas between

them when the programmer expected spaces, or several

spaces where the programmer expected just one. Perhaps

he was not told that none of the words may be more than ten

letters long. Perhaps he was asked for a number but not told
that it must be a integer (i.e. a ‘whole number’), or less than
a hundred, or greater than zero. To the programmer,

knowing how the program works, such restrictions might be

obvious, and it is sometimes difficult for him to remember
that the user does not have this information. Often the

reason that the program does not cater for a particular form

of input is that the programmer would himself never think of

using it anyway: it would never occur to him that adjacent

words in a list should be separated by anything other than a
single space, so the program does not allow for several
spaces, or a comma.

The programmer's defence against this problem is

108

a kind of ‘belt and braces’ approach:

(1) Make sure that the user has been told exactly

what the program expects.

(2) Make sure that the program can cope with any

kinds of input, even those that are not in accord with the
instructions given in (1).

There is a limit to the effectiveness of (1): users are

often too eager to get on with trying out the program to take

the necessary time to read the instructions carefully; indeed,

in the computing trade it is generally believed that users
only look at the instructions as a last resort, if all other

attempts to get the program to work have failed. The user's

understanding of some of the words you use may not be the

same as yours. If you build all the instructions into the

program and display them on the screen at appropriate

times, you may have to abbreviate them for lack of space.

With (2) we attempt to trap wrong inputs which are
the result of mistyping or of the user's misunderstanding of

what is required. The program should check whatever
assumptions it makes about the input data, preferably
immediately after they are input. For example, suppose we

want the user to choose an integer in the range 1 to 999

100 PRINT "Think of a number less than 1000"
110 PRINT "What is your number?"
120 INPUT number
130 IF number<1000 THEN GOTO 160
140 PRINT "Your number was too big"
150 GOTO 100

160 IF number>O THEN GOTO 190

170 PRINT "We need a number greater than 0"

109

180 GOTO 210

190 IF number=INT number THEN GOTO 230

200 PRINT "We need a whole number"
210 PRINT "Think of another number"
220 GOTO 110

230 REM NUMBER is an integer, 1 to 999

The INPUT command ensures that what we get is a number,

and we then check that it obeys any restrictions we have

assumed later in the program. Here we have told the user
that it should be less that 1000 and have assumed that most

users will not think of choosing a negative or fractional

number. Each of the conditions is checked, and the user is

told if his number is rejected, including the reason for the
rejection. This last is most important; there few things more
infuriating than a computer which refuses to process the

things you give it without giving some Indication of what is
wrong. (This is why when ZX BASIC rejects a command line

because of a syntax error it positions the ‘S’ cursor at the
place where it thinks the error is. It might pernaps have
been more helpful if it also told you the nature of the error,

but often the nature of the error is fairly obvious once its

position has been pointed out, and in many cases the

computer would have difficulty deciding just what the cause

of the error was.)
The above piece of program does not give the user

a long message listing all the restrictions on the input, it just

gives the important details. It then checks all the
assumptions, including those the user has been told about.

If you are systematic, you should be able to make certain

that the input to a program conforms to whatever
assumptions the rest of the program makes about it. You

110

can then be sure that the program should perform correctly

whatever inputs the user gives it.

SPEED

The ZX computers do not run programs particularly

quickly, and so it can be important for the programmer to be
aware of how to avoid making the program slower than it

has to be. Some aspects of the design of the BASIC are
inherited from the ZX80, in which the requirement to fit the

whole system into a very small amount of memory was

paramount. To keep the internal design simple (and thus to
minimise the space used by the machine code program that
interprets the BASIC) the various things that have to been

kept in memory (the BASIC program, variables, strings, etc.)
are simply stacked one after the other so that if a particular

item is required the computer searches through from the
beginning until it finds it; if one needs to be inserted the

others are moved up to make room, and if one needs to be
removed the others are moved back to close up the space.

This saves keeping (and keeping up-to-date) the multitude

of pointers which would be needed to find things more
quickly, at the expense of a fair amount of searching and
(when things have to be moved) copying; but since there

cannot be very much to search through or to copy anyway

(because there is so little room) this does not take very long.

The name of a variable, for instance, is stored in

the program without any additional information as to where it

is stored, so every time a variable is used when the program
is run the computer searches through the part of the

memory where the variables are kept, looking for the

variable with the required name. In a ZX81 with only 1K of

114

RAM this will not take very long, as there cannot be very
many variables to search through, but in one with 16K, or in

a Spectrum (especially one with 48K), there is room for a big

program with lots of variables and If the computer has to
keep finding the one that happens to be at the end of the list

this will slow the program down noticeably

Whichever language and computer are used, in

the typical program only about 20% of the commands are
obeyed often enough for it to matter at all how long they

take. Except where animated displays are being generated,
what usually matters to the user is the time between hitting
ENTER, at the end of a command or piece of input, and

seeing either results or an invitation to supply more input, so
any command that is obeyed only once or twice during this

time is not likely to make a significant difference.
Some of the techniques for reducing the run time of

a program apply to most languages on most computers,

and are largely common-sense measures such as not doing

inside a loop (and hence once each time round) a

calculation that could be done outside it. But there are a few

peculiarities of the ZX BASIC that deserve special mention

in this context.
GOTO searches the program from the beginning

for the line you want, so a line near the beginning of the
program can be found more quickly than one near the end.
The natural way to write a program is with the initialisation

(which is just done once) first, then data input, then

processing and output. But this would put the part of the
program most likely to benefit from faster GOTOs in the
place where GOTOs are slowest, so a better order would be

GOTO initialisation

112

processing & output (often-used loops)

processing & output (rest of)

STOP (or GOTO end)
initialisation

data input
GOTO processing

This includes a backwards jump that is not part of a loop,

and indeed it is already less clear just what the program is

doing, so we see that we have to choose between a faster

program and a well-structured one. The extra GOTOs are
obeyed just once each, so the time they take does not

matter.
NEXT and RETURN are also jumps and use the

same mechanism as GOTO to find the FOR or GOSUB

instruction to return to. NEXT is particularly important

because it is always part of a loop, and therefore obeyed

many times.
You may be able to reduce the number of lines in

your program by, for example, replacing

140 PRINT "Value is ";
150 PRINT x

by
140 PRINT "Value is ";x

or

270 LET q = x + LOG y

280 LET q = q * EXP z

by

270 LET q = (x + LOG y) * EXP z

113

On the Spectrum you can put several commands

on one line, separated by colons, and since it is the number

of lines rather than the number of commands that matters
this can speed things up considerably. Also, there is a little

extra processing to be done at the end of a line, so putting

your commands on fewer lines will speed the program up a

little anyway. But it is still likely to be worth starting a new line

for a FOR or GOSUB command, because the special kind of
jump done by NEXT and RETURN searches for the line

containing the FOR or GOSUB (skipping down just looking

at the line numbers) and then scans through the line

counting the commands in it unti! it comes to the one after

the FOR or GOSUB.

In this case, the format that will run faster is also

likely to be fairly good from the point of view of readability,
as in

2100 LET a=5: LET b=0: LET c=7
2110 GOSUB 1000
2120 FOR n=1 TO 50: LET q(n)=q(n)+r(n): NEXT n
2130 GOSUB 1200
ere

The way in which variables are found is in many
ways similar to the way in which program lines are found,

and it is usually done rather more often. Each variable that

has been assigned to is described by a record which

specifies its type, name, and value. (Trying to use a variable

for which no record exists causes error 2.) Assuming the

program is started by RUN, there are no records present
when the program starts; new records are added at the end
by DIM, LET, FOR, and INPUT commands, and the records

114

are searched from the beginning so the oldest one is always

looked at first.
In detail: DIM adds a new record describing an

array. FOR, and also LET assigning to a numeric variable,

will use the existing record for that variable if there is one,

otherwise it will add a new one. LET assigning to a string

variable always adds a new record; if there is an existing

one, it is removed and all the later records are moved back

to close up the gap. LET will never create a new record

when assigning to an array element.

As a general rule, therefore, the arrays and

numeric variables that are going to be used frequently

should be DiMensioned or assigned to before anything else

even if they are not going to be used until later. String
variables will usually gravitate to the end in any case.

Short names should be used for numeric variables

(arrays and strings are restricted to one-character names

anyway — another hang-over from the ZX80). A variable with

aname six or seven characters long takes twice as long to

search past as one with a one-character name. The

characters that are the value of a string variable take a

similar amount of time to search past.
Note that the computer searches for a variable

each time it appears in the program. Thus in

100 FOR j=ntl TO n+10
110 LET a(j) = a(j)*3

120 NEXT j

in which line 100 is obeyed once and lines 110 and 120 are

obeyed 10 times, it searches for n twice (both on line 100), a

20 times (all on line 110, twice each time round), and / 41

415

times (once on line 100, three times each time round on line
110, and once each time round on line 120). In all, these

three lines therefore contain 63 searches for variables and 9

jumps.

It takes about the same time to search past a

variable as a program |ine, so the extra time to find the

twenty-first variable (say) instead of the first is about the

same as the extra time to GOTO the twenty-first program
line instead of the first. This is a little more than the time it

takes to do a floating point addition or subtraction, but
somewhat less than the time required for a multiplication or

division.

The other trap for the unwary is in some of the

operations on numbers. The ‘to the power’ operator is

always worked out using the formula

xf 0, .=.- EXP, (n.* LOG x)

except when x=0. This means that x 7 2 takes about twenty

times as long to calculate as x*x does, and may give a less

precise answer. Similarly x f 3 takes about ten times as long
as x*x*x. Also, x f n causes an error A if x is negative
because you cannot take the LOG of anegative number, so

if x=—3 then x*x is +9 but x T 2 stops the program with error

A. Moral: use multiplication instead of ‘to the power’
whenever possible.

SQR x is worked out as x f 0.5, and thus also takes
rather a long time to calculate, but there is not really any
viable alternative. Some of the trigonometric functions are

slower than others: TAN x is worked out as SIN x/ COS x;

ASN uses SQR and ATN, as does ACS

116

PIAIRIT Mall

PROGRAMS

Ahh

SI

CERAREICAL PRESEN GAC)
DATA

The programs in this chapter are concerned with

displaying numeric data on the screen in pictorial form. We

saw in Chapter 2 that this is the kind of task to which
computers are well suited, and a pictorial display often

gives a much better over-all impression of trends etc. in the
data than a column of figures would.

The most literally ‘graphical’ presentation is by
drawing a graph, as of a value y which depends on another

value x. Mathematicians say y is a ‘function’ of x and show

this by writing y=f(x). The graph is drawn by considering
each possible value of x in turn, working out the

corresponding y, and (starting from a fixed point called the
‘origin’) measuring x units along the paper and y units up

the paper and marking the place.

In ZX BASIC, the PLOT command does most of the
work of this for us. Having worked out the values x and y, we

need only say

PLOT x,y

to get the relevant point blacked in on the screen. Thus:

10 FOR x=0 TO 255

20 LET y=SIN x
30 PLOT x,y
40 NEXT x

But if you try the program in this form you will find it

does not plot a sine wave; in fact it stops with error B

119

(indicating that the graph does not fit on the screen) before
getting very far at all. We need to make sure the graph is
large enough to see properly without being too big to fit on
the screen.

As the manual (Chapter 18 for the ZX81, Chapter
17 for the Spectrum) describes, the screen is divided into a
rectangular array of ‘picture elements’, called ‘pixels’ for
short. The rows and columns are identified by whole
numbers (which we will call ‘co-ordinates’) starting with zero
in the bottom lefthand corner; on the ZX81 there are 44 rows
and 64 columns, so the top righthand corner is column 63
and row 43. We will find it more convenient to think of the top
righthand corner as (x=63, y=43); this is why the rows are
numbered upwards. The pixels on the Spectrum are much
smaller than those on the ZX81, and there is room for four
times as many in each direction, so the co-ordinates go up
to (x=255, y=175).

Different computers behave in different ways when
a picture does not fit on the screen. Consider the simple line
drawing in Fig. 7.1(a) positioned on a screen as in Fig.
7.1(b). Part of the picture is off-screen and does not appear;
this technique is called ‘windowing’ because it is as if the
screen is a window through which you are looking at the
picture, and you see only those parts of the picture that are
opposite the window.

Another technique is called ‘wraparound’; here the
parts that fall off one edge appear at the opposite edge, as
in Fig. 7.1(c). This is rather as if you had drawn the picture
on a Car tyre inner tube (a shape mathematicians calla
‘torus’) and then cut the tube open and flattened it out.
Wraparound was much used in the early days of graphical

120

(a) Intended picture. (b) Effect of windowing.

PIXEL — the smallest part of a picture for which the computer

can define the colour, brightness, etc. The size of a pixel

defines the maximum resolution available.

WINDOWING — using the TV screen (or part of it) as a ‘window

through which you see a part of a picture; the rest of the picture

is stored in the computer's memory but the only way to see it is

by moving the position of the window.

WRAPAROUND - when referred to computer graphics, is an

alternative to windowing (qv): when a line goes off one side of

the screen, it comes on again at the opposite side, so that the

whole picture is visible although possibly in a rather jumbled

form

=
Ea E

h| Gi i

ey Integer out of range 270:1

c) Effect of wraparound. (d) Appearance in ZX BASIC.

121

displays because, with the technology then available, it was

much easier to implement, but windowing is normally more

convenient for the user.

ZX BASIC does not use either of these techniques,
but simply signals error B whenever PLOT etc. finds that a
point does not fit on the screen. However, it is not too

difficult to check inside your program that you are not

plotting points off-screen, and even to do your own

windowing. In the above example we can change line 30 to

30 IF x>=0 AND x<=63 AND y>=0 AND y<=43

THEN PLOT x,y

On the ZX81 this plots the point only if it fits on the screen;
on the Spectrum it plots it only if it is in the lower lefthand

corner of the screen, so that your picture will not obliterate

whatever is already in the rest of the screen. By varying the

four numbers against which the values of x and y are tested,
you can have a rectangular window of any size anywhere in

the screen. By using different tests you can have windows of
other shapes; for instance

30 IF x>=0 AND x<=y-8 AND y<=40 THEN PLOT x,y

defines a triangular window and

30 IF (x-128)f2+(y-88)f2 < 1600 THEN PLOT x,y

defines a circular Gne in the middle of the screen on the
Spectrum. (On the ZX81 you would have to use smaller
numbers to keep it on the screen.)

As indicated at the end of Chapter 6, it would be
better to use (x—128)*(x—128) instead of (x—128) 7 2 to

122

reduce the time taken to do the test. (Even though the

computer has to find x twice, at

this is still a lot quicker than usi

ind do the subtraction twice,

ng ‘to the power’ operator.)

Whatever kind of window we use, we still do not get

anything that looks much like a sine wave; we need to

choose the right scale at which to draw the picture. For any

x, the value of sin x is in the range —1 to +1. This is why we

have had so little success so far: all the points plotted were

either in the bottom two rows of

of the screen.

We therefore need to

picture. Scaling is done by mu

pixels or just off the bottom

‘scale’ and ‘translate’ the

tiplying all the coordinates by

a certain number (so the picture gets bigger or smaller but

is still centered on the same ori igin), translation is done by

adding the same number to al the y co-ordinates so that it

moves up or down, or to the x co-ordinates so that it moves

sideways. Considering only the y co-ordinates for the

moment, we can do

25 LET y = y*20+22

on the ZX81 or

25 LET y = y*80+88

SCALE (verb) — to change the size of a picture by multiplying
the coordinates of all the points in the picture by the same

number.

TRANSLATE -— to move a picture by adding the same pair of

numbers (one for the x direction, another for the y direction) to

the coordinates of all the points in the picture.

123

on the Spectrum to get the y values into the range 2 to 42 on

the ZX81 or 8 to 168 on the Spectrum which fits comfortably
on the screen.

What about the x direction? One complete cycle of
the sine wave takes from zero to 27 or about 6.3, so if we

divide the pixel co-ordinate by 10 we will get one complete

cycle on the ZX81 or four on the Spectrum. We may as well

start at x=0, so no translation is needed. Note, by the way,

that in the x direction we are starting from the pixel co-

ordinate and calculating the value, whereas in the y

direction it is the other way round: we start with the value
(derived from the x value) and calculate the pixel co-

ordinate.

Let us now rewrite the program in the ZX81 version.
Note that we are now assured that each point (x,y) is on-

screen so there is no need for any windowing.

10 FOR x=0 TO 63
20 LET y = SIN (x/10)
25 LET y = y*20+22
SO SPLOT -xyy:

40 NEXT x

This calculates the y co-ordinate in two stages

(lines 20 and 25) before using it on line 30. We can make the

program slicker by calculating it all in one go, and putting

the expression in the PLOT command instead of putting the

result in the variable y and taking it out again:

10 FOR x=0 TO 63
30 PLOT x, 20 * SIN (x/10) + 22
40 NEXT x

124

This will work on the Spectrum too, but produce a

rather small picture in the bottom lefthand corner of the

screen. To fill the screen we should do

10 FOR x=0 TO 255
30 PLOT x, 80 * SIN (x/10) + 88
40 NEXT x

You should try one of these out on a ZX81 or

Spectrum, and experiment with changing the various

constants (two in line 10, three in line 30) to see what

happens.

A MORE GENERAL VERSION

We can adapt the program to print the value of any
expression as follows. This shows the power of the VAL

operator in ZX BASIC, which allows the string to contain any

expression rather than just a literal number. The version

given is for the spectrum.

10 LET i=
20 DIM y(255)
30 LET ymin =

55 LET xstep = 0

60 PRINT "Graph plotting"
70 PRINT

80 PRINT "Type the value of y as an"

90 PRINT " expression involving x."
100 PRINT
110 PRINT "Be careful to use the single"
120 PRINT " keys for SIN, LOG, etc"

130 PRINT " instead of spelling them"

125

330
340
350
360
370
380
390
400
410
420

PRINT " out letter by letter."
INPUT f$
CLS

PRINT "y = "3£$
PRINT

PRINT "x start at?"
INPUT x

PRINT "x finish at?"
INPUT xmax
LET xstep = (xmax-x)/255
CLS

PRINT "y = "3;f£$
LET yO = VAL fs
LET ymin = yO

LET ymax = yO

REM now get the rest of the y’s and
find the max and min

FOR i = 1 TO 255
LET x = x + xstep
LET y(i) = VAL f$§
IF y(i) < ymin THEN LET ymin = y(i)

IF y(i) > ymax THEN LET ymax = y(i)

NEXT i

REM now we know the range that y covers

IF ymin = ymax THEN LET ymax = ymin+l

LET yscale = 168 / (ymax-ymin)
PLOT 0, (yO-ymin) * yscale
FOR i = 1 TO 255
PLOT i, (y(i)-ymin) * yscale
NEXT i

For the 2X81, change 255 to 63 wherever it occurs, and

change 168 to 41 on line 380. On the Spectrum you can
delete lines 180 to 210 and 240 and 250 if you replace line

220 with

126

220 INPUT "x start at ";x;", finish at ";xmax

On lines 10 to 50 we make sure that the variables we will be
using most often are mentioned before f$; as explained at
the end of Chapter 6, this helps keep as short as possible

the pause between when the user enters the last inputs and

when the results start to appear. We keep the values in an

array to save having to calculate them twice; if each one

takes quite a long time to work out, this speeds up the
second loop (lines 400 to 420) quite a lot, while if they take

only a short time the program will run quite quickly anyway
and there is no significant penalty. On the other hand, we
could simply work out all the values twice over, as in

260 LET ymin = VAL f$
270 LET ymax = ymin

280 LET xmin = x
290 REM now find the max and min y values
300 FOR i=1 TO 255

310 LET x = x + xstep
320 LET y = VAL f$
330 IF y < ymin THEN LET ymin = y
340 IF y > ymax THEN LET ymax = y
350 NEXT i
360 REM now we know the range that y covers
370 IF ymin = ymax THEN LET ymax = ymin + 1
380 LET yscale = 168 / (ymax-ymin)
390 LET x = xmin
400 FOR i = 0 TO 255

410 PLOT i, (VAL f$ - ymin) * yscale
415 LET x = x + xstep

420 NEXT i

127

(Lines 10 to 250 are the same as before except that line 20

is a LET rather than a DIM.) This will start to draw the graph

a little earlier (because the loop on |ines 300 to 350 is a little
quicker) but will usually take longer to draw it; psycho-

logically this might be better as the user can see that the
program is doing something and indeed can see how far it

has got.

Note that if ysca/e was set up as (ymax—ymin) /168

we would have to divide rather than multiply in line 410, and
division takes longer than multiplication. Similarly in line 310
we find the next x from the old one rather than deriving each

one afresh from /as in

310 LET x = xmin + i * xstep

because this would involve an unnecessary multiplication.

HISTOGRAMS

As well as drawing graphs where the pairs (x,y) are
associated by some mathematical formula such as the one

stored in f$ in the program above, we can draw graphs in
which the pairs (x,y) represent experimental or other data

from the ‘real world’. The graphical form may well reveal

trends or periodic variations that are not nearly so apparent

from the raw figures. A program to draw such a graph is

10 PRINT "Caption for graph?"
20 INPUT c$
30 PRINT c$
40 PRINT "Minimum y value?"

50 INPUT ymin
60 PRINT ymin

128

70 PRINT "Maximum y value?"

80 INPUT ymax
90. IF ymax>ymin THEN GOTO 130

100 PRINT "Maximum must be greater than"

110 PRINT " minimum!"

120 GOTO 70
130 LET yscale = 168 / (ymax-ymin)
140 PRINT "Now input the y values in"

150 PRINT " order from left to right"

160 INPUT y
170 CLS
180 PRINT c$
190 LET x=0

200 LIF y>=ymin AND y<=ymax THEN

PLOT x, (y-ymin) * yscale

210 LET x = xtl

220 IF x>255 THEN GOTO 9999

230 INPUT y
240 GOTO 200

We should probably print a further message between lines

150 and 160 telling the user that STOP can be used if there

are less than 256 numbers (see Chapter 9 of the ZX81

manual or Chapter 2 of the Spectrum manual).

Note that we check (on line 90) that the maximum

and minimum values supplied by the user are sensible, and

(on line 200) we do not assume that the y values will in fact

necessarily come within these limits. No effort is made to

maximise the speed with which the program runs because it

has very little to do between being given one input value

and asking for the next.
Another kind of display that is often used is the

129

histogram. We can make the program plot a histogram by
simply replacing line 200 with

200 IF y>ymax THEN LET y=ymax

202 FOR j=0 TO (y-ymin) * yscale
204 PLOT x,j
206 NEXT j

and making a suitable alteration to the message printed by
line 10. On the Spectrum it will be quicker to use DRAW:

keep the new line 200 but instead of 202 to 206 use

204 IF y>=ymin THEN PLOT x,0: DRAW 0,
(y-ymin)*yscale

Histograms are often drawn with the individual

columns separated; all we need to dois to replace line 210
with

210 LET x = x+2

On the Spectrum we may want to make them rather

chunkier; to do this replace lines 200 to 220 in the original
program by

200 IF y>ymax THEN LET y=ymax
202 IF y<ymin THEN GOTO 210

204 LET y = (y-ymin) * yscale

206 FOR j = x TO x+3: PLOT j,0: DRAW O,y: NEXT j

210 LET x = xt6

220 IF x>252 THEN GOTO 9999

Sometimes it is helpful to have histograms in
several colours, The ZX81 allows grey as well as black and

130

white, using the characters available in G mode on keys

ASDFGH when SHIFT is held down (see Chapter 11 of the

ZX81 manual). They are not supported by PLOT, so you

have to either use PRINT AT or else accumulate the picture

in a character array and then copy it to the screen when it

complete. An example program for the ZX81 using PRINT

is

AT can be made by replacing lines 200 to 220 of the original

program by

192 REM define character codes for block
and half-height block

194 LET block = 8

196 LET half = 9

198 REM draw column upwards
200 LET y = (y-ymin) * yscale
202 FOR v=21 TO 1 STEP -1

204 IF y>1.5 THEN GOTO 210

206 IF y>0.5 THEN PRINT AT v,x; CHR$ half;
208 GOTO 216

210 PRINT AT v,x; CHR$ block;

212 LET y = y-2
214 NEXT v

216 LET x = xtl
218 IF x>3l1 THEN GOTO 9999

220 REM swap colours for next column

223 LET block = 136-block

226 LET half = 140-half

HISTOGRAM -— a graphical representation of data in which

each number is shown as a rectangle the area of which is

proportional to the value depicted. Usually all the rectangles

are the same width, so that the height is also proportional to the

value.

131

Line 223 swaps block between 8, the code for a grey
square, and 128, the code for a black one; line 226 swaps
half between 9, for a grey half-square, and 131 for a black
one. If you change these lines to

223 LET block = 13-block

226 LET half = 13-half

then the black columns will be half-width, leaving a gap
before the next grey one. There are no characters available
which would allow you to make narrower grey columns
unless you turn the histogram on its side (cf. Exercise 3 in
Chapter 11 of the ZX81 manual).

On the Spectrum, you have eight colours available
including black and white, and you also have two brightness
levels. You can draw the columns as wide as you like, and
have gaps of any width between them; the version of the
Program on page 130 had columns four pixels wide all in
the same colour with a gap two pixels wide, but if we add

195 LET colour = 2

206 FOR j = x to x+4: PLOT INK colour; j,0:

DRAW INK colour; 0,y: NEXT j
210 LET x = xt8

225 LET colour = 7-colour

(which will cause the existing lines 206 and 210 to be
deleted) then the columns will be alternately red and pale
blue, five pixels wide with a three-pixel gap.

Although the Spectrum graphics have high
resolution when used for monochrome pictures (with the
same ‘paper’ and ‘ink’ colours over the whole screen), for
multicoloured pictures the resolution with which you can

132

specify the colours is much lower. The screen is divided into

‘character positions’ each consisting of an 8x8 array of
pixels, so there are 64 pixels in each character position.
When you are using the screen for the text (as in the PRINT

command) each character printed occupies a character
position. For each character position you can specify the
‘paper’ and ‘ink’ colours (in each case one of eight colours,

if you count black and white as colours), and also whether

the character is highlighted (by being brighter than normal)
and whether it is to flash. In the case of text this allows you

complete freedom to specify the colour of each character
independently.

When drawing pictures, however, you need to be

aware that all the 64 pixels that make up a character

position share the same colour specification. If any of them
is to be highlighted, or to flash, then all must do so, You only
have two colours — paper colour and ink colour — available.

Suppose you want to draw a histogram with

adjoining red, blue, and green columns on a white

background. Suppose you start by drawing the red column

in the righthand half of a column of character squares in red
ink on white paper (say with the x value going from 4 up to

7) in the manner of line 206 in the program just above. You
can go on to draw the blue column next to it (with x from 8 to

11) in blue ink on white paper. If you now try to add the
green column, in green ink, which we will suppose is half as
high as the blue column, you will find that the bottom half of

the blue column (which shares character squares with it)
changes to green because you are changing the ink colour

in those character squares.

You can create the green column by changing the

133

paper colour to green, but this also is done a whole
character position at a time: when you change the bottom

row from white to green the next seven rows change as well.

You can thus only get one-eighth the resolution that is
otherwise available on the Spectrum, and indeed only one-
half the resolution that is available on the ZX81. Now

suppose the blue column is (say) 50 pixels high and the

green column is higher: you will be changing the paper

colour above the top of the blue column to green. To be sure

of avoiding this problem, the height of the blue column has

to be a multiple of eight pixels also.
One way round this restriction is to use half-tones

to generate intermediate colours in the same way that the

ZX81 generates grey. (This is mentioned in Chapter 17 of
the Spectrum manual.) For instance, keeping lines 10 to 130
from the program above, we can have

140 REM set up user-defined characters b to i
as half-tone

150 FOR i=USR "b'' TO USR "b'+62 STEP 2

160 POKE i, BIN 01010000: POKE i+1, BIN 10100000

170 NEXT i

180 REM now make a to h into 0 to 7 rows
(out of 8) of half-tone

190 FOR i=0 TO 7
200 FOR j=USR "a" + 8*i TO USR "a" + 7*i + 7

210 POKE j,0

220 NEXT j
230 NEXT i

240 PAPER 7: INK 0: CLS: PRINT c$

250 FOR i=l TO 16

134

260
270
280

290
300
310
320

330
340
350
360
370

380
390
400

1000

1010
1020

INK 2: LET c$="red"

GOSUB 1000
FOR j=i*16-12 TO i*16-9: PLOT j,0:

DRAW O,y: NEXT j
INK Ll: LET c$="pale blue"
GOSUB 1000
FOR j=21 TO 1 STEP -1

IF y<7 THEN PRINT AT j,i*2-1:
CHRS(145+y);: GOTO 350

LET y=y-8: PRINT AT j,i*2-1; CHRS(152);
NEXT j
LET c$="'dark blue"
GOSUB 1000
FOR j=i*16-4 TO i*16-1: PI.OT 3,0:

DRAW 0O,y: NEXT j

NEXT i

GOTO 9999

INPUT (i); "st " AND i=l; "nd " AND i=2;

RchhntgAND sere CCS) cere sicie

LET y = (y-ymin) * yscale
RETURN

The program draws the red column in one set of
character squares and the blue and half-tone blue in

another. The half-tone blue is done before the full-colour
blue because PRINT writes the whole character square, but

it can be done afterwards by

PRINT OVER 1; AT j,i*2-1; CHRS(145+y);

which will not disturb the parts that have already been

written by DRAW.
A number of variations on the above themes are

135

possible and should be done as exercises. They include:
drawing a line between adjacent points on a graph so that

the graph forms a continuous line even where one y value

differs from the next by more than 1; drawing axes on the
graph and labelling them; and histograms in which each

column has more than one colour. An example of the last is
a histogram of sales showing home-market sales in full-

colour and export sales in half-tone.

SCATTER DIAGRAMS

Another way of presenting ‘real-wor|d’ data is in the
form of a ‘scatter diagram’ in which we simply plot (x,y)

pairs. This lets us see whether there is any correlation

between x and y. if there is, the points will be grouped
together around a line or curve, but if there is none the

points will be randomly positioned all over the screen.
A suitable program to make a scatter diagram on

the ZX Spectrum is

10 REM x is max, n is min, v is value

20 DIM x(2)

30 DIM n(2)
40 DIM v(2)

50 PRINT "Caption? ";

60 INPUT c$
70 PRINT c$

80 FOR i=l TO 2

90 PRINT "Minimum ";"'xy"(i);" value? ";

100 INPUT n(i)

110 PRINT n(i)

120 PRINT "Maximum ";"xy'"(i);" value? ";

130 INPUT x(i)

140 IF x(i)>n(i) THEN GOTO 170

136

290
300
310

PRINT "Maximum must be greater than",

“ minimum!"

GOTO 90

PRINT x(i)

NEXT i

PRINT "Now type in (x,y) pairs"

PRINT "STOP terminates"

INPUT v(1)

CLS

PRINT c$
INPUT v(2)

FOR i=l TO 2

IF v(i)<n(i) OR v(i)>x(i) THEN GOTO 300

LET v(i) = (v(i)-n(i)) / (x(i)-n(i))
NEXT i

PLOT v(1)*255,v(2)*168

INPUT v(1)

GOTO 240

On the ZX81 line 290 becomes

290 PLOT v(1)*63,v(2)*41

because of the lower-resolution graphics.

The expression

"xy"(i)

SCATTER DIAGRAM - used for results of experiments (or

similar data) that consist of a pair of numbers, where we are

looking for a relationship between the two numbers in the pair:

for each pair a point is plotted at the corresponding (x,y,)

coordinates.

137

used in lines 90 and 120 is a ‘slice’ in which we select the /th
character of the string “xy”. Thus x is printed when j=1, and
y when /=2. In fact x will be printed if i is anywhere in the

range 0.5 to 1.5, and yif it is anywhere in the range 1.5 to

2.5; if itis outside the range 0.5 to 2.5 the program stops

with error code 3 (subscript out of range) or B (integer out of

range). Contrast this with

(''x'' AND i=1) + ("y" AND i=2)

which still yields x when /=1 and y when i=2 but yields the
empty string (and does not cause an error) ifi has any other
value including, for instance, 1.0001 or —42.

To see how a scatter diagram might look without
needing to have any real data, we can do the following.

Firstly for a completely random pattern:

10 FOR i=1 TO 200

20 PLOT RND*255, RND*168

30 NEXT i

The regular lines of dots that appear are an artefact of RND,
which produces numbers that are not quite as random as

they should be. As usual, for the ZX81 the multipliers in line

20 should be 63 and 41 (or 43 as there is no caption). Also
you should have only 30 or 40 points rather than 200,

otherwise most of the screen will be black. For the kind of
distribution more likely to occur in nature, again with no
correlation between x and y:

10 FOR i=1 TO 200
20 GOSUB 1000
30 LET x=v
40 GOSUB 1000

138

50 LET y=v
60 IF x<0 OR x>l OR y<O OR y>1 THEN GOTO 20

70 PLOT x*255, y*168
80 NEXT i

90 STOP
1000 REM Set v to a weighted random number

1010 LET v = RND*1.9999 + .00005
1020 LET v = 0.1 * LN (v/(2-v)) + 0.5
1030 RETURN

As before, any apparently regular patterns are an artefact of
RND. For a scatter diagram in which the two values are

linearly related, replace line 50 by

50 LET y = 0.2 + x*0.6 + v0.2

An example of a non-linear relationship is produced by

50 LET y = 3*(x-0.4)*(x-0-4) + v*0.2

139

3)

STATISTICS

The purpose of a scientific experiment is to test a

hypothesis (or theory) by seeing if an outcome predicted by

the hypothesis occurs in practice. Sometimes the

experiment is such that its outcome is unequivocal — there is

no doubt whether the predicted event has occurred — but

often, particularly in the life sciences, statistical methods

must be used to show whether the result of the experiment
accords with the hypothesis. More precisely, we need to

know how likely the observed event (or set of events) would
be if the hypothesis is correct.

For example in an experiment in which a number of

plants are grown from seed the hypothesis being tested
might predict that half of them would have yellow flowers, a
quarter of them red flowers, an eighth blue flowers, and an

eighth purple flowers. Suppose 404 plants survive and
flower; the hypothesis does not predict that you will get 202
yellow ones, 101 red, 50 blue, 50 purple, and one with blue

and purple stripes. Rather it is predicting that each one of

the 404 plants has an even chance of having yellow flowers,
31 against red, and 7-1 against each of blue and purple. If

the hypothesis is true it is still possible for all 404 to turn out

to be blue, but it is so extremely unlikely that you would think

that either the hypothesis was false or there was something

very wrong with your experiment. In practice you will get a

result such as 190 yellow, 126 red, 47 blue, and 41 purple,

and you will want to know just how likely this result is if the
probabilities are as stated above.

141

This is calculated using x°, which measures how

different the observed results (here 190, 126, 47, and 41)
are, overall, from the expected results (here 202, 101, 50.5,

and 50.5). The likelihood of results deviating from the

expected by as much as the observed results do is
calculated from x? and the number of ‘degrees of freedom’.

The number of degrees of freedom is always one
less than the number of possible outcomes of each event in

the experiment. In the example here, we have 404 events
each of which has four possible outcomes, yellow, red, blue,
or purple, so that the observed results consist of four
numbers which must add up to 404. There are three

degrees of freedom because any three of those numbers

can vary independently; we may get any number with yellow

flowers, and any number of the rest may have red flowers,

and any number of what remains may have blue flowers, but

then all that are |eft over must have purple flowers

The following program works out the probability
according to equations derived from M. Abramowitz and

|.A. Segun, Handbook of Mathematical Functions, Dover
Publications Inc., New York, 1965, equations (26.4.4),

(26.4.5), (26.2.1), (26.2.5), and (26.2.17). The version for the

Spectrum is given first, then the alterations for the ZX81

(which only affect the INPUT prompts and the presentation
of the results on the TV screen) are given.

Lines 10 to 80 set up a table on the screen so that
several sets of results can be processed. Lines 100 to 160

set up coefficients that are used in the calculation of q(x)
which is needed if the number of degrees of freedom is odd.

Using this method instead of writing the coefficients directly
into line 520 as literals gives a rather tidier layout; it does

142

make the program run more slowly but this is unlikely to be
perceptible. Lines 310 to 350 accumulate x? as the sum of

(x-e)?/e

where e isthe expected and x the observed value, avoiding

use of the ‘to-the-power’ operator which is very slow.
If v, the number of degrees of freedom, is an even

number, we ist to calculate

(v—2)

oe x2'/(2K4x6x ... X2/)

or, to put it eee way,

s= X7/2+ x4*W(2x4)+ x9/(2x4x6) +...

+ x” ?/(2x4x6x.., (v—2))

which the program works out as

s= x7/2x (1+ x7/4x(14+x7/6x...

x (1+ x?/(v-2) x (1 +0))...))

The loop at lines 420 to 440 starts at the righthand end of

this expression, keeping the intermediate result in gq each

time; the final step is done at line 460 which calculates the
probability as

exp (— x7/2) x (1+ s)

If vis an odd number, we have

s=x+ x7/34+ x5(3x5) +...

.+ XP(3x5x7xX. ..x(v—2))

143

which is worked out as

s=xXx(1+ x73x(1+ x7/5x...

22% (1 + xXPv—2) x (14+ 0))...))

As before, the loop at lines 420 to 440 does most of the
work; this time the last step is in line 530 which calculates

the probability as

EXP (-chi2/2) * SQR (2/PL) * (1-p(chi) + s)

using the value of 1—p(ch/) calculated on the previous line.

10 REM chi-squared test
15 REM set up screen

20 CLS
30 PRINT "Degrees of 2 Proba-""
40 PRINT " freedom chi bility"
50 PRINT

60 PLOT 0,156: DRAW 255,0

70 PLOT 85,0: DRAW’0,175
80 PLOT 170,0: DRAW 0,175

100 REM coefficients in polynomial
110 LET bl = 0.31938153

120 LET b2 = -0.356563782

130 LET b3 1.781477937
140 LET b4 = -1.821255978

150 LET b5 = 1.330274429

160 LET p = 0.2316419

200 REM input data

210 INPUT "Degrees of freedom: ";v
300 REM calculate chi-squared
310 LET chi2=0

320 FOR n=1 TO vtl

144

330

340
350
400
410
420
430
440
450
455
460
470
500
510
520

530

600
610
620
630
640
650
660
700
710
720
900

1000

INPUT "Observed value: "; x,

"Expected value: "; e

LET chi2 = chi2 + (x-e)*(x-e)/e

NEXT n

REM work out probability value

LET ‘0

FOR n=v TO 3 STEP -2

LET q = 1 + (chi2/n) * q

NEXT n

IF n=] THEN GOTO 500
REM here if v is even

LET q = EXP (-chi2/2) * (1 + (chi2/2) * q)

GOTO 600

REM here if v is odd
LET chi = SQR chi2: LET t = 1/(1+p*chi)
LET b = ((((b5*t+b4)*t+b3)*t+b2)*t+bl)*t

LET q = EXP (-chi2/2) * SQR (2/P1) *

(b + chi*q)

REM display results

LET x=v: GOSUB 1000

PRINT x$;

LET x=chi2: LET n=4: GOSUB 2000
PRINT AT 23-PEEK 23689,11; x$

LET x=q: LET n=6: GOSUB 2000
PRINT AT 23-PEEK 23689,22; x$

INPUT "Another set of data? (Y/N) ";a$
IF ag = "Y" OR aS = "y'' THEN GOTO 200

IF ag © "N" AND a§ © "n'' THEN GOTO 700

GOTO 9999
REM Set x$ to value of x rounded to an

integer and right-aligned in 10

characters

145

1010
1020
1030
2000

2002
2010
2020
2030
2040
2050

LET x$ 2 "+ STR$ INT (x+0.5)
now LET x$ x$(LEN x$ - 9 TO)

RETURN

REM Set x$ to value of x rounded to n

decimals and right aligned in 10
characters

REM Assumes 0<x<10*(9-n) and 0<n<9
LET x$ = STRS INT (x * LOfn + 0.5)

LET x$ = "00000000"(LEN x$ TO n) + x$

LET x$ =" "(LEN x$: TO 8).+ x$

LET x$ = x$(TO 9-n) + "." + x$(10-n TO)
RETURN

In the routine on lines 2000 to 2050 line 2010 sets x$ to the

required string of digits without its decimal point, line 2020
adds zeroes to the left of x$ if required to ensure there are at
least n+1 digits, line 2030 adds spaces to bring it up to 9

characters, and line 2040 inserts the decimal point.

The main changes required for the ZX81 are to
replace lines 50 to 80 by

FOR i=0 TO 43
PLOT 20,4
PLOT 42,4
NEXT i
FOR i=0 TO 63
PLOT i,39
NEXT i

and to replace ‘AT 23—PEEK 23689,’ by ‘TAB’ on lines 640
and 660. (On the Spectrum we cannot use TAB because it
outputs spaces to the screen which would obliterate the

146

vertical lines drawn by lines 70 and 80. On the ZX81, TAB

skips over them in the same way that AT does. Incidentally,

on both machines the ‘comma’ PRINT separator outputs

spaces but ‘new line’ at the end of a PRINT command does
not.)

Where there is just one degree of freedom, the

results given by the above program are a little misleading

because the distribution of x? is continuous whereas the

observed values are discrete. That is to say, the way in
which we calculate the probability of x? being within a

certain value does not take into account the fact that only

certain values of x? are possible. Yates's correction allows

for this, and gives a better value for the probability in the
case where there is just one degree of freedom; the

following lines should be added to the program to
implement it.

220 IF v<>1 THEN GOTO 300

230 INPUT "With Yates’s correction? (Y/N)";a$
240 IF a$="N" OR a$="n" THEN GOTO 300
245 IF aSO"y" AND aSO"y" THEN GOTO 230

250 INPUT "Observed value: "; x,
expected value: "; e

260 LET x = ABS (x-e) - 0. 33 LET chi2 = x*x/e

270 INPUT "Observed value: "; x,
"Expected value: "; e

280 LET x = ABS (x-e) - 0.5
285 LET chi2 = chi2 + x*x/e
290 GOTO 400
300 REM calculate chi-squared without

correction

147

REGRESSION
At the end of Chapter 7 we looked briefly at scatter

diagrams, which are appropriate for occasions on which

two values are measured and we are looking for some

correlation between them. In this section we will look at how

the computer can provide some objective measurements of
how the values are related.

Here, as with the x? test, we are considering the

outcome of a number of separate trials. The x® test is used

where each trial has only a finite (and often quite small)

number of possible outcomes, as with the flower-growing

example in which there were just four possible outcomes of
each trial (yellow, red, blue, or purple; we discounted any
trials in which we got no flowers at all). For each possible

outcome the number of trials with that outcome is counted.
Inthe x® test we assumed that the differences between

trials were due to chance (or to random variations in some

factor we were not measuring) and investigated how likely it

would be that the particular set of outcomes we observed
would occur if the hypothesis was correct.

The techniques described in this section are

appropriate where each trial produces two measurements

(which will be called x and y here) and we are looking for a

correlation between the two things measured, which would

indicate that they are connected in some way. A relationship

between the two measurements is sought, such that we can
say that y consists of some function of x (i.e. a value worked

out using an algebraic formula involving x) plus an
additional component which is a random variation.

The implication is that there is a causal relationship
between whatever is measured by x and whatever is

148

measured by y, so that given the value for x in a particular

trial we can predict the value of y more accurately than we

could otherwise. This contrasts with the x° example, in

which we did not have any information that would (for

example) allow us to select beforehand which plants were

more likely to have red flowers.

For instance, we might enquire whether people's

height is related to the height of their parents. We might ask
a number of college students for their own height (for the

variable y) and the average of the heights of their parents

(for the variable x). We should obviously do this separately

for male and female students, because men are on average

taller than women. The kind of result we might expect is that

tall parents will tend to have tall children and short parents

will tend to have short children, and that there willbe a
certain amount of random variation in the heights of children

of parents of a particular height, with the children tending to

be slightly closer to the average height than their parents.

We can express this as

y=a-+ bx + random variation

and we hope to take enough pairs of measurements to be
able to identify the values of a and b with reasonable

confidence.

As well as finding the numerical values for a and b

we will plot a scatter diagram and draw on it the line

y=at+bx.

10 REM x is max, n is min, v is value
20 DIM x(2)
30 DIM n(2)
40 DIM v(2)

149

150

INPUT "Caption: "; c$
PRINT c$
FOR i=l TO 2

INPUT "Minimum ";"xy"(i);" value: ";
n(i), "Maximum "3"xy"(i);"

value: "; x(i)
IF x(i) > n(i) THEN GOTO 120

PRINT ''Maximum must be greater than",
"minimum!"

GOTO 80

NEXT i

PRINT "Now type in data as two numbers”
PRINT " separated by a comma inside"
PRINT " the quote marks, e.g."
PRINT

PRINT " 2 .47,15.438""
PRINT

PRINT "Use STOP (inside the quotes) to"

PRINT ' terminate."
REM read in data and accumulate sums

LET sx=0: LET sy=0: LET sxx=0:

LET sxy=0: LET n=0

INPUY d$
FOR i=l TO LEN d$

IF d$(i) = ",'' THEN GOTO 310

IF d$(i) = " STOP " THEN GOTO 500

IF i>3 THEN IF d$(i-3 TO i) = "STOP"

THEN GOTO 500

NEXT i
INPUT "Your input must include either",

"a comma or STOP ";dS
GOTO 240

REM here if i*th character of d$ is comma

LET v(1) = VAL d$(TO i-1)
LET v(2) = VAL d$(itl TO)

340

350

360
370
380
390

400
410

420
430
500
510
520
530
540
600
610
620
630
640
650
660
670
700
710
720

730
740
750
760
800
810

LET sx = sx + v(1):
LET sxx = sxx + v(1)*v(1)

LET sy = sy + v(2):

LET sxy = sxy + v(1)*v(2)

LET n= n+1
IF n=] THEN CLS: PRINT c$

FOR i=1 TO 2

IF v(i) < n(i) OR v(i) > x(i)
THEN GOTO 230

LET v(i) = (v(i)-n(i)) / (x(i)-n(i))
NEXT i
PLOT v(1)*255, v(2)*151

GOTO 230
REM here at end of data

IF n=0 THEN STOP: REM no data at all

LET b = (sxy - sx*sy/n) / (sxx - sx*sx/n)

LET a = sy/n - b * sx/n
PRINT AT 1,0; "y = "3a5" + "3b; "x"

’ REM now draw line with this equation

LET xl = n(1): LET yl =a+ b* xl
LET x2 = x(1): LET y2 =a+b * x2
IF yl > x(2) THEN GOTO 700
IF yl >= n(2) THEN GOTO 800

REM here if must start at bottom edge

LET yl = n(2)

GOTO 720
REM here if must start at top edge

LET yl = x(2)
REM here if not at lefthand edge
REM finish if not on screen at all

IF b=0 THEN GOTO 999: REM horizontal

LET xl = (yl-a) / b
IF xl < n(1) OR xl > x(1) THEN GOTO 999

REM line starts at (xl,yl)
IF y2 > x(2) THEN LET y2=x(2): GOTO 840

151

820 IF y2 >= n(2) THEN GOTO 900
830 LET y2 = n(2)
840 REM here if finishes at top or bottom

850 REM we now know it is on screen
860 LET x2 = (y2-a) / b
900 REM here when start and end points found

910 LET v(1) = 255 / (x(1)-n(1))
920 LET v(2) = 151 / (x(2)-n(2))
930 PLOT (xl-n(1)) * v(1), Cyl-n(2)) * v(2)
940 DRAW (x2-xl) * v(1), (y2-yl) * v(2)

For the ZX81 the INPUT commands on lines 80 and
290 must be converted to use PRINT for the captions in a

similar manner to the program in Chapter 7; if you restrict

them to the first three lines of the screen, they will not
overwrite the scatter diagram. Lines containing several

commands must be split up, for instance line 340 is

replaced by

340 LET sx = sx + v(1)
345 LET sxx = sxx + v(1)*v(1)

Line 810 however must not be replaced by

810 IF y2 > x(2) THEN LET y2=x(2)

815 GOTO 840

because this would always GOTO line 840, even when y2

was not greater than x(2). In fact the job done by lines 800 to

860 is exactly the same as that done by lines 630 to 760,
except that the tests on lines 740 and 760 are not needed

the second time. Lines 630 to 760 were written in a way that

is compatible with the ZX81, lines 800 to 860 in a way that is

more convenient on the Spectrum. Therefore for the 2X81

152

we just need to replace lines 810 to 830 with a copy of lines

630 to 710 with the line numbers suitably changed and y1

replaced by y2. Conversely, on the Spectrum we can make

the program neater by replacing lines 630 to 710 witha

similarly modified copy of lines 810 to 830.

(Make sure you understand why the tests are only

needed once: first we find where the line, which we are

drawing from left to right, comes onto the screen — top,

bottom, or lefthand edge — then we find where it leaves it
The tests on lines 740 and 760 detect the cases in which the

line does not come onto the screen at all; having come onto

the screen it must then go off it again and, if we are drawing

it from left to right, this must be at the top, bottom, or
righthand edge.)

The multipliers 255 and 151 in line 420 and lines

910 and 920 need to be changed to 63 and 37 for the ZX81,
and the DRAW command on |ine 940 must be replaced by

the line-drawing routine from Chapter 18, Exercise 6, of the

2X81 manual

The word STOP in line 260 is the token STOP which

is a shifted A on the keyboard (symbols shift in the case of

the Spectrum, which has two shift keys) but in line 270 it is

the letters S,T,O,P. We check for both because this is easier

and also more helpful than explaining in detail to the user

that one or the other must be used. (Note, by the way, that

either wil! work in the program in Chapter 7: one gives code

D, the other code 2.) The program should be refined to

check the input more thoroughly, making sure that the
substrings before and after the comma are valid numbers
(consisting only of digits, point, letter E, and leading and

trailing spaces) before applying VAL, so that the user will

153.

get a helpful error message and an opportunity to retype
rather than have the program abort with code C, A further

refinement of help to the user might be to display the last x

and y co-ordinates, and the number of pairs so far, on the

second and third lines of the screen, for instance by

375 PRINT AT 1,0; "Point number ";n;

" was'',v(1),v(2),

The comma at the end of the PRINT command ensures that
the previous message is obliterated. Suppose the fifth y
value is 12.7863 and the sixth is 103; if the comma was not

there the sixth y value would appear as 1037863 (the 103

being the true value and the 7863 left over from last time).
Line 540 needs to obliterate the last message printed by line

375. Because we do not know how long the two numbers
will be we cannot be sure how many commas will be

needed to clear the rest of the area without clearing any of

the scatter diagram; therefore it is better to clear the area

first by

535 PRINT AT 1,0,,,,

which clears two lines as required.

ZX BASIC restricts the names of arrays to one
character. (This is another hangover from the ZX80.) Thus

we cannot call the maximum and minimum values max and
min (see lines 10 to 30) and they have been reduced to the

rather less mnemonic letters x and n. Arguably x should not
be used as x(1) and x(2) can be confused with the x1 and
x2 used for the horizontal co-ordinate; perhaps the
maximum should be called m. We should perhaps attempt

to make things a little more readable by adding

154

and talking about (x), m(y), n(x), n(y), v(x), and v(y)

instead of using literal numbers for the subscripts. We

should then also change lines 70 and 380 to

FOR i=x TO y STEP y-x

to make it clearer what the loops are doing.

CORRELATION

The line drawn by the above program is called a

regression line. The program provides an objective way of

finding this line, and a subjective assessment (by looking at

the picture) of how closely the experimental results fit this

line. But there is a quantity which we can calculate, called

the correlation coefficient, which gives an objective

measure of how well they fit.
If all the points lie exactly on the regression line, the

correlation coefficient is +1 if the line slopes upwards from

left to right, —1 if it slopes downwards. For any particular

REGRESSION LINE — a line drawn on a scatter diagram (qv)

showing the relationship between the two numbers in ques-

tion. The points do not normally lie exactly on the line because

of the effect of other, random, influences on the results of the

experiment
CORRELATION COEFFICIENT — a number which shows how
close the relationship is between two quantities (such as those

represented by the x and y coordinates in a tter diagram

av), assuming this relationship is linear.

155

regression line, as the points move further away from the
line the correlation coefficient gets nearer to zero. If the

slope of the regression |ine decreases while the points

maintain their distance from it the correlation coeff cient

again gets nearer to zero.

Thus if the correlation coefficient is +1 or —1 we
can predict the value of y exactly, so long as we know the

value of x. If the correlation coefficient is zero this snows that

x has no influence on y: we cannot predict y any better
knowing x than we could if we did not know x.

The following lines added to the program above

enable it to calculate the correlation coefficient also.

225 LET syy=0

355 LET syy = syy + v(2)*v(2)

550 PRINT "Correlation coeff. "; (sxy - sx*sy/n)/

SQR ((sxx - sx*sx/n) * (syy - sy*sy/n))

The values of the correlation coefficient that can be
regarded as indicating a close relationship between x and y

depend on the circumstances, but as a rough guide there is

still a substantial random component in y for correlation

coefficients as high as 0.85, as can be seen by running the

program; you can use real data, data you invent yourself, or

computer-generated data (using RND) as in the programs

at the end of Chapter 7.

156

9]

AIC COUNT IINIGI

One of the problems with most pocket calculators

is that there is no record of the numbers that were keyed in

Someone adding up a column of figures on (say) an invoice
tends to look mostly at the invoice form and at the keyboard,

and it is very easy to forget to look at the display during the

brief time that each number appears on it (between keying

the last digit and keying the ‘+' operator) to check that the

number has been keyed correctly.

A program in a personal computer, on the other
hand, can remember all the numbers that were keyed in (by

storing them in an array) and display them on the screen so
that they can be checked against the original data. If they

are displayed in a column in a similar format to the original,

the task of checking them becomes fairly easy.
Unfortunately, BASIC does not make it very easy to

display figures properly aligned in a column. The following

program (for the ZX81) shows the kind of thing that is

required.

10 DIM p(201)
20 PRINT AT 10,0; "Type in the prices to be"
30 PRINT " totalled; use zero to"
40 PRINT" terminate the list."
50 FOR i=l TO 200

60 INPUT p(i)
70 LET p(i) = INT (p(i)*100 + 0.5) / 100
80 IF p(i)=0 THEN GOTO 110

90 NEXT i

159

100
110
120
130
140
150
160
170
180
190

200
210
220
230
240
250
260
270
280
290
300
310
320
330
340

350
360

370
380
390
400
410
420
430

160

SCROLL

PRINT ''No room for any more."
SCROLL

PRINT "Now check the prices."

FOR i=20 TO 200 STEP 20
FOR j = i-19 TOi

IF p(j)=0 THEN GOTO 200

SCROLL

LET n$ = STR$ (p(5)*100)
PRINT j; AT 21,24-LEN n$; n$(TO LEN ng - 2);

"os ("O"tn$)CLEN n$ TO LEN n$ + 1)
NEXT j
SCROLL
PRINT "All correct? ("™Y¥" or MINTN)™

INPUT r$
IF r$="Y" THEN GOTO 360

IF r$<"N" THEN GOTO 230
PRINT AT 21,0; "Line number in error?"

INPUT j
IF j<=i AND j>i-20 THEN GOTO 310
PRINT AT 20,0; "Line ";4;" is not on screen."

GOTO 150

SCROLL

PRINT "Correct value?"
INPUT p(j)
LET p(j) = INT (p(j)*100 + 0.5) / 100
GOTO 150
IF p(j) < 0 THEN NEXT i

REM here when all been checked

LET sum=0
FOR i=1 TO 200

LET sum = sum + p(i)
NEXT i

SCROLL

LET n$ = STRS (p(j)*100)

440 PRINT "Total"; AT 21,24-LEN n$; n$(TO LEN n$

— 2)3;'"."; ("O'"+n$)(LEN n$ TO LEN n$ + 1)

Lines 180 and 190, also lines 430 and 440, print the value of

p(j) correctly aligned assuming it is already rounded to two

decimal places (which is done by line 70 or 340); we

assume that p(j) is in pounds (dollars, francs, marks etc.) so

that the decimal places are the pence (cents, centimes,
pfennigs, etc.). How would you modify it to deal with half-

pence?
The only change required for the Spectrum is to

remove the SCROLL commands. The PRINT commands on
lines 220, 260, and 320 could be replaced by a caption in

the INPUT command that follows in each case. For the

version that works in half-pence, you could use one of the

user-defined characters for the ‘Ve’.

Often, the price of each item on an invoice is

broken down into net + tax, the net figure being in turn

broken down into quantity x unit cost. The following

program (written for the Spectrum) checks the figures on an

invoice, perhaps one received from a supplier, on which the

arithmetic has already been done. To keep it simple, we

assume all items carry tax at 15%.

SCROLL — to move a picture up and down, or across, the
screen, like winding the paper of a scroll from one roll to the

other

161

162

LET runtotal=0
LET netsum=0: LET taxsum=0

CLS

INPUT "Quantity (or zero if no more",
“items): ";qty

IF qty=0 THEN GOTO 500
INPUT "Quantity: "; (qty), "Unit price: ";

price, Nets) Us nets. taxa) so fax,

"Gross: "; gross
IF ABS (qty*price - net) < 0.01

THEN GOTO 110

PRINT "Net price doesn’t tally."
PRINT qty;" x ";price;" = ";qty*price
PRINT "given as ";net
BEEP 0.5,47: GOTO 30
IF ABS (net*0.15 - tax) < 0.01

THEN GOTO 160

PRINT "Tax doesn’t tally."

PRINT "15% of ";net;" is ";net*0.15
PRINT "given as "';tax
BEEP 0.5,47: GOTO 30

IF ABS (nett+tax - gross) < 0.001
THEN GOTO 210

PRINT "Gross price doesn’t tally."
PRINT net;" + ";tax;" = ";net+tax
PRINT "given as ";gross
BEEP 0.5,47: GOTO 30

LET netsum = netsum + net

LET taxsum = taxsum + tax
GOTO 20

REM here when finished
INPUT "Total net (zero if not given):",net
INPUT "Total tax (zero if not given):",tax
INPUT "Invoice total: ",gross
IF net=0 THEN PRINT "Net total ";netsum:

GOTO 590

IF ABS (net-netsum) < 0.001 THEN GOTO 590

PRINT "Net total doesn’t tally."

PRINT "Calculated as ";netsum
PRINT "given as ";net
IF tax=0 THEN PRINT "Total tax ";taxsum:

GOTO 640
IF ABS (tax-taxsum) < 0.001 THEN GOTO 640
PRINT "Total tax doesn’t tally."

PRINT "Calculated as ";taxsum
PRINT "given as ";tax
IF ABS (netsum+taxsum-gross) < 0.001

THEN GOTO 690

PRINT "Invoice total doesn’t tally."
PRINT "Calculated as ";netsum+taxsum

PRINT "given as ";gross
INPUT "True total: ";gross
LET runtotal = runtotal + gross
INPUT "Another invoice to do? (¥/N)"; rs-
IF r$="¥" OR r$="y" THEN GOTO 15
IF r$©"N" AND r$O"n" THEN GOTO 700

PRINT ,,,,"Total of all invoices this run",
runtotal

The main change required to make the program

work on the ZX81 is to separate out the captions from the

INPUT commands and put them in PRINT commands as in

the first program in this chapter. Also the BEEP commands

must be removed; you should consider other ways of
attracting the operator's attention such as making the

screen flash.
The user is asked to type in all five figures for each

item, and the program checks that net price, the tax, and the

gross price have been calculated correctly. The first two

only need to be correct to the nearest penny, because the

163

true value may have been rounded up or down to a whole

number of pence; the values given for the net price and tax
should add up to the gross price exactly, but we have to
allow for rounding errors in the computer and so we only

insist on it being correct to the nearest tenth of a penny.

If any of the figures in an item is wrong, the user

has to type the whole item again. How would you modify the

program so that only the incorrect figures had to be
retyped? Remember that when the computer finds that three

figures are inconsistent it does not know which of the three
is at fault. Having found one error, the program does not

check for any further errors but immediately asks for the
item to be corrected. This is because the correction will

probably affect the outcome of the remaining tests: if net

does not tally with qty x price, it may well be that net has
been mistyped, in which case the other two tests will fail
also, or that net was wrongly calculated in the first place and

the figures for tax and gross must now be recalculated.
The program asks for all the figures to be typed in,

rather than just asking for the quantity and unit price and
working the others out. There are two reasons for this; one is
that the actual figures are used for net and tax, which may

be up to a penny different from the calculated figures and

thus (if there are a lot of items) make a noticeable difference

to the total. The other reason is that it would be quite easy
for the user to fail to notice a discrepancy between the

figures displayed on the screen and those on the invoice

form, so it is better for the comparison to be done by the
computer. There is then no need for the kind of checking of

input that was done in the first program in this chapter,
because the numbers are checked against each other.

164

If we replace line 150 with

145 INPUT "Is tax figure correct? (Y/N)";r$
150 IF rg="N" OR r$="n" THEN GOTO 30
155 IF r§<>"Y" AND rS"y" THEN GOTO 145

then the program will cope with the occasional item at a rate

of tax other than 15%. Consider how you would modify the
program so that it always required the percentage rate of

tax to be input, or (by inserting some commands between

lines 110 and 120) so that it asked the rate of tax only if the

input figures were not consistent with a rate of 15%
Consider also how you would modify it to give a discount on
the net price, so that net was not compared against

qty * price

but rather against

qty * price * (100-discount) / 100

Alternatively, by a similar modification at line 100 to that just

described for line 150, the program could report the
percentage discount (or surcharge) that appeared to have
been applied and ask if this was correct. If net was smaller

than qty x price, the discount would be calculated as

100 * (1 - net / (qty * price))

otherwise the surcharge would be calculated as

100 * (net / (qty * price) - 1)

The program might be written so that it misses this out if the
rate of discount or surcharge is clearly absurd, but it would

not be easy to decide on a suitable criterion for ‘absurd’ —

adjustments to prices of finished goods caused by

changing prices of certain metals, for instance, can be very

165

large — so it is probably better to leave it to the user to
decide what appears reasonable.

The second part of the program checks the totals

on the invoice; it allows for the possibility that the individual
totals of the net and tax figures may not be given on the

original invoice and it displays them on the screen in case
they are needed for tax records. It also keeps a grand total

of all the invoices; it could easily be altered to keep separate

grand totals for net and tax.

INCOME TAX

Another kind of tax calculation, at least in the UK, is

PAYE (an acronym for ‘pay as you earn’) which is deducted
from wages by employers when the wages are paid.

Readers who are not directly interested in PAYE should still

find the program instructive as an example of the kind of
data processing that is frequently required in a commercial

environment

Each week the total pay since the start of the tax

year is calculated and the ‘free pay’ (which is the amount of

pay the employee can have without paying any tax) is

deducted from it. The remainder, the ‘taxable pay’ is then

looked up in the Tax Tables (which are supplied to all

employers by the Inland Revenue) to find how much tax

should have been paid since the start of the tax year; the
amount that had been paid by the previous week is

subtracted to find how much is payable in the current week.

This amount is deducted from the employee's pay and

remitted to the Inland Revenue.

The following program does most of the arithmetic

involved; as in the previous example, it is written for the

166

Spectrum but the only changes required for the ZX81 are to

move the captions from INPUT commands into PRINT

commands and to insert a CLS command before line 200
The program can very simply be adapted for monthly-paid

employees by substituting ‘month’ for ‘week’ throughout.

10 LET all tax = 0: LET all pay = 0
100 INPUT "This week’s pay: "; pay,

“Previous total pay: "; prev pay,

"Total free pay: "; free pay,
"Previous total tax: "; prev tax

150 LET total pay = prev pay + pay

200 PRINT " last week this week"

210 PRINT
220 PRINT "week’s pay''; TAB 22; pay
230 PRINT "total pay "; prev pay; TAB 22;

total pay

240 PRINT "free pay"; TAB 22; free pay

250 PRINT "taxable"; TAB 22;
total pay - free pay

260 INPUT "Total tax due: ";total tax
270 LET tax = total tax - prev tax

280 PRINT "total tax "; prev tax; TAB 22;
total tax

290 PRINT "week’s tax"; TAB 22; tax

300 PRINT

310 PRINT "net pay"; TAB 22; pay - tax

400 PRINT

EEO DDN meat cease aor ae ee ere, Mi

420 PRINT

500 REM accumulate totals of pay & tax
510 REM for all employees
520 LET all tax = all tax + tax
530 LET all pay = all pay + pay - tax

540 INPUT "Any more employees? (Y/N) ";r$

167

550 IF rg="y" OR r$="y" THEN GOTO 100
560 IF rg$<"N" AND r$<>"n"' THEN GOTO 540

600 PRINT "Total to pay to employees"

610 PRINT" this week we asb pay:
620 PRINT "to Inland Revenue "; all tax

The user types in the previous week's total pay and

total tax from the Deduction Card, the current week's pay,

and the ‘total free pay’ figure found by looking up the

employee's tax code in the tax tables. The computer works

out the new ‘total taxable pay’ figure, which the user has to

look up in the tax tables to find the new ‘total tax due’ figure;
the computer can then work out the remaining figures.

The display on the screen (generated by lines 200

to 290) shows the figures to be entered on, or checked

against, the Deduction Card, in the order in which they
appear on the Card. A better display, in which the figures

are correctly aligned with their decimal points under each
other and exactly two digits in the ‘pence’ column, would be

produced by the method used in the first program in this
chapter (lines 430 and 440). Note that this assumes that all
the figures will be an exact number of pence; ideally we
should hold them as pence rather than pounds, to avoid

rounding errors in the calculations. (The computer can hold
whole numbers up to about 4 000 000 000 exactly, but

cannot hold numbers expressed as decimal fractions
exactly. If your wages bill is more than £40m, you will

probably have a larger computer to do your payroll!) For
example:

265 LET total tax = INT (total tax * 100 + 0.5)

273 LET m$ = STRS prev tax: LET n$ = STRS
total tax

168

275 IF LEN m$ = 1 THEN LET m$ = "O"+mS

277. IF LEN n$ = 1 THEN LET n$ = "O"tn$

280 PRINT "total tax"; TAB 21-LEN m$; m$(TO LEN

m$-2); "."; m$(LEN m$ - 1 TO LEN mS); TAB 30-

LEN n$; n$(TO LEN n$-2); "."; n§(LEN n$ - 1 TO

LEN n$)

The version of the program given below uses a subroutine

(at line 1000) to print a number correctly aligned.

If we store the various totals for each employee on

cassette from one week to the next, the user will not need to

enter these particular figures. The general shape of the

program is

(1) set up arrays;
(2) perform one week's processing;

(3) save on tape;

(4) when reloaded from tape, repeat from 2.

The program below also includes National

Insurance contributions; the contribution each week is

based on the pay in that week, which is looked up in another

of the Tax Tables. Unlike the version above, it copes

correctly with the case where the employee's total pay is

less than his free pay.

10 INPUT "Maximum number of employees: "; n

20 DIM n§(n,20): REM each employee’s name

30 DIM p(n): REM total pay to date

40 DIM t(n): REM total tax to date

50 LET i=l: GOSUB 2000

80 LET all tax = 0: LET all nic = 0

169°

90
100
110

120
130
140
150
160
170
180
200
210
220

225
230
235
240
245
250
253
256
260
265
270
275
280
285

290
300
303
306
310

170

LET all pay = 0
PRINT "Name: ";n$(i)
INPUT "This week’s pay: "; pay,

"Total free pay: "; free pay,
"Total NI contr’n: "; tnic,
"Employee’s NI contr’n: "; enic

LET pay = INT (pay * 100 + 0.5)
LET free pay = INT (free pay * 100 + 0.5)

LET tnic = INT (tnic * 100 + 0.5)
LET enic = INT (enic * 100 + 0.5)
LET total pay = p(i) + pay

LET taxable pay = total pay - free pay

IF taxable pay < 0 THEN LET taxable pay = 0
PRINT TAB 11; "last week this week"
PRINT

PRINT "total NIC";

LET v$ = STR$ tnic: GOSUB 1000
PRINT "employee’s NIC";
LET v$ = STR$ enic: GOSUB 1000
PRINT "week’s pay'';

LET v$ = STRS$ pay: GOSUB 1000
PRINT "total pay";
LET v$ = STRS$ p(i): GOSUB 1100
LET v§ = STRS$ total pay: GOSUB 1000

PRINT "free pay";

LET v$ = STRS free pay: GOSUB 1000

PRINT "taxable pay";
LET v$ = STRS (taxable pay): GOSUB 1000
INPUT "Total tax due: "; total tax
LET total tax = INT (total tax * 100 + 0.5)

LET tax = total tax - t(i)
PRINT "total tax";

LET v$ = STRS$ t(i): GOSUB 1100

LET v§ = STRS total tax: GOSUB 1000
PRINT "week’s tax";

315
320
330
335
400
410
420
430
440

450
460
470
480
485
490
500

510

540
550

560
600
610
620
630
640
650
660

670
680
690

700

LET v$ = STRS$ tax: GOSUB 1000

PRINT

PRINT "net pay";

LET v$ = STR$ (pay - tax - enic): GOSUB 1000

PRINT

PRINT "--—

PRINT
REM check OK before updating arrays

INPUT "Figures OK? (Y/N) ";r$
IF rg="N" OR r$="n" THEN GOTO 100

IF rg<>"¥" AND r$<>"y" THEN GOTO 440
LET p(i) = total pay: LET t(i) = total tax

LET all tax = all tax + tax
LET all nic = all nic + tnic

LET all pay = all pay + pay - tax — enic

LET i=i+l

IF i <= n THEN IF n$(i,l) O ""
THEN GOTO 100

INPUT "Any more employees? (Y/N) "; r$

IF rg="Y" OR rS="y" THEN

GOSUB 2000: GOTO 100
IF r$O"N" AND r$O"n" THEN GOTO 540

PRINT "Total pay to employees"

PRINT" this week";
LET v$ = STR$ all pay: GOSUB 1000
PRINT
PRINT "To Inland Revenue: tax"
LET v$ = STR$ all tax: GOSUB 1000

PRINT " NI contributions"

LET v$ = STRS$ all nic: GOSUB 1000
PRINT " total"
LET v$ = STR$ (all tax + all nic):

GOSUB 1000

INPUT "Now write back to tape: start",

"recording & then press ENTER."; r$

71

710
720
730
740
750
760
770
799

1000

1010
1020
1030
1040
1100

1110

1200

1202
1210

1220

1230

1240
2000
2010
2020

172

SAVE "PAYE'" LINE 760

PRINT "Rewind & replay the tape"
VERIFY "PAYE"

PRINT "Tape checked successfully"
GOTO 799

LET i=l: REM restart here when reloaded

GOTO 80

GOTO 9999: REM skip over srtn at end of

program

REM Print number from v$ on righthand

side of screen via GOSUB 1200

LET tab = 30
GOSUB 1200

PRINT

RETURN

REM Print number from v$ in centre of
screen

LET tab = 21

REM Print number of pence from V$ as
pounds and pence, with last digit

in column
REM number held in variable TAB

IF LEN v$ = 1 THEN LET v$ = "0" + vS

IF v$(1) = "=" THEN IF LEN v$ = 2 THEN LET vS @
"Lo" + y§(2)

PRINT TAB tab-LEN v$; v$(TO LEN v$ - 2);
"."; vS(LEN v$ - 1 TO LEN v$);

RETURN

REM Input name for i’ th employee
INPUT "Employee’s name: "; n$(i)

IF n$(i,l1) < “ " THEN RETURN

2030 INPUT "Name must not start with a",
"space. Employee’s name:", n$(i)

2040 GOTO 2020

For the ZX81, there are the usual changes of
splitting up lines with more than one command and

separating the captions etc. out of INPUT commands into
separate PRINT commands. Lines 720 to 750 must be

omitted because the ZX81 does not have a VERIFY facility,

and the text ‘LINE 760' must be omitted from line 710

because the program will start there automatically when

reloaded it also carries on there after it has been saved, so

the user will need to abort it with STOP (or by switching the

computer off). The input on line 700 is ignored and is simply

there to provide a convenient way of making the computer

wait until the user has got the tape ready.
It is worth emphasising that the Spectrum version

checks that the new data have been correctly stored on the

tape, but this is not possible with the ZX81. Unless you have

a second ZX81 to LOAD it into, you will not discover that the
tape will not LOAD until after the data have been cleared out

of the computer's memory. It is safer to SAVE the dataa

second time (using GOTO 700), and listen to both copies on

the tape to check they make the right noises, before

throwing away the data in the computer, but even this is not

a guarantee that it will load correctly next time.

There is still scope for improvement to the

program. For instance, if the total amount of tax due is (say)

£2.20 less than last week, the program shows the ‘tax due

this week’ as ‘—2.20' whereas it is entered on the Deduction
Card as '2.20 R’ (R for ‘refund’). How would you make it print
the latter format instead? The figure for ‘this week's pay’ may

173

well be made up of a basic wage plus a bonus or

commission, and with superannuation payments etc.

deducted; in which case the program should ask for these

figures separately and calculate the week's pay from them.

Possibly some of the figures (basic wage, superannuation
contribution) are the same every week, and can be kept in
arrays in the way that the employee’s name is.

If you have the ZX printer, you can make the
program print out 2 payslip for each employee.

The Inland Revenue publish algorithms whereby

the figures for free pay, tax due, etc. can be calculated

instead of asking the user to look them up. However, for a

firm with only a few employees the effort of programming

these algorithms and updating them when the tax rules
change is probably greater than the effort of looking the
figure up in the tables.

INTEREST

Another kind of financial calculation that the
computer can do is to compare the returns on different

kinds of investment. Perhaps you have an ordinary savings

account with a building society that yields 7% interest, tax
paid, and you think it unlikely you will need to withdraw your
money in the near future. Should you consider transferring it

to a different kind of account on which you get 8.25%

interest, tax paid, but lose 28 days’ interest if you make a
withdrawal? The following program calculates the total
amount of interest in each case.

10 PRINT AT 20,0; “Amount invested (£):"

20 INPUT amt

30, ACLS

174

40 PRINT "Interest on £"; amt

50 PRINT

60 PRINT “weeks ordinary high yield”

70 PRINT

100 FOR n=1 TO 16
110 PRINT n*4; TAB 8;
120 PRINT INT (amt * 7 * n*28/365 + 0.5) / 100;

TAB 20;
130 PRINT INT (amt * 8.25 * (n-1)*28/365 +

0.5) / 100
140 NEXT n

Lines 120 and 130 print the interest at the relevant rates. The

amount invested is multiplied by the percentage rate of

interest to get the annual interest in pence, this is multiplied

by the factor required to get the interest over the relevant

period (4n weeks or 28n days) which is rounded to the

nearest penny and converted to pounds. The interest rate is

written into the program rather than being asked for as input

because it is expected that a program of this nature will be

fairly ephemeral — written for a particular task and then

thrown away — and there is no point in making it more

general than it needs to be for that task. Also, the user is

probably the same person as the programmer and can

quite easily alter line 120 or 130 if required; indeed, it will

usually be sufficient to replace lines 10 to 30 with a LET

command setting amt to the sum you are thinking of

investing (or reinvesting) and unless you are going to make

a copy of the results on the printer the captions printed by

lines 40 to 70 are not really necessary either.

In this example both forms of investment pay

simple interest calculated daily, less tax at the standard rate

(which you cannot claim back if you are not paying tax, but

175

you do have to top up if you are paying tax at a higher rate).

A bank deposit account might pay 10.5% on which you
would then have to pay tax. So if the rate of tax is 30% you

will only have 70% of the interest left after you have paid tax.
This is therefore calculated as

130 PRINT INT (amt * 10.5 * 0.7 * n*28/365
+ 0.5) / 100

You forfeit 7 days’ interest if you do not give notice of a
withdrawal, and you can see the effect of this by

130 PRINT INT (amt * 10.5 * 0.7 * (n*28-7)/365
+ 0.5) / 100

It is also important to know how often the interest is
paid. Suppose that the ordinary account pays interest every
three months and the high yield account once a year, and
that in each case you have the interest paid into the account

so that it is in effect compound rather than simple interest.

The interest for the first three months on the ordinary

account is therefore itself earning interest for the remaining

three quarters of the year, while that for the high yield
account is not. The following program compares an account

paying quarterly at the rate of 7% per annum against one
paying annually at the rate of 8.25% per annum but with no
interest being paid for the first 28 days (a very subtle

difference from the earlier example in which it was the /ast

28 days for which no interest was paid). We assume that the

quarters are respectively 90, 91, 92, and 92 days long, the

first being 91 in a leap year, and that the investment is made

30 days after the start of the first quarter of a year; amt is the

amount invested, ba/1 the balance in the ordinary account,

176

bal2 in the high yield account, and ini2 the interest accrued

on the high yield account but not due to be paid until the
end of the year; days1 is the number of days in the quarter

for which interest will be paid on the ordinary account,

days2 on the high yield account, and days3 the number of

days in the year.

Lines 10 to 70 are as before except that ‘weeks’ on

line 60 is replaced by ‘qtr yr’, Lines 100 onwards are

replaced by:

100 LET ball = amt
110 LET bal2 = amt

120 LET int2 =0

130 LET qtr = 1

140 LET yr = 84

200 DIM d(4)

210 LET d(1) = 91

220 LET d(2) = 91

230 LET d(3) = 92
240 LET d(4) = 92

250 LET daysl = d(1)-30

260 LET days2 = days1-28

270 LET days3 = 366

300 LET ball = ball + INT (ball * 7 *

days1/days3 + 0.5) / 100

310 LET int2 = int2 + INT (bal2 * 8.25 *

days2/days3 + 0.5) / 100
320. PRINT ss Stel gprs Mottau was

330 PRINT TAB 8; ball-amt;

340 PRINT TAB 20; bal2+int2-amt

350 LET qtr = qtrtl
360 IF qtr <= 4 THEN GOTO 600

400 REM here at end of year
410 LET bal2 = bal2 + int2

AW

420 LET int2 =0

430 LET qtr =

440 LET days3 365

450 LET d(1) = 90
460 LET yr = yrtl
470 IF yr/4 © INT (yr/4) THEN GOTO 600
500 LET days3 = 366
510 LET d(1) = 91
600 REM set up for next quarter
610 LET daysl = d(qtr)
620 LET days2 = daysl

630 GOTO 300

i!

On the ZX81 the program stops with report code 5

after 18 lines but you can get further output by using the

CONTinue command. The Spectrum asks you whether to

scroll the screen: use Y or ENTER to see the next screenful

of output, N or SPACE (for BREAK) to stop.

In all the above you can get the figures more

prettily aligned under each other by using the subroutines
from the programs earlier in this chapter and in Chapter 10.

You could also show the output pictorially, as a graph or
histogram, using the techniques introduced in Chapter 7.

The descriptions assumed you were the lender, but
the same principles apply if you are the borrower. You

might, for instance, want to buy a bigger and better

computer, and want to compare the cost of paying by credit
card (interest free for the first few weeks, then interest

compounded monthly) with that of increasing the mortgage
on your house (much lower interest rate, but no interest free

period and probably ‘arrangement fees' to be paid).

Another possibility is an overdraft at your bank: the amount

of money you would normally keep in your current account

178

reduces the amount of the overdraft but you may also have

to allow for an increase in bank charges, and the program

should take account of these factors.

179°

10)

NEERING RECORES

Nearly all computers have the ability to keep data

on ‘backing store’, which usually consists of magnetic disc

or tape. There are three main reasons for using backing

store: to increase the amount of memory available, to
preserve data while the computer is switched off, and to

allow data to be removed from the computer for safe

keeping or so that it can be loaded into another computer.

For the computer to have free access to the data

on a tape, it must be able to contro! the movement of the

tape past the heads. On tape drives intended for use by
computers, all the controls (record, rewind, playback, etc.)

are operated electronically by the computer, so that the

computer can search the tape for a particular record and

read that record into its memory when required. Cassette

tape recorders intended primarily for audio use have

controls which are operated mechanically from pushbuttons

on the recorder, although most have the facility to connect a

‘remote pause’ switch that will stop the motor.
Some personal computers (though not the ZX

computers) make use of this ‘remote pause’ facility to

provide a measure of control of the tape. The computer can

read a record from the tape and then stop the tape until it is

ready to read the next record, but it cannot rewind the tape

nor can it change between the ‘write’ (or ‘record’) and ‘read’

(or ‘playback’) modes. If the computer can connect to two

cassette recorders, it can read records from one, update

them, and write the updated records out to the other.

181

The only form of backing store provided with the
ZX81 and Spectrum is cassette tape without any ‘remote

pause’ facility. It has been announced that there is an
optional ‘microdrive’ for the Spectrum over which the
computer will have full control, but at the time of writing few
details are available.

Because the program does not have any control

over the tape recorder, it cannot adopt the approach of

‘read a record, process it, read another, process it, etc.’.
While it was processing the first record (which might take

some time if it involved asking for input from the user) it
could miss the second record. Therefore we have to adopt
the approach of reading all the data into memory first, then
processing it, then writing the new data out to tape again, as

in the second version of the payroll program in Chapter 9.
This means that any kind of ‘data base’ application has to

be restricted to the amount of data that can be held in the
computer's main memory.

The simplest way of discovering how much data
will fit into the computer is to DIMension an appropriate set

of arrays and see how big they can be made before error 4
occurs. As a rough guide, a ZX81 with the add-on RAM

pack has about 15 000 bytes available for the BASIC

program and data; without the RAM pack it has only about

700 or less, depending how much there is on the screen.

The TSIO00 without a RAM pack has about 1000 bytes more

than the European ZX81. The smaller (16 K) Spectrum has
about 9000 available, and the larger (48 K) Spectrum has

about 41 000. A typical BASIC program takes very roughly

20 bytes per commana, and the remainder of the space is

available for data: characters take one byte each, numbers

182

take five.
Taking as an example the ‘bank account’ program

which follows, the program itself requires about 2500 bytes,

and each record consists of 16 characters and 2 numbers,

a total of 26 bytes. Therefore, the ZX81 with the add-on RAM

pack can cope with up to about 480 records, the 16 K

Spectrum about 250, and the 48 K Spectrum about 1480.

The unextended ZX81 does not even have room for the

program! The later version of the program (the one with the

menu) is about 3000 bytes longer and thus leaves room for

about 120 fewer records.

BANK ACCOUNTS

A fairly typical example of personal record-keeping

is keeping track of a bank account. The computer record

not only gives an up-to-date picture of your finances, it

allows you to plan ahead by loading the data into the

computer and adding entries for the transactions you

expect to do in the next few weeks or months. (You should,

of course, be careful not to save this fictitious future bank

account on the tape in place of the real one.) You can also

easily check it against the bank’s version when your

statement arrives

This program is written for the Spectrum, and

MICRODRIVE — an attachment for the Spectrum, similar to a

cassette tape but an endless loop of tape instead of the more

usual reel-to-reel cassette and using a rather faster data rate,
to provide some of the facilities that a floppy disc provides on

other machines.

183

outputs your balance in red when you are overdrawn. To
save space on the screen, a single column is used for the

amount of all entries, credit entries being shown in black

and debit entries in red. (Your bank statement uses
separate columns for credit and debit entries.)

Many banks do not charge for transactions

provided a certain minimum balance is maintained in the

account. The program uses a yellow background for the
balance if it is below this minimum (unless it is actually

overdrawn), as a warning that you will have to pay charges.

Some banks require a minimum cleared balance; you can
get an approximate idea of what your cleared balance is

likely to be by delaying all credit entries by four working

days. For instance if you go into the bank on a Thursday and
draw £50 cash and pay in a £75 cheque, you should make
the £50 debit entry for that day but make the £75 credit entry

for the following Wednesday.

10 REM bank account
20 LET next entry = 2

30 LET max entry = 200

40 DIM d$(max entry,5): REM dates

50 DIM e$(max entry,11): REM details
60 DIM a(max entry): REM amounts

70 DIM b(max entry): REM balances

100 INPUT "Minimum for free banking: ";
min free

110 LET min free = INT (min free * 100 + 0.5)

120 INPUT "Starting date (5 chs): ";d$(1)
130 LET e$(1) = "Balance fwd"

140 INPUT "Starting balance: "; b(1)
150 LET b(1) = INT (b(1) * 100 + 0.5)

200 REM draw "statement" form

184

INK 0: PAPER 7: CLS

POKE 23692, 20
FOR n = 1 TO next entry - 1
GOsuUB 1000
NEXT n

REM here to add an entry

INPUT "Make an entry? (Y/N) "; rs

IF r$="N" OR r§="'n" THEN GOTO 620

IF r$O"¥" AND r$O"y" THEN GOTO 210
IF next entry >= max entry THEN GOTO 600

REM make next entry
INPUT "Date (5 chs): "; d$(next entry)
INPUT "Details (11 chs): "; e$(next entry)

INPUT "Amount: "; x: LET x = ABS x
INPUT "Credit or debit? (C/D): "; r$
IF r$="C" OR r$="c" THEN GOTO 480
IF r$O"D" AND r$O"d" THEN GOTO 440
LET x = -x

LET a(next entry)
LET b(next entry)

+ a(next entry)

LET n = next entry: LET next entry = ntl

GOSUB 1000

GOTO 300

REM here if arrays full
PRINT "Sorry, no more room."

REM here when finished

INPUT "Save on tape? (Y/N) "; r$
IF r$="N" OR r$="n" THEN GOTO 9999

IF r$<"¥Y" AND r$"y"" THEN GOTO 630
SAVE "Bank" LINE 200

PRINT "Replay tape to verify"

VERIFY "Bank"

GOTO 9999
REM add entry n to statement on screen

INT (x * 100 + 0.5)

b(next entry - 1)

185

1010
1020
1030

1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
2000
2010
2020

2030
2040

2050

2060

IF PEEK 23692 > 20 THEN POKE 23692,14
PRINT AT 21,0: PRINT
PRINT AT 0,0;

"Date Details Amount Balance",,
PLOT 0,164: DRAW 255,0

PRINT AT 20,0; d$(n); " "3 e$(n);
LET w=7: LET v=a(n): GOSUB 2000
LET w=8: LET v=b(n)

IF v >= 0 AND v < min free THEN PAPER 6
GOSUB 2000: PAPER 7

PLOT 44,8: DRAW 0,167

PLOT 137,8: DRAW 0,167

PLOT 193,8: DRAW 0,167

RETURN

REM write v pence in w characters (2<w<9)
LET v$ = STRS ABS v

IF LEN v§ >= w THEN LET v$ = " *#kkAx'

(2 TO w)
LET vg =" 0"(9-w TO 7-LEN vS) + vs

REM now v$ is w-l chs long & last 2
are digits

PRINT INK 2 AND v<0; v$(1 TO w-3); "2";
v$(w-2 TO w-1);

RETURN

Lines 10 to 150 simply set up the arrays and fill in
the first entry. Two character arrays hold the date and the

description of each entry (‘chq' and the cheque number for
a debit entry which is a payment by cheque, ‘salary’ for a

credit entry which is your monthly salary, etc.); two numeric
arrays hold the amount of the entry (positive for a credit

entry, negative for a debit entry) and the current balance.
The latter is not strictly necessary, as it can be calculated by

adding up all the ‘amount’ figures, but it can be useful, if

186

adjustments have to be made, to simply alter the ‘balance’
figures without actually inserting the extra entries. (When

your bank statement arrives you might find that, because of

paying bank charges, say, or receiving dividends on

shares, the two do not tally, and you may not wish to insert

extra records to deal with them.) To eliminate the separate
‘balance’ figures delete lines 70 and 490 and add

140 INPUT "Starting balance: "; a(1)
150 LET a(1) = INT (a(1) * 100 + 0.5)

225 LET balance = 0

1065 LET balance = balance + a(n)

1070 LET w=8: LET v = balance

Lines 200 to 250 write out the existing entries to the
screen with the help of the subroutine on lines 1000
onwards, which scrolls the entries up the screen while

maintaining the headings at the top of the screen and the

lines marking the individual columns. Scrolling stops

periodically, the user being asked to press a key when he
has read what is on the screen; line 220 prevents this
happening before anything has been written to the screen

(try the program without it to appreciate this) and line 1010

arranges that the ‘pages’ that the user sees overlap by a few
lines.

Lines 300 to 520 add a new entry to the records

and to the screen, and lines 630 to 690 save the new state of
affairs on tape

It is important to get the right number of spaces in

the character string literals: line 1030 has two spaces

between the words ‘Date’ and ‘Details’, five between

187

‘Details’ and ‘Amount”, and one between ‘Amount’ and

‘Balance’. The two commas at the end ensure that the

second line on the screen is cleared of anything that has

been scrolled up into it. The string on line 2020 has two
spaces and six asterisks, and that on line 2030 has five
spaces before the zero.

The subroutine starting at line 2000 writes out the

amount or balance correctly aligned (assuming it is in
pence and is a whole number), or writes a row of asterisks if

the figure is too large. Line 2030 arranges for the string v$ to
be of the correct length and puts a zero in the tens-of-pence
column if the figure is less than ten pence. Line 2050 prints

it, complete with its decimal point, in red (colour 2) if v was

negative and in black (colour 0) otherwise.
To adapt the program for the ZX81, apart from the

changes to INPUT and to lines with more than one

command which should by now be familiar, we need to

change the output format to use the less sophisticated
facilities that the ZX81 provides. The main differences are:

(a) We cannot use red for negative figures; probably the

best compromise is to use white-on-black as in

2050 LET v$ = v$(1 TO w-3) + "."" + v$ (w-2 TO w-l)

2052 IF v >= 0 THEN GOTO 2058
2054 FOR i=l TO w

2055 LET v$(i) = CHR$ (128 + CODE v$(i))

2056 NEXT i
2058 PRINT vs;

(b) DRAW is not available for the lines separating the

columns from each other. We can use the pixel graphics to
draw rather thicker lines, or the division can be made in

188

some other way, for instance

1030 PRINT AT 0,0;
1035 PRINT "Date :Details :Amount :Balance"
1040 PRINT '"'-----;----------

1050 PRINT AT 20,0; d$(n); "3"; e$(n)5

1060 LET w=6

1062 LET v=a(n)

1064 GOSUB 2000
1070 LET w=7

1075 LET v=a(n)

1080 PRINT ":";

Note that, whatever method is used, w must be one less
than in the Spectrum version.

(c) There is no direct equivalent of the yellow background

used to show that the balance has fallen below the minimum
for free banking. However, it can be marked by a character
in the space between the ‘Amount’ and ‘Balance’ columns
as in

1080 LET v$ abi

1082 IF v< OR v >= min free THEN GOTO 1086
1084 LET vg = "*"

1086 PRINT vs;

on

(a) Explicit scrolling (using the SCROLL command) must be
used instead of that implied by the PRINT commands on line
1020, thus

1020 SCROLL

Also, the commands on lines 220 and 1010 (which control

the ‘Scroll?’ message on the Spectrum) must be replaced

by something like

189

220 LET scroll count = 19

1010 LET scroll count = scroll count - 1
1012 IF scroll count > 0 THEN GOTO 1020

1014 LET scroll count = 14
1016 PRINT AT 21,0; "Hit "NEWLINE" to scroll"

1018 INPUT v$

to allow the user to indicate when he has read one pageful

and the program can go on to the next, although it is
arguable that the ZX81 prints numbers so slowly that he has

plenty of time to read them anyway!

(e) The same changes are needed to SAVE etc. (lines 660 to

680) as in the payroll program in Chapter 9.

EXTRA FACILITIES

There are a number of facilities that it would be
useful to add to this program, and which are indeed typical

of this kind of ‘database’ application: for example the ability

to alter records, insert records, delete records, list the
records starting at a particular place, and scroll the listing

down as well as up.

In all the programs so far, the program has

followed a well-defined sequence of calculations and asked

the user for input when it was required. The programmer,
through the program, was controlling the sequence of

events, and the user's role was entirely passive. Of course,

the user has ultimate control in that he can choose not to run

the program and can abort the program at any time. (Note

that we do not say that the computer is controlling anything:

the computer is not responsible for the way a program
behaves any more than a tape recorder is responsible for

190

the views expressed by a voice recorded on a tape.)
In the next example we have a somewhat different

situation in which we require the user to choose what tasks
the program shall perform, and in what order. Once a

particular function has been chosen, however, the
programmer still controls how it is carried out.

The user could be offered the ability to type

commands to the program much in the way the programmer

types commands for the BASIC, but this would require the

user to learn the ‘language’ in which the commands are
expressed and in particular to learn just what commands

are available; it would also require the program to interpret

the commands (which would presumably be typed in as

character strings) and, as we saw in the earlier chapters,
this is likely to lead to either a rather complicated program

(difficult for the programmer and possibly using up an
embarrassingly large amount of the computer's memory) or

else an over-rigid format for the commands (tedious for the

user).

The usual method followed in this kind of situation

is to offer the user a ‘menu’ of available facilities. The user

selects one facility from this menu, and the program then

asks the user for the necessary data in just the same way as

in the earlier programs. in this way the user is shown exactly
what facilities are available and the course taken by the

program is directed by simple (mostly single-character)

responses.
For the bank account program we might have the

following, lines 10 to 150 being the same as before.

200 INK 0: PAPER 7: CLS
210 PRINT "1 View statement from start"

191

215 PRINT
220 PRINT "2 View last page of statement"

225 PRINT
230 PRINT "3 Add an entry to the end"

235 PRINT

240 PRINT "4 Add an entry in the middle"

245 PRINT

250 PRINT "5 Remove an entry"

255 PRINT

260 PRINT "6 Alter an entry"

265 PRINT

270 PRINT "7 Print statement out"
275 PRINT
280 PRINT "8 Save data on cassette tape"

285 PRINT

290 PRINT "9 Exit from program"
300 INPUT "Select item number: "; n
310 LET n = INT (nt0.5)
320 IF n<l OR n>9 THEN GOTO 300
330 CLS
340 GOTO 1000 * n

Line 340 jumps to line 1000 if item 1 is selected,
2000 if item 2, and so on. Line 310 ensures that the line

jumped to is one of 1000, 2000, 3000, etc: otherwise the
user might type (say) 4.73 and cause the program to jump

to line 4730, with consequences that are unlikely to be
helpful. Alternatively line 310 could insist on a whole

number, by doing

310 IF n < INT n THEN PRINT AT 19,0;

"Ttem number must not include a",

yt fraction": GOTO 300

Similarly line 320 could give the user a message, which

would indicate that a number in the range 1 to 9is

192

expected, before jumping back to line 300.
The part of the program that deals with each item

must finish by jumping to line 200; alternatively we could

replace line 340 with

340 GOSUB 1000 * n
350 GOTO 200

so that a RETURN command is used instead of GOTO 200,
which at first sight appears to be rather neater and give a
more ‘well-structured’ appearance. However, in the case of

item 9 we do not wish to return to line 200 and so ought to
remove the unwanted information from the GOSUB stack. In
the Spectrum this can be done using CLEAR (which will also

throw away all the arrays etc.) but in the ZX81 only NEW
(which throws everything away) will do it. We should add

335 IF n=9 THEN GOTO 9999

so that item 9 is treated specially and avoids putting
anything on the GOSUB stack in the first place.

Assuming that we retain the original line 340, the

rest of the program can be as follows.

500 REM add entry n to statement on screen
510 IF PEEK 23692 > 20 THEN POKE 23692,14

520 PRINT AT 21,0: PRINT
530 PRINT AT 0,0;

"Date Details Amount Balance",,

540 PLOT 0,164: DRAW 255,0
550 PRINT AT 20,0; dS(n); " "5 eS(n);

560 LET w=7: LET v=a(n): GOSUB 700

570 LET w=8: LET v=b(n)
580 IF v>=0 AND v < min free THEN PAPER 6

590 GOSUB 700: PAPER 7

193

194

PLOT 44,8: DRAW 0,167

PLOT 137,8: DRAW 0,167

PLOT 193,8: DRAW 0,167
RETURN

REM write v pence in w characters (2<w<9)
LET v§ = STRS ABS v
IF LEN v$ >= w THEN LET v$ = " *kx44x"

(2 TO w)
LET vs =" O"(9-w TO 7-LEN v$) + vs

REM now v$ is w-l chs long & last 2 chs
are digits

PRINT INK 2 AND v<O; v$(1 TO w-3); ".";
v$(w-2 TO w-1);

RETURN
REM Display statement from start

LET m=1

GOTO 2030
REM Display last page of statement

LET m = next entry - 18
IF m<l THEN LET m=1

REM Display statement from mth entry
POKE 23692, 20
FOR n = 1 TO next entry - 1
GOSUB 500
NEXT n

REM Wait for user then go to 200
INPUT "Hit ENTER for main menu: "; rs
GOTO 200

REM Add entry at end
IF next entry >= max entry THEN GOTO 4020
LET n = next entry
GOSUB 3500
LET next entry = next entry + 1
GOTO 2000: REM to display new entry

REM Input entry number n

3510
3520
3530
3540

3550
3560
3570
3580
3590
3600
3610
4000
4010
4020
4030
4040
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4500
4501
4502

4510
4520
4530
4540
4550

INPUT "Date (5 chs): "; d$(n)
INPUT "Details (11 chs): "; e$(n)
INPUT "Amount: "; x
LET x = INT (0.5 + 100 * ABS x)

INPUT "Credit or debit? (C/D): "; r$
IF r$="C" OR rg="'c"" THEN GOTO 3590
IF r$O"D" AND r$O'"d" THEN GOTO 3550
Eee ae

LET a(n)

LET b(n)

RETURN

REM Insert entry
IF next entry < max entry THEN GOTO 4100

REM here if no room to insert
PRINT "No room for any more records"

GOTO 2100
REM here if room to insert entry

LET m§ = "Insert before": GOSUB 4500
IF n=0 THEN GOTO 200

FOR i = next entry TO n STEP -l

LET dS$(itl) = d$(i): LET e$(itl) = e$(i)
LET a(itl) = a(i): LET b(itl) = b(i)

NEXT i

LET next entry = next entry + 1

GOSUB 3500
GOTO 6100

REM Find record & set n to its number, or

REM to zero if not found
REM Enter with m$ showing what to do

with it

PRINT "Note: you must give the date"
PRINT " EXACTLY as it is shown"
PRINT " on the statement"
INPUT (m$+" entry dated: "); r§
LET r$ = (r$+" ")(TO 5)

x

b(n-1) + x

195

4560
4570
4580
4590
4600
4610
4620
4630
4640
4650
4660
4700
4710
4720
4730
4740
4750
4760
4770
4780

4790
4800
5000
5010

5020
5030
5040
5050
5060
5070
5080
6000
6010

196

FOR n = 1 TO next entry - 1

IF d$(n) = r$ THEN GOTO 4620
NEXT n

INPUT "Not found. Try again? (Y/N) "; r$
IF rg="Y" OR r$="y''" THEN GOTO 4510

LET n=0: RETURN

REM Found record, n=number, see if another

FOR i = mt+l TO next entry - 1

IF d$(i) = r$ THEN GOTO 4700

NEXT i
RETURN: REM identified unambiguously

REM here if more than one with the same date
LET m=n

POKE 23692,20
REM write out relevant part of statement

FOR n=m TO m+17

IF n >= next entry THEN GOTO 4780
GOSUB 500
NEXT n

INPUT "Entry number? (1 = first on",
"screen, 2 = second, etc) "; n

LETn=m+n-1
RETURN

REM Delete entry

LET m$ = "Delete'': GOSUB 4500

IF n=0 THEN GOTO 200

FOR i = n TO next entry - 2

LET d$(i) = d$(itl): LET e$(i) = e$(it1)
LET a(i) = a(itl): LET b(i) = b(itl)

NEXT i

LET next entry = next entry —- 1

GOTO 6100
REM alter entry

LET m$ = "Replace": GOSUB 4500

6020
6030
6100
6110

6120
6130
6140
6150
6160
6170
7000
7010
7020
7030
7040
7100
7101
7110
7120
7125
7130
7140
7150
7155
7160
7170
7180
7200
7210
7220
7230
7240
7250
7260

IF n=0 THEN GOTO 200

GOSUB 3500
REM recalculate balances

INPUT "Recalculate subsequent balances?";

pate hb Bikes ee
IF r$="N" OR r$="n" THEN GOTO 200
IF r$O"¥" AND r$O"y" THEN GOTO 6110
FOR i=n TO next entry - 1
LET b(i) = b(i-1) + a(i)

NEXT i

GOTO 200
REM output statement to printer

IF IN 251 © 255 THEN GOTO 7100
PRINT "You must connect a ZX printer to"
PRINT " be able to use this facility."
GOTO 2100

REM here if we do have a printer
REM set up characters for the ruled lines

FOR i = 0 TO 15

POKE USR "a" + i, BIN 00001000
POKE USR "c" + i, BIN 01000000

POKE USR “e'"' + i, BIN 00000000

NEXT i
POKE USR "b" + 3, BIN 11111111

POKE USR "d" + 3, BIN 11111111

POKE USR "f"' + 3, BIN 11111111 »
LPRINT "Date |Details | Amount] Balance"
LPRINT "-----+-----------+------+------="
FOR n = 1 TO next entry - 1

LPRINT d$(n); "1"; e$(m); "1"5
LET w=6: LET v=a(n): GOSUB 7500

LET rg = "|": LET v=b(n)
IF v >= 0 AND v < min free THEN LET r$="*"

LPRINT r$;

LET w=7: GOSUB 7500

197

7270 NEXT n
7280 GOTO 200
7500 REM write v pence in w characters (2<w<8)
7510 LET v$ = STR$ ABS v

7520 IF LEN v$ >= w THEN LET v$ = "' *#kkexk"'

(2 TO w)
7530 LET v$ =" 0"(8-w TO 6-LEN v$) + v$
7540 LPRINT INVERSE v<0; v$(1 TO w-3); ".";

v$(w-2 TO w-1);
7550 RETURN

8000 REM Save on tape

8010 SAVE "Bank" LINE 200
8020 PRINT "Replay tape to verify"

8030 VERIFY "Bank"

8040 GOTO 200
9000 REM exit ’
9010 PRINT "Finished."

9020 PRINT
9030 PRINT "To re-enter, do GOTO 200"

Note that the loop on lines 5030 to 5060, which copies the

records back to close up the gap that would otherwise have

been left by a deleted record, works forwards through the

records from the deleted record to the end, whereas the
loop on lines 4130 to 4160, which copies them forwards to

open up a gap into which a new record can be insterted,

works backwards from the end to the point of insertion.
Consider what would happen if line 4130 was

FOR i = n TO next entry

so that the program worked forwards through the records:
the first time round the loop record n+1 would be replaced

by a copy of record n; the second time round record n+2
would be replaced by a copy of this new record n+1, which

198

is the same as record n; the third time round record n+3

would be replaced by a copy of the new record n+2, which

is the same as record n; and so on. The end effect is that we
have a large number of copies of record n and all the later

records have been lost. It is always necessary when shifting

blocks of data round in this way to take care that you move
the data in the correct sequence, and never re-use the

space occupied by something until after you have moved it

The subroutine starting at line 4500 asks the user
to identify a record by giving its date (which line 4550
ensures is exactly 5 characters long); if there are several

records with the same date the user is asked to identify the
required one in a portion of the data that is displayed on the

screen for the purpose. This assumes that every record will

have a date and that the records will be in date order; if the
assumption is false the program will not actually crash but

the user might not easily be able to identify the required

record. An alternative would be to display the statement with

a marker against the ‘current record’ rather like that against

the ‘current line’ in the listing when a ZX BASIC program is

being edited; this could be moved around by the cursor

control keys (read via INKEY$) and cause the display to

scroll when it gets near the top or bottom of the screen.

The input and display routines could be modified

so that if no date is input the date is assumed to be the

same as that on the preceding entry, and when an entry is

output its date is omitted if it is the same as that on the

previous entry (unless it is the first one on the screen).
After making an alteration in the middle of the data,

the user is offered the opportunity of having all the ‘balance’

figures after the point of alteration recalculated (lines 6100

199

to 6160). Further extensions to the program which you
should consider are to allow the user to input an explicit

‘balance’ figure, and to allow a group of several entries to be
deleted or amended.

Line 7010 tests whether the ZX printer is present.

The 2X81 does not have the IN function, but a very simple

machine code routine can be used instead: it consists of the
six bytes

2195. 251.5: °79)..65) 05, 201

which we can add to the front of the program in a REM

command as

1 REM <= CLS ?@# TAN

being careful to use exactly the right characters (looked up
in Appendix A of the manual). There is a space character

between the graphics character and TAN, but nowhere

else. To get CLS, first type THEN (to get into K mode), then

type CLS, then go back and rub the THEN out; alternatively
type CLS immediately after the line number and then go
back and type REM < = afterwards. The question mark

represents the character with code 79, which you cannot

type directly: use any character when first typing the line in,

and after it has been added to the program do

POKE 16516,79

to insert the correct code. Now USR 16514 can be used in
place of IN 251 in line 7010.

Lines 7110 to 7160 set up user-defined graphics
for drawing lines on the printer similar to those used on the
screen. The graphics-shift A is used for the line between the

200

‘Date’ and ‘Details’ columns, C for the other two lines. When
you type the program in, these characters will probably

appear as capital A and capital C, but after the computer
has obeyed lines 7110 to 7160 (which will only happen if

you have a ZX printer and invoke item 7 unless you do a

deliberate GOTO 7110) they will appear as the appropriate
vertical bar symbols. The first plus-shaped symbol on line
7180 is graphics-shift b, the other two are ds, and the

horizontal-line characters are fs.

The subroutine at lines 500 to 630 could be
rearranged to use these graphics characters also, but it
would still be necessary to ensure that the lines dividing the

columns from each other extended from top to bottom of the
screen, even when there was only one record to be

displayed.

201

EIPIIINIGHSICORE

Many games involve a certain amount of arithmetic
and record-keeping, and the computer can be used for this.
The following program keeps score at darts; the total score
for three darts is entered as a single number, although

because ZX BASIC lets you enter any expression rather

than restricting you to a literal number the user can type, for
instance,

16+3*19+50

if the three darts are a 16, a treble 19, and a bull.

The program is written for the Spectrum, but the
only changes required for the ZX81 are omission of the

colour controls such as ‘INK 4;' and the alterations (to INPUT

and to lines containing more than one commana) that
should by now be familiar from the earlier chapters

10 REM darts chalker

20 DIM n$(2,15): DIM n(2): REM name & its length
30 DIM s(2): REM score

40 INPUT "Name of Ist team? "; s$

50 LET n$(1) = s$: LET n(1) = LEN s$
60 INPUT "Name of 2nd team? "; s$
70 LET n$(2) = s$: LET n(2) = LEN s$

80 INPUT "Starting score? "; start

90 INK 7: PAPER 0: BORDER 0

100 REM start game

110 CLS: PRINT n$(1); TAB 16; n$(2)
120 PRINT

203

FOR i = 1 TO 2

LET s(i) = start
LET s$ = ""': GOSUB 1000
NEXT i

REM each side’s throw
FOR i = 1 TO 2

INPUT (n$(i,1 TO n(i))+"’s score? "); score
IF score=0 OR score > s(i) OR

score = s(i)-1 THEN GOTO 270
LET s(i) = s(i) - score

LET s$ = STR$ score: GOSUB 1000

IF s(i) = 0 THEN GOTO 300

NEXT i

GOTO 210

REM here when i’th side has won

PRINT

PRINT FLASH 1; n$(i); " wins!"

INPUT "Another game? (Y/N) "; r$
IF r$O"y" AND r§$O"y" THEN GOTO 9999

INPUT (n$(1)+" to start? (Y/N) "; r$
IF rg="Y" OR r$="y" THEN GOTO 100
IF r$O"N" AND r$O"n" THEN GOTO 350
LET r$=n$(1): LET n$(1)=n$(2): LET n$(2)=r$
GOTO 100

REM print score s$ and new total for

REM side number i
REM leaves s§ = total

PRINT INK 4; TAB (16*i-12-LEN s$); s$;

LET s$ = STRS s(i)

PRINT TAB (16*i-6-LEN s$); sS;

RETURN

The program prints two columns for each side, the

lefthand column being the actual scores (in green chalk)
and the righthand column being the amount left (in white). It

does not print anything if the score is zero or ‘bust’.

204

To keep a count of the games won by each side,

and display it in red at the top of the screen, the following

lines can be added to the program. Note that when the array
gis D\Mensioned its elements g(1) and g(2) are set to zero.

25 DIM g(2): REM games won

115 PRINT INK 2; g(1); TAB 16; g(2)

305 LET g(i) = g(i) +1

385 LET score=g(1): LET g(1)=g(2):

LET g(2)=score

If the two sides take it in turns to throw first, you can

miss out lines 350 to 370. If the loser of one game throws

first for the next, you can put

360 IF i=2 THEN GOTO 100

in their stead.

If you replace line 1030 with

1030 PRINT TAB (16*i-6-LEN s$); PAPER s(i)=170 OR

s(i)=167 OR s(i)=164 OR s(i)<162 AND

s(i)<>159; s$

then the score is on a blue background instead of black if a
three-dart finish is available. How would you modify the

program so that it listed all the possible three-dart finishes
from the next player?

To reduce the number of occasions on which the

players have to wait for the scorer to catch up, we need to
make it as easy as possible to input the scores. The
following modification allows each dart to be entered

205

separately, or two or three can be entered at once; all the

input can be done without pressing any shift keys. The user

is expected to use a single space to separate one dart from

the next if more than one is entered at a time, and not to use

spaces in any other circumstances; this must be clearly

explained in documentation or in a message on the screen

when the program is started. The reason for this apparently

‘user-unfriendly’ approach is to allow the input to be typed

as quickly as possible.

The score is typed as a number which may be

preceded by D or X to indicate a double or T for a treble; B

(for bull) may be used instead of 25. Thus double top may

be entered as 40 or D20 or X20, treble nineteen as 57 or

T19, and a bullseye as 50 or D25 or X25 or DB or XB.

220

We replace line 220 with

GOSUB 2000

and the subroutine is

2000
2010
2020
2030
2040

2050
2100
2101
2110
2120
2130
2140

206

REM input score for side i
LET r§. = '"; LET score=0
POKE 23658,8: REM set caps lock

LET d$="first": GOSUB 2100

LET d$="second": GOSUB 2100

LET dg="third"
REM input one dart and add to SCORE

REM leaves unused data in r$ for next time

IF r$="" THEN GOTO 2140
IF r$(1)="_" THEN LET r$=r$(2 TO): GOTO 2150

BEEP .2,47: BEEP .35,31: BEEP .4,47

INPUT (score;" ";n$(i);'"’s ";d$;" dart: ");r$

2150
2160
2170
2180

2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330

IF rg=""' THEN RETURN

IF r$(1)=" '" THEN RETURN

LET m=1

IF r$(1)="D" OR r$(1)="X" THEN
LET m=2: GOTO 2210

IF r§(1)<>"I" THEN GOTO 2220

LET m=3

LET r$ = r$(2 TO)
IF r§(1)="B" THEN LET n=25: GOTO 2290
LET n = CODE r$ - 48

IF n<O OR n>9 THEN GOTO 2130

LET r§ = r$(2 TO)
LET n2 = CODE r$ - 48
IF n2<O OR n2>9 THEN GOTO 2300
LET n = 104n + n2
LET r$ = r$(2 TO)

IF r§ = '" THEN GOTO 2320
if rg(1) <> " " THEN GOTO 2130
LET score = score + m*n

RETURN

Consider how the program can be enhanced to
allow T (for ‘top’) to be typed instead of 20, so that DT or XT

means double top or 40, and TT means treble top or 60. We

can process T in the same way as B by adding

2225 IF r$(1)='"'T" THEN LET n=20: GOTO 2290

but this on its own is not enough: if the input string consists

simply of “T” for ‘top’, the test at line 2190 will assume it
means ‘treble’ and expect it to be followed by a number or B

or T. At line 2240 the program finds that it is not, and

‘complains’. This is an example of the adage ‘an

enhancement is a change to a program as a result of which
it no longer works’. We must add

207

2195 IF CODE r$(2 TO) < 48 THEN LET n=20: GOTO 2290

in which we assume T means ‘top’ if it is at the end of the
string or followed by a space, ‘treble’ if it is followed by a

letter or a digit.
The program as written here does not do an

exhaustive check for errors; those that will slip by include
further characters in the string /$ after the third dart has

been read, and invalid scores such as 23 or 77 or T25 or
x99.
Suggestions for further development are:

(a) Recognise when a side wins with its first or second dart;

(b) Recognise when a side goes bust (i.e. reduces the
amount left to 1 or to a negative number) with its first or

second dart, and do not ask for the remaining ones;
(c) Only allow a side to win if its last dart was a double; a
single or treble that reduces the score to zero counts as

‘bust’;

(d) |f the amount left is one of 50, 40, 38, 36, . . ., 2showit as
X25, X20, X19, X18, .. ., X1 to indicate that a one-dart finish

is possible;

(e) Show the amount left after each dart, unless it is more

than 170.

MAH-JONGG

Another game which requires a fair amount of

arithmetic in the scoring is mah-jongg. It is a game for four

players which is in many ways similar to canasta, but
instead of cards it is played with ‘tiles’ made of bamboo and
ivory or (increasingly nowadays) of plastic. Each hand ends

208

either when one player wins or when all the tiles have been

used up. in the latter case no scores are counted, but

otherwise all four players count up the values of the

combinations of tiles they hold: each player receives the

value of his hand from each other player except that the

winning player does not pay anything out. There is a further

complication that the player who is 'East wind’ pays and

receives double.
Suppose for example that player A wins with a

score of 22, B scores 48, C is East wind and scores 4, and D

scores 6. Then A receives 22 from B, 44 from C, and 22 from

D, and (being the winner of this hand) pays nothing out, so

he has a net gain of 88; B receives 96 from C and 48 from D

and pays 22 to A, 8 to C, and 6 to D, for anet gain of 108; C

receives 8 from each of B and D, and pays 44 to A, 96 to B,

and 12 to D, for anet loss of 136; and D receives 6 from B

and 12 from C, and pays 22 to A, 48 to B, and 8 to C, fora

net loss of 60. While the scorer is working all this out, the

other three players are ‘building the wall’, i.e. getting the

tiles ready for the next hand.
The following program keeps account of the state

of play. If the player who is East wind wins the hand, he is

East wind again the next time; otherwise the next player

becomes East wind. The display shows which wind each

player corresponds to, both by name and by number, and

puts an asterisk by the one that is ‘wind of the round’. (The

number is needed for scoring the flowers and seasons; if the

flowers and seasons are not numbered in your set, you will

want to put their names on the screen above the names of

the winds. Which is wind of the round has a minor effect on

the scoring.) Below the players’ names it shows the scores

209

for the most recent hand (with an asterisk by the winning
player's score) and the total points for each player. Whether

you regard these as pence, pounds, or just numbers
depends on the kind of stakes you like to play for.

10 REM Mah-jongg scoring
20 DIM n$(4,7): DIM n(4): REM players’ names

30 DIM s(4): REM score this hand

40 DIM t(4): REM total score
50 DIM w$(4,5): REM winds

60 LET w$(1)=" East": LET w$(2)="South"
70 LET w$(3)=" West": LET w$(4)="North"

100 FOR i=l TO 4

110 INPUT (wS(i);" wind player’s name? "); s$

120 LET n$(i) = s$: LET n(i) = LEN s$

130 NEXT i

140 LET e wind = 1: REM Player who is East wind
150 LET w round = 1: REM wind of the round
160 LET winner = 0: REM winning player, 0 if none

200 REM here at start of each hand
210 GOSUB 2000: GOSUB 2300
220 INPUT "Winner? (Give number of wind,",

"or zero if no winner) "; winner
230 LET winner = INT (winner+0.5)
240 IF winner<0 OR winner>4 THEN GOTO 220
250 IF winner=0 THEN GOTO 700

260 LET winner = winner + e wind - 1

270 IF winner>4 THEN LET winner = winner-4
300 FOR i=l TO 4

310 INPUT (n$(i,TO n(i));'"’s score? "); s(i)
320 LET s(i) = INT (s(i) + 0.5)

330 NEXT i
400 REM Display scores to check
410 GOSUB 2000: GOSUB 2200

210

420
430
440
500
510
520
530
540
550
560
570
580
590
600
610
700
710
720
730
740
750
760
770
800
810
820

2000
2010
2020
2030

2040
2050
2060
2070

INPUT "Scores correct? (Y/N) "; r$
IF rg="N" OR r$="n" THEN GOTO 220
IF rgO"y" AND r§<"y" THEN GOTO 420

REM here if OK, work out new totals etc

FOR i=l TO 3

FOR j=it+l TO 4

REM work out net amount j pays to i

LET p = s(i)-s(j)
IF i = winner THEN LET p = s(i)

IF j = winner THEN LET p = -s(j)

IF i = e wind OR j = e wind THEN LET p = 2%*p

LET t(i) = t(i) +p

LET t(j) = t(j) - Pp
NEXT j

NEXT i

REM see if winds change
IF winner = e wind THEN GOTO 800

LET e wind = e wind + 1

IF e wind <= 4 THEN GOTO 800

REM end of round

LET e wind = 1

LET w round = w round + 1
IF w round > 4 THEN LET w round = 1

REM display new position

GOSUB 2000: GOSUB 2200: GOSUB 2300
GOTO 220

REM display headings of scoresheet
CLS

FOR i=l TO 4

LET j = i - e wind + 1: IF j<1 THEN

LET j = #4

LET f$="_": IF j = w round THEN LET fs="*"

PRINT 3; f£$; w$(j)5 " "5
NEXT i

PRINT: PRINT

211

2100
2110
2120

2130
2140
2150
2200
2210
2220
2230
2240
2250
2260
2270
2300
2310
2320
2330
2340
2350
2360

2370

REM names

FOR i=l TO 4

PRINT n$(i); " "3
NEXT i

PRINT: PRINT

RETURN

REM display scores last hand

FOR i=1 TO 4

LET f$=""": IF i=winner THEN LET f$="*"

LET v$ = STRS s(i)

PRINT " MULEN wSe TOUS) v5 pe Ess OP
NEXT i

PRINT: PRINT

RETURN

REM display total scores

FOR i=l TO 4

LET v$ = STRS$ t(i)
IF v$(1) > "0" THEN LET v$ = "+" + v$

PRINT " "(LEN v$ TO 6); v$; "";
NEXT i

PRINT: PRINT

RETURN

Once the scores for the individual hands have
been added up, all the scorer has to do is type them into the

computer, and the computer does all the arithmetic. The

scorer then has no excuse not to help with building the wall

In the same way that the darts scoring program

was enhanced to allow the individual dart scores to be

input, this program could be adapted so that the various

pungs, kongs, flowers, seasons, etc. are input separately.
The amount of detail the scorer would need to type in to do

the job thoroughly is so large that it is probably not worth the

effort, especially considering that the ZX BASIC allows you

212

to type in a number in a form such as

(44448416420) *2*2

if you do not want to do the adding up and doubling

yourself.
Similar techniques can be used to write a program

for scoring at bridge. In rubber bridge, for instance, the

program should ask for the contract (which side, suit,
number of tricks, whether doubled) and then for the number

of tricks actually made; it is then quite simple to work out the

scores, being careful to keep separately the scores above

and below the line. The program must also allow for extra

scores to be added, e.g. for honours. It should keep track
of, and show on the screen, which side is vulnerable and

when a rubber is won

213

ESS}
FOR PLAY E

There are many games which involve two people

who move alternately, with a board or some other means of

showing the current state of the game. This chapter deals in

particular with games in which the outcome depends solely
on the players’ choice of moves; these include not only

board games such as chess and draughts (or checkers),
but also games such as nim which do not require a special

board or set of pieces. Games which include chance

elements such as throwing dice or turning up cards froma

pack are mentioned briefly at the end of the chapter.
A game which is simple enough to demonstrate the

principles involved without requiring a very large program is
noughts and crosses. The following program (written for the

Spectrum but easily converted for the ZX81) allows two

people to play noughts and crosses without using any

paper or pencil.

500 REM noughts and crosses
550 REM define graphics shift A

to be same as on ZX81

560 FOR i = USR "a" TO USR "'a"+6 STEP 2

570 POKE i, BIN 10101010: POKE i+l,

BIN 01010101: NEXT i

700 REM draw the "board"
710 CLS

720 FOR i = 5 TO 15
730 FOR j ="8 TO 12 STEP 4

740 PRINT AT i,j+5; "A"; AT j,i+5; "A"
750 NEXT j: NEXT i

215

760

770

800
810
820
900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1400
1410
1500
1505
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610

216

PRINT AT 3,11;'1 Canon,
PRINT AT 6,8; "a"; AT 10,8; "b";

AT 14,8; "c"
DIM b$(3,3): REM board matrix
LET moves = 0: REM number of moves so far
LET p$ = "X'': REM player whose move it is

REM play game
INPUT (p$);"’s move? "; m$
IF LEN m$ © 2 THEN GOTO 910

LET x=1: LET y=2

IF m$(1)<="3" THEN LET x=2: LET y=1

LET i = CODE m$(x) - CODE "A" - 1

IF i>3 THEN LET i = i - (CODE "a" — CODE A")

LET j = CODE m$(y) - CODE "0"

IF i<l OR i>3 THEN GOTO 910

IF j<l OR j>3 THEN GOTO 910
IF b§(i,j) <> " " THEN GOTO 910

LET b§(i,j) = p$
LET moves = movestl

REM display move on board
PRINT AT 24+4*i,7+4%j; pS

REM check for win

REM check rows
FOR n=l TO 3: FOR m=1 TO 3

IF b$(n,m) <> p$ THEN GOTO 1550
NEXT m
GOTO 1740
NEXT n

REM check columns
FOR n=l TO 3: FOR m=1 TO 3

IF b$(m,n) <> p$ THEN GOTO 1610
NEXT m

GOTO 1730
NEXT n

1620
1630

1640

1650
1660
1670
1680

1700
1710
1720
1730
1740
1800
1810
1820
1830
1840

REM check diagonals
IF b$(1,1)=p$ AND b$(2,2)=p$ AND bS(3,3)=p$

THEN GOTO 1720

IF b$(1,3)=p$ AND b$(2,2)=p$ AND bS(3,1)=p$
THEN GOTO 1700

LET p$ = CHR§$(CODE "X" + CODE "0" — CODE p$)
IF moves<9 THEN GOTO 900
PRINT AT 21,0; "Game drawn"

GOTO 1820

REM cross through winning line
PLOT 84,52: DRAW 80,80: GOTO 1800
PLOT 84,132: DRAW 80,-80: GOTO 1800
PLOT 60+32*n,132: DRAW 0,-80: GOTO 1800
PLOT 84,156-32*n: DRAW 80,0

REM here when game won

PRINT AT 21,0; p$;" wins"
INPUT "Another game? (Y/N) "; a$
IF a$="Y" OR aS="y" THEN GOTO 700
IF aS©"n" AND aSO"N" THEN GOTO 1820

The As in line 740 are in graphics shift; after the program is
first run they will be seen to have changed to grey squares.
The character string on line 760 has three spaces between

the 1 and the 2, and three more between the 2 and the 3.

The move is input in the form of a letter and a digit,

being the 'map reference’ of the square in which the symbol

is to be placed. The letter and digit may be in either order,

and the letter may be in upper or lower case: for example

the righthand square in the middle row may be identified as

‘B3’ or ‘b3' or '3B’ or ‘3b’. The program should explain this to

the user if a wrong format is given, so that lines 920, 980,
980, and 1000 should not jump directly to 910 but first

output a suitable message.

The state of the game is stored in the array b$

217

which has one element for each of the nine squares in the

3x3 grid. Each element holds either an X oran O ora

space. Making a move consists of writing the appropriate
symbol in the appropriate element of 6$; having made a

move we look to see if the player who made the move has

won, and if he has not we offer the other player a move.

Although this may seem an obvious way of storing
the position, it is by no means the only way. Make the

following changes to the program: add

600
610
620
630

640
650
660
670

REM define value of each square

DATA 1344, 4160, 16449
DATA 1040, 4369, 16400
DATA 1029, 4100, 16644

DIM v(3,3)
FOR i=l TO 3: FOR j=l TO 3

READ v(i,j)

NEXT j: NEXT i

replace lines 800 to 910 by

800
810
890
900
910

DIM m(2,5): REM moves played

LET move = 1: REM current move number

REM each player moves, p=l for X, p=2 for 0

FOR p=1 TO 2

INPUT "XO"(p); "’s move? "; mS

and replace lines 1000 to 1810 by

1000
1010
1020
1030
1040

218

LET k = v(i,j)
FOR n 1 TO move

IF m(1,n)=k OR m(2,n)=k THEN GOTO 910

NEXT n

LET m(p,move) = k

How

1400
1410
1500
1510
1520
1530

1540
1550
1560
1570
1580
1590
1600

1610
1620
1630
1700
1711
1712
1713
1714
1715
1716
Liha
1718
1750
1760
1770
1800
1810

REM add move to board
PRINT AT 24+4%i,7+4%5; "XO"(p)

REM check for win (3 in a row)

LET s=0
FOR i=l TO move
LET s = s + m(p

NEXT i

FOR i=l TO 8

oi)

LET k = INT (s/4)
IF s-k*4 = 3 THEN GOTO 1750
LET s =k

NEXT i

IF move=5 THEN PRINT AT 21,0;
GOTO 1820

NEXT p
LET move = move + 1

GOTO 900
REM cross through winning Line

DATA 84, 52,
DATA 84, 60,
DATA 84, 92,
DATA 84, 124,
DATA 84, 132,
DATA 92, 132,
DATA 124, 132,
DATA 156, 132,

RESTORE 1710+i

READ x,y,dx,dy

PLOT x,y: DRAW
REM here when game won

PRINT AT 21,0; "XO"(p); " wins’

80, 80
80, (0)

80, 0
80, (0)
80, -80
OF eso)
0, -80
0, -80

dx ,dy

"Game drawn'':

219°

Although the new program behaves in just the
same way as far as the user is concerned, the way in which

it stores the state of the game is very different. Instead of

keeping a record of the symbol that is in each square, it

keeps a record of the moves that have been made;
moreover it uses a rather peculiar set of numbers to

represent the nine possible squares in which each player

can place his symbol.

There are eight ‘lines’ along which a winning set of
three symbols can lie: three horizontal, three vertical and

two diagonal. The number of symbols a player has on any
given line can be 0, 1, 2, or 3. We give the lines values each

of which is four times the last, viz. 1, 4, 16, 64, 256, 1024,

4096, and 16 384; we arbitrarily choose to allocate them in

the order

1 diagonal bottom left to top right;

4 bottom horizontal line;

16 middle horizontal line;

64 top horizontal line;

256 diagonal top left to bottom right;

1024 lefthand vertical line;

4096 middle vertical line;

16384 righthand vertical line.

The value of each square is the sum of the values of all the

lines it appears in: thus the top lefthand square has the
value 64+256+ 1024 and the square in the middle of the

bottom row has the value 4+4096. The complete diagram is
given below.

220

600
610
620
630
640
650
660
670
680
690

Note that instead of simply loading the values into v
with the READ command we could have calculated them by

REM define value of each square

DIM v(3,3)
LET v(3,1)=l: LET v(2,2)=1: LET v(1,3)=1
LET j=4: FOR i=3 TO 1 STEP -l

FOR n=] TO 3: LET v(i,n)=v(i,n)+j: NEXT n

LET j=j*4: NEXT i
FOR n=l TO 3: LET v(n,n)=v(n,n)+j: NEXT n
FOR i=1 TO 3: LET j=j*4

FOR n=1 TO 3: LET v(n,i)=v(n,i)+j: NEXT n

NEXT i

At line 1000 in the new program we store in k the
value of the square the player has chosen and then (lines

1010 to 1030) see if either player has used that square
already. If not, the move is valid and is added to the record

of moves and to the picture.

In the earlier program, the code to see if a line of

three has been made is very straightforward: for each row,

221

column, and diagonal it looks to see if all three squares
contain the symbol of the player who has just moved.

The code in the new program is shorter but it is

less easy to see what is going on. First we add up all the
moves the player has made: lines 1510 to 1540 set s equal
to the total. Then we repeatedly divide this total by four; kis
the quotient, and s—k*4 is the remainder, so line 1570 looks

each time to see if the remainder is 3. Remember that sis
the total of the scores of all the squares in which the player's

symbol has been placed, and each square scores 1 if itis in

the bottom-left-to-top-right diagonal, 4 if it is in the bottom
row, 16 if it is in the middle row, and so on. All the scores

except for the diagonal are multiples of 4, all except that

and the bottom row are multiples of 16, and so on.
The first time the program divides s by 4, therefore,

the remainder is the number of moves that were in the

bottom-left-to-top-right diagonal. If this is 3 then the player
has occupied all three squares in the diagonal and has won;

lines 1750 to 1770 read the co-ordinates of the line through
this diagonal (from line 1711) and draw it. Note that the

player cannot play in more than three squares along the

diagonal, and thus cannot score enough in 1s to ‘carry over’

into the 4s.
If the first remainder is not 3, s is set to one quarter

of its previous value; i.e, the bottom row now scores 1, the

middle row 4, the top row 16, and so on. The diagonal that
we have already dealt with no longer scores at all. On its

second time through |ine 1570, the program looks at the

remainder when this new s is divided by 4, i.e. at the

number of squares occupied in the bottom row. As before, if

it is 3 we jump to line 1750 to draw through the winning line.

222

This time /is 2 so the DATA are taken from line 1712.

Each time round the loop the count of squares

occupied in another row is separated out until all eight have

been considered. If one of them proves to have all three
squares occupied by the player, the game is won and at line
1770 the program draws through the winning line.

PLAYING AGAINST THE COMPUTER

Having programmed the computer to make moves

that are dictated to it, and to recognise when one side has

won, the next step is to make the program able to play one

side itself. For example we may add the following to the

noughts and crosses program.

590 LET auto = 2

905 IF p=auto THEN GOTO 1100

1050 GOTO 1400

1100 REM computer’s move

1110 LET i = INT (RND * 3)

1120 LET j = INT (RND * 3)

1130 GOTO 1000

and change line 1020 to jump to line 905 instead of 910 if

the square is already occupied. Line 590 defines that the
program will play second: you may prefer to set to 1 instead,

so that the program will play first, or to ask the user whether
the program should play first (auto=1) or second (auto=2)
or not at all (auto=0).

In this version, the program's moves are purely

random: it keeps choosing a random square until it finds

one that is not already occupied, and does not make any

223

effort to form a line of three. If you occupy two squares ina

line of three and the third is free, your opponent should

move in the third square, but the program is as likely to
move in any of the other available squares and let you win.

In short, the program does not make any attempt to win the

game, nor even to defend itself when it is losing. This makes
ita rather unsatisfactory opponent, as it is much too easy to

beat.
You can use a similar technique to that on lines

1510 to 1590 to make the program look for two in a row (in

which s—k*4 = 2), looking first for a row in which it can make

a winning move (one in which it scores 2 and you score

none) and then for one in which you will make a winning
move if it does not get there first (one in which you score 2

and it scores none). Only if no such row is found will it move
randomly. Having decided to move in a particular row, it

must of course then discover which square to choose: after

LET k = INT (v(i,j) / n) / 4

the value of

k > INTk

will be true if square (i,/) is in the row, column, or diagonal

that scores n and false if it is not, and it will not take long for

the program to simply try all the squares that are not yet

occupied until the correct one is found.
The program would not then play like a complete

idiot, but you would still be able to beat it fairly often, and it
would only beat you if you were both careless and unlucky

at the same time.

224

For the program to be able to play more
competently, it needs to be able to look ahead and see what

further moves will be possible from each of the positions it

can move to. For instance, consider the following position in
which it is O's move; the squares are numbered in the same

way as in the program:

1 2 3

a | 1629
FASS IS

b Nea!
pea eats peat es

ic xed |

If O moves into square 61, X is then able to move into

square c3 giving the position

| Dard)
pelape pe ieee tars

Ope aa
aeaialae lise (eet

Kol janes

from which X can win because he can complete a line by
playing at either a1 or c2; if O blocks one of them by playing

at a1, say, X can still play at c2 and win before O has a

chance to complete the line in row a.
Thus although the move in 61 would not be seen as

alosing move by the program just described, we can see

that if O plays this move then he will lose unless his

225

opponent is very careless. Indeed, of the six possible

moves in this position four (a2, 61, 63, c2) are losing moves,

so that if you are X in this position you have a 2 to 1 chance
of beating the program.

(If you make your first move in the centre, then the

program will move either in a corner square such as a or in

a centre-edge square such as a2. In the former case you

can, as we have seen, win two games out of three by

playing in the opposite corner; in the latter case you can

always win by playing anywhere except directly opposite: if

the program has played in a2 you can win if you play in any
square except c2. Because the program plays randomly, if

you start in the centre every time then, on average, out of

every six games the program will play in a corner square in
three, two of which you will win, and in a centre-edge square
in three, all three of which you will win. On average, then you
should win five out of six games, so the odds are 5 to 1 in
your favour.)

If the program is to find the ‘best’ move in any

Position then it must be able to ascribe a value to each

possible move, and have objective criteria for calculating
this value. In fact we tend to talk interchangeably about the

value of a move and the value of a position: the value of a

move is the same thing as the value of the position moved

to. In many two-person games, including noughts and
crosses, the possible values are simply ‘win’, ‘draw’, and
‘lose’, which are often represented as 1, 0, and —1. (In other
games it can matter not just whether you win or lose but also

by what margin: you may have a choice of three moves, all

of which lose, but if one loses you £1 and the others lose you
£5 you will choose the £1 move.)

226

The rule used by a program to find the value of a

position (except one at the end of the game for which we

know the value anyway) is: the value of a position to the

player whose turn it is to move is the greatest of the values

of the moves he has available to him.
Thus if it is your move and you have a winning

move available to you then you are in a winning position,

even if you have a lot of other moves available which do not

win. From your opponent's point of view, of course, the

situation is reversed: if there is one move available which will

result in him losing then it is a losing position (although he

can always hope that you will not spot the vital move).

The basic structure of a routine which finds the

value of a position in this way is:

define "value of (p)" as:

if end of game then [calculate value directly]

else: let v = worst possible value for the

current player

now let q be, in turn, each position

we can move to

for each q, let v2 = value of (q), and

if v2 is better than v then

let v = v2

when all moves have been considered,

value is ve

This causes two main problems when we try to

227

implement it in BASIC. First, the routine is ‘recursive’, which
means that it is defined in terms of itself. Suppose we have a
position p1 from which we can move to p2, p3, or p4, and
suppose p2 is a drawn position (at the end of a game) but
p3 is a position (not at the end of a game) which turns out to

be lost. When value of (p3) is worked out, variable vis used

to hold ‘value of the best move from p3 so far found’ (in this

case ‘lose’), but we must not overwrite the variable v which

holds ‘value of the best move from p1 so far found’ (in this

case ‘draw'). Languages which are ‘block structured’, such
as Algol and Pascal, take care of this kind of problem more
or less automatically, but in BASIC we need to make

provision for it in the program.

Secondly, this innocent-looking little routine can

take an enormous amount of time to run. Suppose we are

looking at the first move in a game of noughts and crosses:
there are nine possible moves, so the routine is called for

each of them. Within each of these nine calls, the routine is
called again for each of the second player's eight possible
moves, a total of 9x8 or 72. Within each of these 72 calls,
the routine is called again for each of the first player's seven
possible second moves, a total of 727 or 504 calls at this

level. Within these we have 504x6=3024 calls to find the

value of the second player's second move, which in turn

involves 15 120 calls to find the value of the first player's

third move. Of these, 2880 will be for ‘end-of-game'
positions in which the first player has won but the other 12
240 all give rise to further calls: it can be shown that for each
one there will be at least 13 but less than 64 further calls.

Adding up all the calls at the different levels, we
can see that there wil! be at least 177 850 (but less than

228

802 090) calls, every one of which must at least check to see

whether the game has been won. If we reckon that this will

take around a hundredth of a second each time, it means

that the program will take between half an hour and two

hours to decide on its first move. In fact the time per call is

likely to be nearer a tenth of a second than a hundredth, so

the program could take anything up to 20 hours over its first

move if it plays first, and 2 hours if it plays second

There are two ways that this time can be reduced:

itis clearly helpful if we can reduce the time taken to

discover if a position is a winning position, but it is equally

clear that we must make a significant reduction in the

number of positions that the program considers

The method of identifying winning positions used in

the second version of the program in this chapter works very

well in machine code and in some programming languages.

This is because the number s which the program works out

on lines 1510 to 1540 is held inside the computer as a bit

string 16 bits long with 2 bits for each row, and the

computer can in two or three operations (which work ona bit

string as a whole) find out whether any row has the value 3.

RECURSION - a technique whereby a function or rout

defined in terms of itself (e.g. factorial n defined as ‘if n=0 then

4 else n« factorial n—1') so that during evaluation (say of facto-

rial 5) the computer breaks off to go through the same code

with different data (to evaluate factorial 4, 3, etc)

ITERATION - the alternative to recursion, in which the repeti-

tion of part of the code is explicit (as in the FOR loop) rather

than implied by a call. An iterative definition of factorial n would

be ‘let f=1: for i=1 ton: let f=f+i: next /’

229

However, in BASIC we have to break s down into eight
numbers, and moreover we have to do this using the ‘divide’

operator, which is one of the slower ones.

(The new program given below in fact retains the

old method in the part that actually makes the moves. This is

not strictly necessary although it does give a check that the
part of the program that chooses the computer's move is not

‘cheating’. It was done to avoid changing the program more
than is necessary to add the new facility.)

The program below uses the following arrays:

(92) holds the content of each of the squares as 1 for X, —1
for O, zero if empty. The squares are numbered 1, 2,.. ., 9

rather than (1,1), (1,2), .. ., (3,3) to save time.

w(8) saves the value of v (which is essentially the vin the
informal description of the routine above) at each ‘level’ of
call.

n(9) similarly saves i, which keeps track of which move we
are considering.

r(45) consists of five numbers for each square, being the

number of each line (row, column, or diagonal) the square is

in, followed by enough zeros to make up five numbers (see

lines 2010 to 2090). Again, one subscript rather than two is
used for speed.

c(8) counts the symbols in each line: 3 for three Xs (so X has
won), 2 for two Xs (so X can win if it is his move), 1 for one X

or two Xs and an O, 0 for no symbols at all, —1 for one O or

two Os and an X, —2 for two Os, —3 for three Os.

s(8,3) shows which squares make up each line (three

squares to each of the eight lines: see lines 2100 to 2130 of
the program). In this case there would be little advantage in

making it use a single subscript.

230

The lines of squares are in the same order as

before but numbered 1 to 8, so that 1 and 5 are the

diagonals, 2 to 4 the rows, and 6 to 8 the columns.
The routine has been put at the top of the program

to reduce the time taken for GOTO and GOSUB, as
explained in an earlier chapter. It works as follows.

GOSUB 100 calculates, and stores in v, the value
of the position after player q has moved in square /; q is 1 if

the player is X, —1 if the player is O. The value is 1 if the

position is a win for X, —1 if it is a win for O, zero ifitis a

draw.

After updating array p it sets about updating array

c. Array rhas already been loaded with the data from lines

2010 to 2090. Suppose for instance that /=3 so that /x5—4
= 11;/will be set to 11 so the program reads the first of the
numbers loaded from line 2030, and we repeat lines 110 to

130 with r(/) being in turn 1, 4, and 8 because square

number 3, which is at the top right, is in lines 1 (diagonal), 4

(top row), and 8 (righthand column). Each time we update
one of the elements of c, we check if the line now has two or

three of the current player's symbols in it. On line 150 we
recognise the position as a win if nis at least 2, which

means that either there is now a row of three or else there is

more than one row of 2, as in

AMO safe
ene Oe Se

oe |
a pe a te SE’

(aeba

when X has just moved: each of the diagonals has two Xs,

231

and whichever of the bottom corners O plays in, X can play

in the other and win. Note that the top row only scores 1 and
thus does not count as having two Xs.

lf there is just one line that scores 2, the opponent
must play in the third square in that line; line 170 finds which

square is still free. Thus after Xs move in

DS | sie |
Pees Me ey

! |
SR Ef Rares Ere eo

Dest !

O must play in the top righthand corner and the program
does not waste time considering the other five squares.

Another test which reduces the number of
positions considered is at the end of line 240, which looks to
see if a winning move for the relevant player has been

found: if it has, we have a winning position for that player

and do not need to look at any further moves.
The code to be added to the earlier program is as

follows. Only line 1040 replaces an existing line, the rest is
adgitional to the previous code.

10 GOTO 500
90 REM set v = value of move i

100 LET p(i)=q: LET j=i*5-4: LET n=0
110 LET k=c(r(j)): LET c(r(j))=k+q:

IF k=q THEN LET n=ntl: LET n2=j

120 IF k=q+q THEN LET n=2

130 LET j=j+l: IF r(j)<>0 THEN GOTO 110
140 IF n=0 THEN GOTO 210
150 IF n>] THEN LET v=q: GOTO 320: REM win

232

160

170

180
200
210
220

230
240
250
260
270
300
310
320
330

340
500
501
510

520

530
540
550

560
570

590

905

LET n(m)=i: LET q=-q: LET m=m+tl:

REM opponent’s move forced
LET i=s(r(n2),n): IF p(i)<>0 THEN

LET n=n+l: GOTO 170

GOSUB 100: GOTO 310
REM look at all opponent’s moves

IF m>7 THEN LET v=0: GOTO 320

LET n(m)=i: LET m=m+l: LET w(m)=q:

LET q=-q: LET i=l

IF p(i) <> 0 THEN GOTO 260
GOSUB 100: IF v=q THEN GOTO 310

IF v=0 THEN LET w(m)=0
LET i=i+l: IF i<l0 THEN GOTO 230

LET v=w(m)
REM now v = value; undo move & exit

LET m=m-1: LET q=-q: LET i=n(m)

LET j=i*5-4
LET ¢(r(j))=c(r(j))-q: LET j=j+l:

IF r(4)>0 THEN GOTO 330

LET p(i)=0: RETURN

REM

REM start of program proper

LET q=0: LET m=O: LET i=0: LET k=0:

REM so they are first in v’bles area

DIM p(9): DIM w(8): DIM n(9): DIM r(45):

DIM c(8): DIM s(8,3)

RESTORE 2000
FOR n=1 TO 45: READ r(n): NEXT n

FOR i=l TO 3: FOR n=l TO 8: READ s(n,i):

NEXT n: NEXT i

FOR i=USR "a" TO USR "a''t+6 STEP 2

POKE i, BIN 10101010: POKE itl, BIN OLOLOLOL:

NEXT i

LET auto=2

IF p=auto THEN GOTO 1110

233

1040
1100
1110
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1300
1310
1320

1350
1370
1400
1410
1420
1430
1440
1450
1460
1470

2000
2010
2020
2030
2040

234

GOTO 1400
REM computer’s move

LET m=2*movetp-2: LET q=3-p-p: LET i=l

FOR n=l TO 8: IF c(n)=q+q THEN GOTO 1230
NEXT n

FOR n=1 TO 8: IF c(n)=-q-q THEN GOTO 1230
NEXT n

REM evaluate each possible move

IF p(i) <> 0 THEN GOTO 1210
GOSUB 10: IF v=q THEN LET i2=i: GOTO 1370

IF v=0 THEN LET i2=i

LET i=it+l: IF i<10 THEN GOTO 1180

GOTO 1370
LET i2=n

REM move in row i2
IF p(s(i2),i)) <> 0 THEN LET i=i+l: GOTO 1310

LET i2=s(i2,i)
REM move in square i2

LET Ge = INT (C143) Rey ad 2 = 13 3

REM move in square (i,j)
PRINT AT 2+4%1, 744445; "XO"(p)
LET m(p,move) = v(i,j)
LET q = 3-p-p
LET p(3*i+j-3) = q
LET n = 15*i + 5*j - 19
LET k = c(r(n)): LET c(r(n)) = k+q

LET n=ntl: IF r(n) <> 0 THEN GOTO 1460

REM lines each square is in

DATA 4,5,6,0,0
DATA 4,7
DATA 1,4
DATA 3,6

>
,0,0,0
»8,0,0
,0,0,0

ey
>

2100 REM squares in each line (read downwards)

2110 DALAL A PAR Dy eT
2120 DATA 5, 8,5,2, 5, 4,5,6
2130 DATA 3, 9,6,3, 9, 7,8,9

This version (which is written so that the computer

plays secona) still looks at more positions than it needs to. It
does not recognise symmetrical positions: for instance if

your first move is in the centre, the program finds the value
of moving in each of the eight remaining squares even

though all the corner squares must have the same value, as

must all the centre edge squares. By a more careful analysis
of how the lines of squares are occupied, it could identify

drawn positions, and winning moves, sooner.

(To win, you need two intersecting lines in each of

which there are none of your opponent's symbols and just

one of your own, which must not be in the square which is
common to both lines. If this situation exists, the move in the

square that is common to both lines is a winning move and
no other moves need to be considered. A position in which

neither side has two such lines available is drawn. If the
current player does not have two such lines available and

the first move we look at achieves a draw, the position is
drawn and we do not need to look at the other moves as we

know none of them can win.)

The program takes several minutes over its first

move, and if it was changed so that the computer moved

235

first rather than second it would take about nine times as
long. However, we can add

1020 IF m<3 THEN LET i2=5: GOTO 1350

1360 IF p(i2) <> O THEN LET i2=9: REM if
from 1020 with m=2 & sq 5 oce’d

so that if it moves first it always starts in the centre and if it

moves second it moves in the centre unless you have

already moved there, in which case it goes in one of the
corners. This dramatically reduces the time required for the

program to decide on its first move. It also makes the

question of symmetry much less important, as it is in the

earliest stages of the game that the symmetrical positions

mostly occur.

You might like to see all the various positions the
program considers during its deliberations: this can be

done by adding

90 LET pos=0

335 PRINT AT 20,post4;m;: FOR x=3 TO 9 STEP 3:
PRINT AT x/3+18,pos;: FOR k=x-2 TO x:
PRINT " " AND p(k)=0; "0" AND p(k)<O;
"X" AND p(k)>0;: NEXT k: NEXT x:
PRIN Bei he therws!

LET pos=pos+6: IF pos>28 THEN

LET pos=0:;
PRINT ’’’’’: IF PEEK 23692>12 THEN

POKE 23692, 12

which prints out the position, move number, and value,

before returning from each call of the subroutine

236

Unfortunately, it also destroys the display of the board and
increases the time the program takes to run.

Although keeping extra data about the position can
help reduce the amount of calculation, it is important to

remember that although it saves work it also creates extra

work maintaining the extra data structures. For instance,

suppose that instead of the array p, which shows what is in

each square, we kept a list of the squares that have not yet

been occupied. Then for the eighth or ninth move in the

game the program would not need to search through p
looking for the one or two remaining squares. But the effort
of maintaining the list would be more than the small amount

of looping around lines 230 and 260 that would be saved.
In contrast to the earlier programs which hardly

ever won and often lost, this program never loses. As an

opponent you might find this even more unsatisfactory, but it
is a fault of the game rather than of the program. Some
pdssible improvements include choosing a move at random

from among the available moves (excluding, of course,
those moves that would lose) instead of the present regime
of always taking the last one found; and perhaps making

occasional random moves which might be losing moves (so

the program behaves more like a human player). It could
also take account of having a fallible opponent by preferring

moves from which a win could occur if its opponent made a

mistake, for instance all the possible second moves for X

after

loci |
pater ene eee Depa ele naa me

| |

237

are drawn, but, whereas most of them more or less force a

draw, playing in the bottom lefthand corner gives O plenty of

opportunity to make a losing move.

OTHER GAMES

Other two-person games, such as chess, go,

draughts, and othello, are programmed in essentially the

same way. The computer works out the value of the various

available moves using the algorithm given earlier, and the
number of positions to be considered has to be kept within

reasonable bounds. The main techniques we used here
were to treat the opening moves of the game specially,

relying on past experience rather than analysing the

position afresh every time; to recognise when a player's
move is forced; and to recognise won and drawn positions

as early as possible.
Except with very simple games like noughts and

crosses, it is also necessary to limit how many moves ahead

the program looks. (In the program above, once we had
eliminated the first two moves the length of the game limited

it to looking about six moves ahead.) When it reaches the
limit, it has to use some other measure of the ‘value’ of a

position; in chess this might take account of the number of
pieces each side has on the board, which pieces are en
prise, and the extent to which each side has control of the
centre of the board. The program needs to be somewhat
flexible about where the limit comes, not stopping in the
middle of a sequence of captures or while a player is in

check.

In general you should expect that to write a

program that plays a game as complex as chess at all

238

competently you will need to use a language that is rather

more efficient than ZX BASIC.

For games that involve a random element, the

amount of looking ahead that can be done is severely

constrained by not knowing what card will be turned up

next, or what number will come up at the next throw of the

dice. The program can, of course, consider all the possible

outcomes of the random element, but this is likely to cause a

big increase in the number of positions to be looked at, and
hence decrease the distance ahead that the program can
look in a reasonable time. The program's performance

therefore depends much more on considering the apparent

worth of a position than on considering the moves that can

be made from it; how this ‘apparent worth’ can best be
calculated will depend very much on the game and itis

difficult to give any general rules for it, except to reiterate

that it must be able to be calculated from numerical

properties of the position and cannot include any subjective
criteria.

239

3

ANIIMIATT ION

The main limitation to providing moving pictures on

the TV screen is the slowness of the ZX BASIC language. In

most cases a fair amount of calculation is needed to

produce each frame of a moving picture, and it is unrealistic

to expect to be able to do it in the 25th of a second or so that

would be needed to produce a picture that appears to move

smoothly.

For some kinds of moving display, you do not need

to change the picture this often. To display a clock, for

instance, you only need to change the picture once per

second: the manual contains a suitable program (at the start

of Chapter 19 in the ZX81 manual, Chapter 18 in the

Spectrum manual) for one which contains only a second

hand, and one of the exercises at the end of that chapter

suggests you should extend the program to draw the hour

and minute hands as well

To get an idea of how fast the Spectrum can draw

and redraw things, use the following ‘jiffy’ program. (A ‘jiffy’

program is a short program that is written quickly and is

intended to be ephemeral. Hence, for instance, we do not

bother to put captions in the INPUT command.)

10 OVER 1
20 INPUT k,s
30 LET n = INT (176/k) - 1
40 LET m = xntl) * (k-1)
50 FOR i=s TO 255 STEP s
60 FOR j=0 TO m STEP ntl

241

70 PLOT i,j: DRAW O,n
80 PLOT i-s,j: DRAW O,n

90 NEXT j
100 NEXT i

110 GOTO 20

This draws a line up the screen in k segments and moves it

across the screen in steps of s pixel-widths at a time. (It

also, rather messily, leaves a line at each side of the screen;

this can be eliminated by adding

43 FOR j=0 TO m STEP n+l
45 PLOT 0,j: DRAW 0,n
47 NEXT j

103 FOR j=0 TO m STEP n+l
105 PLOT i-s,j: DRAW 0,n
107 NEXT j

but you might not think it worth the effort.)

By experimenting with different values of k and s

you can see just how fast (or not so fast!) the computer can

move things around on the screen. When k is small it has

very little effect on the soeed because most of the time is

taken up actually drawing the line, but as k gets larger the

various overheads such as interpreting the DRAW and

PLOT commands become more important. You could

investigate the effect of line length by INPUTting a third

parameter, / say, and replacing n with / in lines 60 and 70

(and 45 and 105 if you have them), or by simply replacing n

in these lines by a constant.

For the ZX81 a similar program can be used:

10 SLOW
20 INPUT k

242

30 INPUT s

40 LET n = INT (44/k)
50 LET m =n * (k-1)
60 FOR i= s TO 63 STEP s |
7O FOR } = 0 TOm STEP n
80 PLOT i,j
90 UNPLOT i-s,j

100 NEXT j
110 NEXT i
120 GOTO 20

Again, it shows how a very small amount of redrawing takes

anoticeable amount of time. It has to run in SLOW mode,

because otherwise you do not see anything until it has

finished.

The following program for the Spectrum draws a

matchstick figure which walks across the screen.

10 DIM u(7): DIM v(7): REM params for current

figure

20 DIM t(7): DIM w(7): REM params for previous

figure

30 DIM q(7): REM preserves old u() in

calculations

40 DIM x(7): DIM y(7): REM params for first

figure

100 REM parameters for start of stride

110 LET x(1) = 40: LET y(1) = 30

120 LET x(2) -2.5 * SQR 3: LET y(2) = -2.5 !

130 LET x(3) = -20: LET y(3) = -8 * x(2)

oe u nud

140 LET x(4) = x(1) + x(3): |
LET y(4) = y(1) + y(3) + 1

150: LET x6). -10: LET y(5) = 4 * x(2)

160 LET x(6) -10: LET y(6) = y(5)

243

170
200
210
220
230
300
301

310
320
330

340
400
410
420

430

440

450

500

510
520
600
610
620
700
710

720

244

LET x(7) = 5: LET y(7) =
REM initialise "previous figure"

FOR i=l TO 7
LET t(i) = x(i): LET w(i) = y(i)
NEXT i

REM set up coefficients for rotations
REM the number following c or s is in

degrees

LET c3 = COS (PI/60): LET s3 = SIN (PI/60)
LET c4 = COS (PI/45): LET s4 = SIN (PI/45)
LET c7 = COS (7*PI/180):

LET s7 = SIN (7*PI/180)

LET cl0 = COS (PI/18): LET s10 = SIN (PI/18)

REM now draw first figure

OVER |

PLOT x(1)-x(2),y(1)-y(2): DRAW x(2),y(2):
DRAW x(3),y(3)

DRAW x(5),y(5): DRAW x(6),y(6):
DRAW x(7),y(7)

PLOT x(4),y(4): DRAW 0,40: DRAW 7,-22:
DRAW 24,3

PLOT x(4),y(4)+40: DRAW 15,15: DRAW -15,15:
DRAW -15,-15: DRAW 15,-15: DRAW -7,-25:
DRAW 23,-7

FOR i=2 TO 7

LET u(i) = x(i): LET v(i) = y(i)

NEXT i

REM here to draw each eee figure
FOR i=1 TO 20

FOR j=2 TO 7: LET q(j) = u(j): NEXT j
REM update params for next figure

IF i<l1 THEN LET u(2) = c3*u(2) + s3*v(2):
LET v(2) = c3*v(2) - s3*q(2)

LET u(3)=c3*u(3)+s3*v(3):

LET v(3)=c3*v(3)-s3*q(3)

730
740

750

760

770

780

790

800
810

820

830

840

850

860

900
910
920
930
940

LET u(4) = x(1)+u(3): LET v(4) = y(1)+v(3) \

IF i<ll THEN LET u(5) = cl0*u(5) - sl0*v(5): ij

LET v(5) = cl0*v(5) + sl0*q(5)

IF i>16 THEN LET u(5) = cl0*u(5) + s10*v(5):

LET v(5) = cl0*v(5) - sl0*q(5)

IF i<5 THEN LET u(6) = cl0*u(6) + sl0*v(6):

LET v(6) = cl0*v(6) -— sl0*q(6)
IF i>10 THEN LET u(6) = cl0*u(6) - sl0*v(6):

LET v(6) = cl0*v(6) + sl0*q(6)

IF i<]11 THEN LET u(7) = c7*u(7) + s7*v(7):

LET v(7) = c7*v(7) - s7*q(7)

IF i>10 THEN LET u(7) = cl0*u(7) - sl0*v(7):

LET v(7) = cl0*v(7) + s10*q(7)

REM undraw old & draw new

PLOT t(1)-t(2), y(1)-w(2): DRAW t(2), w(2):

DRAW t(3), w(3): DRAW t(5), w(5):

DRAW t(6), w(6): DRAW t(7), w(7)

PLOT x(1)-u(2), y(1)-v(2): DRAW u(2), v(2):

DRAW u(3), v(3): DRAW u(5), v(5):
DRAW u(6), v(6): DRAW u(7), v7)

PLOT t(4), w(4): DRAW 0,40: DRAW 7,-22:

DRAW 24,3

PLOT u(4), v(4): DRAW 0,40: DRAW 7,-22:

DRAW 24,3

PLOT t(4), w(4)+40: DRAW 15,15: DRAW -15,15:

DRAW -15,-15: DRAW 15,-15: DRAW -7,~-25:
DRAW 23,-7

PLOT u(4), v(4)+40: DRAW 15,15: DRAW -15, 15:

DRAW -15,-15: DRAW 15,-15: DRAW -7,-25:

DRAW 23,-7

FOR j=2 TO 7
LET t(j) = u(j): LET w(j) = v(j)
NEXT j
LET t(1) = x(1)
NEXT i

245

950° LET x(1) = x(1) + 40
960 GOTO 600

There are 20 separate ‘frames’ to each stride.
Lines 100 to 340 set up various parameters and calculate

the sines and cosines of the angles that are going to be

needed (3, 4, 7, and 10 degrees) to rotate the various parts

of the legs from one frame to the next. Lines 400 to 450 draw

he first frame, and lines 600 to 940 draw each subsequent

tame, erasing the previous frame as it goes. A diamond
shape is used instead of a circle for the figure’s head
because circles take much longer to draw.

The picture moves very slowly and rather jerkily;

the program can be altered so that it calculates all the

parameters (u, v, t, w) for each frame first and stores them in
arrays, but this does not make it run much faster as much of
he time is taken up actually drawing the lines.

Often the picture does not need to be moved
smoothly. In Space Invader type games, for instance, the

effect is of the phalanx of aliens moving across the screen

rom left to right and back again. If it was done by moving

his part of the picture smoothly back and forth across the
screen, it would require a great deal of work on the part of

the computer, but if you look closely you can see that what
actually happens is that the individual aliens jump sideways
one at a time. This gives the effect of a smooth movement of

he whole population, but in fact only a small amount of the

screen is updated at a time, and that updating involves a

ump of quite a large distance. You would draw the aliens

using PRINT AT and graphics characters rather than with
PLOT, so the sideways jump would be the width of a

character square.

246

The following ZX81 program generates a picture

which, while not containing any movement as such, is

constantly changing.

10 PRINT AT RND*21,RND*31; CHR$(RND*10)

20 GOTO 10

A similar thing can be done in colour on the

Spectrum:

10 PRINT AT RND*21,RND*31; PAPER RND*7;

20 GOTO 10

Unlike this book. these programs never finish.

247

Pp

COMPANION

John and
Catherine Grant

ee

>

S
N

T
S

D
A
R
I
O

”
—
—

e
t
i
c

»

The ZX Programmers’ Companion introduces

the new programmer to the art and science of
programming using the popular ZX machines

and equivalent TS machines in the USA.

The instruction manual that comes with the

ZX computer has to be an introduction to all

the facilities provided on the machine and

how they are used. It does not have the space

to say much about how to write programs to

do particular jobs. The ZX Programmers’

Companion complements the manuals by

explaining how to set about designing and
writing programs for the ZX computers, and

contains many examples of the kind of
program that the ZX user might need. The

steps in deciding the most appropriate way to

tackle each problem are discussed and,

finally, fully documented programs are given.

The authors’ company, Nine Tiles Information

Handling Ltd, was responsible for writing
the instruction manuals and the built-in

software for the ZX 81 and Spectrum
machines, and this companion volume will be

essential reading for all ZX users.

ISBN O0-Se1-27044-6.

