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AU THORS'INOTE 

The programs in this book are written for the ZX 

Spectrum or the ZX81 computers. Each program is written 

for one of the computers, and an indication given of how to 
convert it into the form required for the other. In many cases 

only small changes are needed to convert the program for 

other microcomputers that support BASIC 

The Timex/Sinclair TS1000 is the North American 
version of the ZX81, and the TS2000 is the North American 
version of the Spectrum. References to the ZX81 or 

Spectrum should be understood to apply also to the 

corresponding North American version. 

The differences between the ZX81 and the 

Spectrum are firstly that the TV picture is made up in rather 
different ways in the two machines, and secondly that the 

Spectrum's BASIC is an ‘extended’ version of the ZX81's. 
On the Spectrum the state of each point on the screen is 

stored separately, so that high-resolution graphics pictures 
can be drawn; on the ZX81 only text and low-resolution 

graphics are available. Also, of course, the ZX81’s picture is 

in black and white whereas the Spectrum produces a colour 
picture (although the colour information is to a rather lower 

resolution than the graphics) and even on a monochrome 

TV set will produce several different shades of grey. 

Apart from the additional commands etc. to 

support its graphics facilities the Spectrum’s BASIC 
provides the additional commands BEEP, DATA, DEF FN, 

MERGE, OUT, READ, RESTORE, and VERIFY, and functions 
FN, IN, and VALS as well as lower case letters, the ‘colon’ 



separator which allows several commands to be put on one 

line, and extra facilities in commands CLEAR, INPUT, 

LOAD, and SAVE. The ZX81 commands FAST, SCROLL, 
SLOW and UNPLOT are not included in the Spectrum's 

BASIC because it does not have separate ‘fast’ and ‘slow’ 
modes and scrolling and unplotting are done in a different 
way. 

There are some differences in notation between the 
two BASICs; the same notation has been used throughout 
the book regardless of which version of BASIC is being 

used. Lower case letters have been used for the names of 
variables (to distinguish them from the ‘tokens’ which are in 

capitals) although on the ZX81 only capitals are available. 
The following tokens have different spellings on the two 
machines: 

2X81 Spectrum Used here 

CONT CONTINUE CONTINUE 

GOSUB GO SUB GOSUB 
GOTO GOTO GOTO 
RAND RANDOMIZE RANDOMIZE 

on t t 



PIAIRIT || 

SBABCOMPUTER? 

A computer is a machine which 

is used to store and process information, 

and which is controlled by a ‘program’ 

stored in the machine along with the other 

information. In Part | we look at just 

what this means in practice 





HISTORICALBIN TRODUCTION 

The most direct line of descent to present-day 

microcomputers probably starts with the mechanical 
calculators first developed by Pascal in the 17th century. 
The important difference between computers and 
mechanical calculators lies in the ability of a computer to be 

‘programmed to carry out a sequence of calculations. The 

calculator has to be made to perform each operation 

separately (by pressing a key or turning a handle), waiting 

until one operation is done before going on to the next, but 

once the ‘program’ of operations is stored in the computer's 
memory it can work through the sequence over and over 
again at its own speed. 

nthe 19th century, Charles Babbage tried to build 

a programmable mechanical calculator which he called the 
analytical engine, but the task proved to be impossible with 

the mechanical engineering technology available at the 
time. (It is thought that using modern materials and more 

accurately machined parts a working analytical engine 
could now be built.) 

The first working computers were built in the 1940s 
using thermionic valves (called ‘tubes’ in North America); 

these machines are now referred to as ‘first generation’ 
computers (see Fig. 1.1). The ‘second generation’ 

computers of the early 1960s used transistors, and the third 
generation used ‘integrated circuits’ in which a dozen or so 

transistors were combined on a single silicon ‘chip’. Each 
chip was a building-block performing a simple function 



(such as amplifying a signal or combining several signals 
into one) which previously had to be done by a circuit using 

several separate transistors and other components. The 
fourth generation, which includes microcomputers, uses 

‘large scale’ integrated circuits, LS! for short, in which the 

chip contains tens of thousands of transistors. The pattern of 

FIG 1.1 

Valve —first Transistor — second 
generation generation 

Small-scale integrated Large-scale integrated 
circuit (SSI) — third circuit (LSI) — fourth 
generation. generation. 

transistors and the connections between them on an 
integrated circuit is created in a similar way to the pattern of 

connections on a printed circuit board, but on a much 
smaller scale. 

The invention of LS! circuits can be likened to the 
invention of the printing press. Before there were printing 

presses, every copy of a book had to be written out by 

hand, but with the printing press a whole page (once it had 

been typeset) could be printed in a single, quick operation. 



The difference between soldering individual components 

onto a circuit board and producing an LSI chip is very 
similar. 

All the first four generations of computers have the 

same basic structure shown in Fig. 1.2(a), which was first 

described by John von Neumann in the early 1940s. The 

memory can be thought of as a huge bank of switches, each 

of which can be either on or off; the switches are grouped 

into ‘words’, and each word in the memory contains the 

same number of switches. Each word has its own ‘address’ 

which is simply a number that identifies that particular word, 

rather in the way that each house in a street has its own 
number. 

The ‘central processing unit’, or CPU, is able to 

look at, or ‘read’, any word in the memory; it can also 

attempt to ‘write’ any word (i.e to set up a new pattern of ons 

and offs on the switches) but with some kinds of memory, 

called ‘read-only’ memory or ROM for short, this attempt will 
not succeed. 

When we wish to store numbers in the memory, the 

on/off state of each switch is used to represent either 0 (in 

one state) or 1 (in the other); these are called ‘binary digits’ 

or ‘bits’ or short. On most present-day computers a word 

contains 8 bits and is called a ‘byte’. There are 256 different 

BIT — something that can be in one of two states, usually called 

‘0’ and '1’. Can refer either to a piece of hardware or to the 

abstract ‘0’ or ‘1’ state stored in it 
BYTE —a bit string (qv) 8 bits long. Most computers nowadays 

process data in units of 1, 2, or 4 bytes at atime. 
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combinations of 1s and Os (called ‘bit strings’) that can be 
stored in a byte: 00000000, 00000001, 00000010, 
00000011, 00000100, and so on up to 11111111. A pair of 
bytes (containing a total of 16 bits) will hold one of 65 536 



different bit strings. We talk further about representing data 

by bit strings in Chapter 3. 

The CPU used in the ZX computers is the Z80 

which uses 8-bit words stored in separate memory chips 

with a total of up to 65 536 different addresses. There are a 

further eighteen 8-bit words and four 16-bit words that are 

stored in the CPU chip itself and are called ‘registers’. The 

CPU sometimes uses two 8-bit words to make up a 16-bit 

word. As with all CPUs, the apparently complicated tasks it 

performs are composed of large numbers of simple steps 

called ‘machine cycles’. It performs about a million 

machine cycles every second 

The first machine cycle that the CPU performs 

reads a byte from the memory; this byte is called an 

operation code, or ‘op-code’, and represents one of 256 

possible operations that the CPU can perform. The CPU 

then performs the indicated operation; if it is something 

simple like copying the bit string stored in one register to 

another (so that, as it were, the switches that form the 

BIT STRING — A number of bits (qv) considered together as a 

unit. In a bit string n bits long, there are 2 7 n(n twos multiplied 

together) different possible patterns of 1s and Os 

REGISTER — hardware for storing a bit string of a fixed length, 

usually within a central processor. (In main memory they tend 

to be called ‘locations’ instead.) 

MACHINE CYCLE — a distinct operation performed by the 

CPU, such as fetching (from memory) and interpreting an 

instruction code, or storing data in memory. A simple instruc- 

tion may require just one machine cycle, a more complex one 

maybe half a dozen 



second register are set to the same states as those for the 

first) it is completed during the same machine cycle and the 

next machine cycle reads the next op-code from memory, 

reading it from the next address in sequence. Other 

possible operations include reading data from the memory, 

writing to the memory, deriving a new bit string from existing 
ones and storing it in a register or in the memory, and ‘jump’ 

operations that change the address from which the next 
op-code will be read. 

A computer is not much use unless it can 

communicate with the outside world. The ZX computers do 
this chiefly through the keyboard and the TV picture, but 

inputs can be taken from anything that produces a 
measurable electrical signal and outputs can go to anything 

that can be electrically controlled. The CPU reads the inputs 

in much the same way that it reads the memory; however 

the bit string it receives is not something that was previously 

stored but rather an indication of the present state of 

something outside the computer. The Z80 uses a 

completely separate set of addresses for input/output from 
that used for memory, but some other CPUs just have one 
set of addresses. 

In the ZX computers there is an address such that 

five of the bits in the byte read from it correspond to five of 

the keys on the keyboard, each being a 0 if the 

corresponding key is pressed and a 1 if it is not; seven other 

addresses similarly sense the states of the rest of the keys. 

The CPU reads these eight addresses in turn to discover 

which of the 40 keys on the keyboard are pressed, and is 
thus able to see when the user presses a key and react 

accordingly. Another bit enables it to see whether the signal 



from the cassette tape is at a high or low voltage, this bit 

being used during LOAD. 

The CPU also writes the outputs in much the same 

way that it writes the memory but the bit string, instead of 

being simply stored so that it can be read back, is used to 

contro! something outside the computer. In the ZX 

computers this includes the signal recorded on the cassette 

tape during SAVE and the electrical signals that control the 

printer. 

Sometimes bit strings are copied directly from an 

input to the memory, or from the memory to an output as in 

Fig. 1.2(b). This is called ‘direct memory access’ or DMA 

The Spectrum uses DMA for the TV picture; a part of the 

memory is set aside for it, into which the CPU writes the 

appropriate bit strings to produce the required effect on the 

screen. The DMA circuitry copies the data to the part of the 

electronics that generates the video signal. The ZX81 uses 

its CPU to output the video signal, and the CPU cannot do 
this at the same time as running the BASIC program; the 

user is therefore given the choice of SLOW mode, in which 

CLOCK CYCLE — one complete cycle of the square wave sig- 

nal that controls how fast the computer runs and keeps the var- 

ious parts of the computer in synchrony. The Z80 requires 

between three and six clock cycles for each machine cycle 

(qv), other processors require different numbers, e.g. just one 

for the 6502, 15 for the 8048. 

DMA — direct memory access: hardware that allows data to be 

transferred directly between a peripheral and main memory, 

without involving the CPU. This means the CPU can be doing 

something else while the transfer is taking place. 



the BASIC only runs during that part of the TV signal that 
does not contain any data, and FAST mode, in which no TV 
picture is generated while the BASIC is running. 

Other CPU types differ from the Z80 in the 

operations they can perform, the way these are represented 

by op-codes, the wordlength of the memory, the number of 
different addresses in the memory, and other details. But all 

have the basic cycle of 

read an instruction from the memory 

obey it 
read the next instruction 

obey it 

and so on. Because the instructions are obeyed ina 

sequence one after the other, conventional computers are 

called ‘sequential’ machines. 
Japan, the UK, and the EEC have announced 

projects to develop ‘fifth generation’ computers which would 
be able to perform a large number of operations at the same 

time. These computers are expected to be much better at 
tasks that involve looking at a lot of data simultaneously than 

the present, sequential, computers; this is covered more 

fully in Chapter 2. Whether the computer industry can break 
out of the strait-jacket of the von Neumann design remains 

to be seen 

WHAT DO COMPUTERS DO? 

Electronic computers (and calculators) work much 
faster than mechanical calculators, so that the typical 

present-day computer spends much of its time waiting for a 

human operator to give it a command (usually by typing on 



a keyboard) even though each command will probably 

cause the computer to perform several thousand individual 

operations. For example entering the command 

PRINT 417/23 

into a ZX computer requires the computer to identify that it is 

to print something out, to convert the digits 417 into the bit 

string that represents the number 417 in the memory, to 

identify that one number has to be divided by another, to 

convert 23 into the relevant bit string, to do the division 

(which is itself built up from addition and subtraction 

operations), convert the result back into decimal digits, and 

arrange for these digits to be added to the picture on the TV 

screen. The speed with which this is done, however, makes 

it appear almost instantaneous. 

This example raises a number of important points: 

a even apparently ‘primitive’ operations such as division are 

built up from simpler operations, because the computer can 

only do very simple operations, but it does them so quickly 

that a large number of them can be used; 

SEQUENTIAL MACHINE — a machine controlled by a ‘clock 

signal (see ‘clock cycle’). Each time the clock ticks, the 

machine does a single operation 

FIFTH GENERATION — the next generation of computers 

which are intended to have many of the skills that people have 

such as being able to understand spoken English. Such a 

computer would not be a single sequential machine (qv), but 

probably a large number of very simple machines working 

together 



b much of the work done by the computer is concerned with 
putting things into a convenient form for the person using it, 

rather than actually carrying out the calculations he (or she) 
requests; 

c if all these operations had to be done one by one by the 

human operator, it would be quicker and easier to do the 
division sum by hand, 

When electronic computers were first invented, it 
was thought that about twenty of them would be sufficient to 
do all the calculations that needed to be done in the world. 

This estimate was based on the number of calculations that 
were done by mathematicians at the time, and there was a 
total failure to realise that because computers could do 

large numbers of calculations quickly and reliably, it would 
become viable to do many tasks on a computer that had 

previously been done by other means, as for instance in the 
example above. 

WHAT ARE THEY USED FOR? 

If only twenty (or even two hundred) computers are 

needed for ‘number-crunching’, what do all the others do? 
The invention of the punched card is attributed to 

Hermann Hollerith who was one of the people given the task 
of analysing the data collected in the US census of 1880. He 

must have found the work rather tedious, because for the 

1890 census he invented a system in which the answers 
from each census form were recorded by means of holes in 

a card. 

One column (or group of columns) on the card 
would be used for each question on the census form, and 

10 



there were a number of places within the column where a 

hole could be punched according to the answer to the 
question. The cards were run through a machine (a ‘sorter’) 
which sensed electrically whether there was a hole punched 

in a particular column on each card; the card was dropped 
into one hopper or another according to where the hole was 
punched. The machine also counted how many cards went 

into each hopper. 

Using the machine tne work was completed in one 

third of the time it had taken to do it by hand ten years 

previously. (Clearly the authorities had not caught on to the 
potential of automated data processing — if they had, the job 
could have taken twice as long but produced six times as 
many analyses.) 

Punched cards were subsequently used for many 
data processing applications, particularly centralised 
accounting functions in large organisations. Computers 

quickly began to be used in punched card systems, where 

they provided the ability to perform more complicated 
analyses than could be done with card sorters and 

tabulators — operations such as taking a number punched 
on acard, adding it to anumber punched on a second 

card, and punching a new card including the number just 

calculated. For instance, a computer could be fed with a 
stack of cards containing details of customers’ accounts 
and a second stack containing details of payments made 
(the stacks having of course already been sorted into an 

appropriate order); it would then be able to produce a new 
stack of cards containing the updated account details. 

As an alternative to individual pieces of cardboard, 

the data were often recorded on magnetic tape in a similar 

11 



format to that used on the cards. Reading a ‘record’ from the 
tape produces the same electrical signals to the computer 
that the card reader would have produced on reading a 

card containing the same data, and such records are often 
referred to as ‘card images’. Tapes could however work 

rather faster than card readers and were not restricted to a 

particular size of record; also a tape was rather easier to 

handle than a box of cards containing the same amount of 
data. 

Present-day computers increasingly use magnetic 

discs instead of tape. The data are stored in the same way 
as on a tape, that is to say in the form of small areas of 

magnetism in a coating made of a suitable magnetic 

material, and there are no grooves of the kind used on 

gramophone records. The advantage of using discs is that 

any of the records on the disc can be read in a fraction of a 

second, whereas to read a record on a tape may require 

several minutes to wind the tape to the appropriate place. 
Magnetic discs are also used as ‘backing store’ to 

extend the amount of memory to which the CPU has access. 

There are thus several levels of memory, as depicted in Fig. 

1.2 (c): from registers, which offer a limited amount of 

storage that is very easily accessible, to backing store, 

which offers a large amount of storage that takes a 

comparatively long time to access. 

In spite of the many advances made in data 
processing technology over the last thirty years, a very large 

proportion of modern ‘fourth generation’ computers are 

used to store card images and to do on them the same kind 
of operations — sorting cards into a particular order, 

counting them, printing out (or ‘listing’) the data from them, 

12 



extracting cards with particular data values — that were 

done on pre-computer punched card equipment and 
ndeed by Hollerith in 1890. 

PROGRAMMING LANGUAGES 

To use a computer for a particular job, it is first 

necessary to ‘program’ it by storing in its memory the 

required sequence of operations 

The first computers were programmed by writing 

down the operations to be performed, then writing down the 

string of numbers that corresponds to the relevant bit string, 

and finally loading this string of numbers into the computer's 

memory. This process was tedious and errors were often 

made so that the program loaded into the computer did not 

RECORD (noun) — a bit string (qv) containing a number of data 
items all related in some way: the characters in a line of text, 
perhaps, or the catalogue number, stock level, and price of a 

particular product. 

CARD IMAGE ~a record in a format that corresponds exactly 

to a punched card, normally 80 bytes long with the individual 
bytes representing the character code punched in each 
column of the card 

BACKING STORE—memory in which blocks of data from main 

memory can be stored and later retrieved; the CPU cannot 

read individual bytes directly from backing store but must first 

cause the whole block to be copied into main memory 

13 



do what it was supposed to. (These errors are called ‘bugs’, 
and more will be said of them anon.) 

It was quickly realised that converting the program 

into this string of numbers from a form in which it was 

meaningful to a person reading it was just the kind of job for 

which you should use a computer. Accordingly, 

programming ‘languages’ were developed — formal 

notations in which programs could be written (as ‘source 

code’) for subsequent translation by special programs 
called ‘compilers’ into the bit string (or ‘machine code’) that 

represented the appropriate sequence of operations. The 

computer would then ‘run’ the program by performing these 

operations. 

Different machines have different repertoires of 

operations that they can perform, and different ways of 

representing them in the computer's memory. We talk of 

them as having different ‘instruction sets’. At first, each 

machine also had its own programming language, or 

‘autocode’, but it soon became apparent that it would be 

helpful if the same language could be used on all machines 

—then programmers would not need to learn a new 

language when they moved from one machine to another, 

and programs written to run on one machine could be run 
on another without needing to be rewritten in the second 

machine's programming language. 

The first such language, developed in the mid 

1950s was Fortran. The name is short for ‘formula translator’ 
because (as was appropriate for the days in which 

computers were used mainly for number-crunching) it was 

chiefly concerned with calculating the values of 

mathematical formulae. For instance the formula 

14 



A/B+C * 5 

was translated into a sequence of machine code operations 

that would divide the number represented by A by that 

represented by B, and multiply by 5 the number 

represented by C, and add the two results together. (The 

asterisk was used because the equipment on which 

programs were typed did not have a multiplication sign; we 

shall see how the computer finds what numbers A, B, and C 

represent in Chapter 3.) 

A Fortran program is made up of ‘statements’, 

written with one statement on each line, A statement 

represents a single action, such as storing the value of a 

formula in the computer's memory, although this usually 

corresponds to a sequence of several machine operations 

as in the example in the previous paragraph. The term 

‘statement’ is rather misleading, because for instance 

BUG — a mistake in a program or in the design of a piece of 

hardware, as a result of which it behaves in a way that is diffe- 

rent to that intended. Very occasionally you can pretend you 

actually intended it to behave that way all the time, in whic’ 

case the bug becomes a ‘facility’. 

COMPILER — a program which translates text in a high-level 
language into a sequence of instructions in machine code or in 

an ‘intermediate code’. In the latter case another program 

called a ‘code generator’ may translate it into machine code or 

it may be ‘interpreted’ directly. 



does not state that the value of A is equal to the sum of the 
values of B and C, but commands the computer to do the 

necessary operations to store B+C as a new value for A. 

(This is covered more fully in Chapter 3.) 

Fortran is still much used on large computers, but 

is not one of the most popular languages for 

microcomputers. 

Another language first defined in the 1950s was 

called ‘Algol’, short for ‘algorithmic language’. ‘Algorithm’ 

originally meant the Arabic system of numbering (as distinct 
from, say, Roman numerals) and arithmetic based on it, so 

Algo! was simply a language oriented towards arithmetic; an 

‘algorithm’ has now come to mean a step-by-step 

specification of how a calculation is to be carried out, and 

Algol is of course a language in which such specifications 

can be written. 

The designers of Algol had three objectives: the 

language should be as close as possible to standard 

mathematical notation, it should be suitable for describing 

algorithms in journals, and it should be possible for a 
computer to translate it into machine code. It is noteworthy 

that the designers put communication of algorithms 

between people before communication from a person to a 

computer. 

All the versions of Algol use a special symbol, 

made up from a colon and an equals sign and called 

‘becomes’, to indicate the action of storing anumber in the 

memory. Thus 

ager bet ic 

16 



is different from 

a=bte 

and the latter expresses that the two values are (or happen 

to be) equal, and has no connotation of commanding the 

computer to change anything in order to make them equal. 

The third important early language is Cobol, the 

‘common business-oriented language’. It is quite different 

from the number-crunching languages, being aimed at the 

kind of task that is appropriate to punched-card equipment 

and to the manipulation of ‘files’ of card-image records on 

magnetic tapes and discs; indeed it has been said that 

there are only four Cobol programs — one to read in new 

cards, one to check that the data punched on them are 

valid, one to sort them and ‘merge’ them with an existing file, 

and one to print them (or the new file) out. In contrast with 
the Algol aim of using standard mathematical notation, 

Cobol uses English words as in 

ADD B TO C GIVING A 

in an attempt to make programs comprehensible to people 

who are not familiar with computers, and who are not 

mathematicians. One effect of this is to make even simple 

programs rather long; some abbreviations are allowed, but 

a program written in the abbreviated form is not likely to 

make much sense to an uninitiated reader. Moreover some 
Cobol constructions are not all obvious even in their 

ALGORITHM — a specification of the individual steps required 

to carry out a calculation etc. in the computer. 

IRs 



unabbreviated form: for example in the part of the program 
that describes the heirarchy of data structures used, certain 
‘levels’ in the heirarchy (66, 77, and 88) behave very 
differently from the others. 

All three of the above languages are intended to be 

read by people as well as translated into machine code by 
computers. However, the features that make programs 

easier for people to read also tend to make the language 

more verbose, and hence make programs longer to write 

and to type. These languages were also intended for an 
environment in which the programmer would first think out in 

detail how to do the calculation he required, then write it 

down in the relevant language, then punch it (or have it 

punched) on cards or paper tape. Finally the cards or tape 
were read into the computer which translated the program 

into machine code and ‘ran’ it. If the program did not work, 
some of the cards were replaced or an amended copy of 

the paper tape was made, and the new version was tried on 
the computer. Often there was a long wait for access to the 

computer, so the programmer had plenty of time to reflect 
on whether the program was likely to work and a strong 
incentive not to be too careless in the writing of it. 

During the 1960s there was a move, particularly in 

universities, towards ‘multi-access’ (or ‘on-line’) computers 

which allowed programmers to type their programs directly 

into the computer's memory instead of using cards or paper 
tape (which are referred to as ‘off-line’ because typing and 

editing of the program are done on equipment not directly 
connected to the computer). This made possible 

‘interactive’ use of the computer, in which the programmer 

could type in a command, have the computer obey it, and 

18 



look at the result before going on to the next command. 

Programming was thus able to become more of a trial-and- 

error process than before. 

APL (which stands simply for ‘A Programming 

Language’) was, like Algo! 60, not originally intended as a 
language in which programs would actually be input to a 

computer; indeed, it was about eight years after the 

invention of the language that it was first used ona 

computer. Unlike Algol, it was not intended for 

communication of algorithms from one person to another 

but rather as a notation which a person would use when 

designing an algorithm, so it had to be designed in sucha 

way that any particular calculation would require the 
minimum of writing. APL is still used very much in this way, 

although using a terminal on-line to a computer rather thana 

pencil and paper, so the requirement for terseness remains 

For this reason, APL uses mathematical notation (a 

minus sign, for instance needs only one keystroke, whereas 

the word SUBTRACT needs eight, and a ninth for the space 

that separates it from the next word) and special symbols 

were introduced for various commands for which no 

suitable mathematical notation was available. Most of the 

ON-LINE — connected directly to the computer, so that data 

can be conveyed by electronic signals rather than transported 

to and from it on media such as magnetic tape or disc, paper 

tape, punched cards, etc 

INTERACTIVE — involving a two-way conversation with the 

program, rather than simply providing a set of data before the 

program runs and getting back a set of results after the prog- 

ram has finished 

19 



symbols are used for several different things, rather in the 
way that some words in English are, and the particular 
meaning of a symbol! used in a command is determined by 
the context. 

Because APL is used chiefly for person-to-computer 

communication, and because commands are often 

ephemeral (that is, once the command has been typed and 

the computer has obeyed it — a process which often takes 
only a couple of seconds in all — the command is no longer 

needed and can be forgotten) the form of a typical APL 

program is such that it is extremely difficult for someone 

other than the author of the program to see what is going on. 

(It is usually equally difficult for the author once he has had a 

few weeks to forget how the program was written.) 

There is a more or less inevitable trade-off: to make 
it easier for a person to understand, the program must have 

extra information added to it, and one way or another this 

will require extra typing. APL is sometimes called a ‘write- 

only’ language because you can write programs in it but you 

cannot read them afterwards. Because of the large number 
of special symbols, and the powerful facilities they make 

available, it takes some time to learn to use APL effectively. 

BASIC (an acronym for Beginner's All-purpose 

Symbolic Instruction Code) dates from 1964 but only 

became really widespread with the advent of 

microcomputers in the late 1970s. Like APL it is intended for 

interactive use, but as its name suggests it is intended for 
people who are new to programming. Therefore it does not 

have the powerful facilities of APL, nor the special symbols 

that invoke them; commands are introduced by English 

words such as PRINT. Some implementations, including 
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those on the ZX computers, reduce the amount of typing by 
using a single key for each of these words. 

HIGH AND LOW LEVELS 

Languages are often described as ‘high-level’ or 
‘low-level’. A low-level language is one that specifies the 
individual machine operations that are to appear in the 

machine code, although (as with an autocode) the form in 
which it is written is more helpful to the human reader than a 
String of numbers. These languages are often called 

‘assembly codes’ and are used where it is important to 

control exactly which operations the computer performs, 
where the program has to be particularly efficient in its use 
of the computer, and where no suitable high-level language 
is available on the computer in question. 

The program that controls each of the ZX series 
computers (checking when keys are pressed on the 
keyboard, arranging for the appropriate picture to be shown 
onthe TV, obeying BASIC commanas, etc.) is written in 

assembly code for all three of these reasons; for instance, 
the frequency of the signals recorded on the cassette tape 
by the SAVE command depends on the exact sequence of 
Operations done during the SAVE process. Careful design 

allows more facilities to be fitted into the available memory 
and allows commonly used parts of the program to be made 
as fast as possible. 

High-level languages are supposed to concentrate 

on expressing what task needs to be done, and to relieve 

the programmer of the need to decide just how the 
computer will do it. This is necessary if high-level languages 
are to be ‘machine-independent’, i.e. if the same program is 
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to be able to be run on any computer. In practice the most 

common languages concern themselves a great deal with 

the ‘how’, to the extent that it is rather easy to lose sight of 

the ‘what’. This is in some measure inevitable in a general- 

purpose language because the only thing the tasks have in 

common is that they can be done on a computer: the 

language provides a way of describing what the computer 

is to do, but cannot do this in a way that is related to the 

needs of any particular application. 

There are some special-purpose languages that 

are used for particular kinds of task, and more general 

languages that are more truly high-level are now beginning 

to appear; these are called ‘very high-level’ to distinguish 

them from the older languages. 

Many languages (such as Fortran and Cobol) have 

survived far longer than one would expect given the rate at 
which other aspects of computer technology are 

developing. New computers use existing languages so that 

programs written for earlier computers can be run on them 

and so that programmers who are familiar with the 

languages can use the new computer with the minimum of 

retraining; and it is usually easier to use an existing 

language (however inconvenient) than to create a new one. 

BLOCK STRUCTURED LANGUAGE -— a language in which a 

number of statements (or commands) can be grouped 

together as a ‘block’ which has the status (as far as the syntax 

is concerned) of a single statement or value. Usually a block 

can have its own ‘private’ variables, to prevent data being 

overwritten when recursion is used. 
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WIHIAIT. PIEIRSIOINIAIL 
COMPUTEREDIO? 

In the early days of computing there was much 
publicity on the subject of how many years it would take a 

team of mathematicians to do a set of calculations that a 

computer could do in an hour or two. Many people therefore 
got the impression that computers could do anything that 

mathematicians could do, only faster and more accurately. 
But by the mid-1960s researchers into artificial intelligence 

had shown that there were other tasks that people 
(including mathematicians) could do in a fraction of a 
second but which took a computer a quarter of an hour. 

In general, computers are good at tasks that 

involve simple operations on numbers: copying them from 
one place to another, comparing two numbers to see which 

is the larger, adding and subtracting them. Except in some 

very large computers called ‘array processors’, these 

calculations are done one after the other (‘serially' or ‘in 
series’) although they are done so quickly that it may look as 
if many of them have been done at the same time. At any 
instant the computer is only able to consider two or three of 

the thousands of numbers it has available in its memory 

Computers are good at converting small amounts 

of data into large amounts. This does not simply mean that 

they are good at producing enormous quantities of paper 

covered with numbers, although they have been much used 

in this way in the past. Consider for example a page of 
teletext displayed on a TV screen. (A teletext page consists 
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‘of 24 lines of text, each line containing 40 ‘characters’; 

characters are things like letters of the alphabet, digits, 

punctuation marks, and the spaces between words. UK 

readers who do not have teletext sets can look at the BBC's 

‘Ceefax in vision’ programmes to see some typical teletext 

pages.) This kind of text is stored in a computer using one 

number for each character, so it needs a total of 960 

numbers. When the page is displayed on a TV screen it 

consists of 57600 separate dots, and the TV picture can be 

stored in a form that uses a number to show the colour and 

brightness of each dot, requiring 57600 numbers. 

It is a simple calculation to generate the 57 600 

numbers that represent the TV picture from the 960 

numbers that represent the text, assuming the computer 

has available a table giving the pattern of dots that 

represents each character, and in fact the ZX computers all 

use essentially this method of generating the TV picture 

although the details differ somewhat. 

People, by contrast, are good at tasks that involve 

reducing large amounts of data to smaller amounts; this is 

called ‘pattern recognition’. Thus looking at the TV picture of 

the page of teletext we recognise patterns formed by the 

57 600 points of light on the screen as letters of the alphabet 

etc; we do not remember the colour and position of 

individual dots, nor even the letters nor the words formed by 

them, but the overall appearance of the page and the sense 

of the message conveyed by the words. 

When we look at a page in this way, we are looking 

at the whole page at once, considering the 57600 pieces of 

information ‘in parallel’. It is true that if we read through all 

the text on the page we read it serially, starting at the top 

26 



left, but if one part of the page is in a brighter colour, or 
flashing on and off, our eye is drawn immediately to this 
area, A computer that scanned serially through the picture 

would not be aware of a brighter area at the bottom of the 
screen until it came to it; on the other hand it would not be 
distracted by it while processing the other parts of the 

picture. 
It is comparatively easy fora computer to convert 

the TV picture of a teletext page back into the text form, by 
simply looking at each of the 60 dots that make up each 

‘character position’ and comparing them in turn with the dot 

patterns of each of the available characters; if an exact 

match is found then the character in that position has been 

identified, if none of them matches exactly then the picture 
must have become corrupted in some way. The computer 

could even deal with this case by choosing the character 

that is ‘nearest’ to the dot pattern, using some simple 
tmeasure of ‘nearness’ that can be calculated from the dot 
pattern on the screen and the dot pattern for the character 
(such as counting how many of the 60 match exactly). 

Now suppose that we have the same text printed 

on a piece of paper and we hold it in front of a TV camera. 
Suppose even that it is handwritten rather than printed, or 

that it is being held upside-down. To a person looking at a 

TV screen it will appear obviously similar to the teletext form, 
and there is not much difficulty in, say, locating the fourth 

letter on the third line and identifying it as an ‘e’. But 

someone trying to program a computer to examine the 

picture, which it has to do a dot at a time, has a real 

problem, because the program must first decide where the 

individual letters come and then identify each one from a dot 
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pattern which is probably rather different from the 10 by 6 

pattern in the teletext. 
If the picture is not of a page of text but of, say, a 

street, then the problems for the computer are 

correspondingly greater. A person does not have any 

trouble in recognising, say, a car, but it is not easy to specify 
in terms of patterns of light on the screen how a computer 

could distinguish the image of a car from any other part of 
the picture. Remember that the camera may be seeing the 

car from the front or the back or the side, and the car may 
be anything from a small red sports car to a large black 

saloon. 
This example shows that when performing 

everyday tasks people use a great deal of ‘cultural’ 
information (such as just what is, and what is not, a car) 
which it is impractical (at least with present-day technology) 
to store inside the computer. Consider, for example, the 

amount of information that would need to be stored ina 

computer controlling a robot for it to be able to go to the 

fridge and take out a bottle of milk. This requires 

the concept of what a fridge is; 
the ability to locate the fridge (including knowing which 

room it is in, and being able to distinguish it from the 

oven or the dishwasher); 

the concept of what a bottle of milk is; 
the inference that it is necessary to open the fridge door, 

and the knowledge that it is desirable not to leave it open 

too long; and 
the ability to locate the door handle and open the door, 

and to locate the bottle of milk and pick it up. 

We should avoid the temptation to think about 
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computers (and robots) as being rather stupid people, and 

think of them instead as being rather sophisticated 

machines. Asking someone to make you some tea is a very 

different act from pressing a button on a machine which 

Causes it to dispense a cup of tea, and will remain so no 

matter how sophisticated tea machines become 

HOME COMPUTERS 

Personal computers are normally concerned only 

with processing data, and do not directly control or 

manipulate physical objects (except for the printer on which 

results etc. are printed out, and disc or tape drives on which 

data are stored for later use). 

There has been some talk in recent years of ‘home 

computers’ which can control various things around the 

house such as the heating and lighting. While you are away 

TELETEXT — text transmitted with a television signal during the 
interval between one ‘frame’ of the picture and the next. 

normally for display on the screen by a suitably equipped tele- 

vision set but also able to be read into the memory of a com- 

puter. Not to be confused with teletex. 

TELETEX — a telecommunications service similar to telex but 

offering a much larger set of characters including lower case 

letters, accents, subscripts and superscripts, etc. Not to be 

confused with teletext, qv 

VIDEOTEX — an interactive service providing text in a similar 

formatto teletext (qv) but transmitted over telephone lines. The 

user can ask to see pages from a very large ‘data base’ and 

can also type information in, e.g. to order air line tickets or to 

book theatre seats. 
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the computer can open and close the curtains and turn the 

lights on and off to make it look as if the house is occupied, 

and perhaps raise the alarm if an intruder is detected; you 

can phone it up and (using a device similar to the remote 

control for a TV set) tell it when you will be back so that the 

heating and perhaps the cooker can be turned on at the 

right time. It can be used to enable the electricity company 

to control when your water heater is switched on, so that they 

can spread the load on the local electricity supply more evenly. 

Although interfaces are available for many 

persona! computers that would allow them to become home 

computers, the other apparatus required is not freely nor 

cheeply available. For instance, you are very unlikely to find 

that your cooker has anywhere for you to plug in a computer 

that would control it; the motors etc required to open and 

close curtains of just one window would cost nearly as much 

as the computer; the ‘auto-answer’ device that would allow 

the computer to respond to telephone calls is likely to be 

fairly expensive, and you may find you need a separate 

phone line for it. 
Itis quite possible that within a decade the 

electricity companies will begin to supply home computers 

to their customers; the principle use of these home 

computers will be for the control of power consumption (as 

suggested above) and for automatically reading the meter. 

Communication (of control commands to the computer and 

of the meter readings from the computer) would probably 

be along the power cables rather than through the 

telephone system; the same computer would probably also 

be able to carry out similar functions for the gas and water 

supplies. 
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WORD PROCESSING 

We saw in Chapter 1 that all data are stored in the 
computer in a form which we think of as a sequence of 
numbers. (Chapter 3 will consider this further.) Therefore 
the computer can store anything that can be represented as 
@ sequence of numbers and do any processing that can be 
defined in terms of arithmetic operations on those numbers 
(including simply copying them from one place to another in 
the computer's memory). 

A common use of computers, particularly personal 
computers, is the storage and manipulation of text — reports, 
letters, and other documents. Suppose you are writing a 
feport on some topic or other; you (or your secretary) might 
type a draft on your typewriter and send copies to some of 
your colleagues for their comments. As a result of their 
Comments, and any further thoughts you might have had, 
various alterations are made to the draft, and a complete 
New copy is typed. If any mistakes are made in the typing, 
they must be rubbed out or painted over; it has been 
estimated that typists spend about 30% of their time 
Correcting mistakes — it only takes a fraction of a second to 
press a key to print a character but it takes much longer to 
fub the character out again if it is wrong. Also, typists tend to 

INTERFACE — the connection between one part of a system 
and another. Bugs (qv) often arise because an interface is not 
well-defined, so the part of the system on one side of the inter- 

misunderstands signals sent across the interface from 
other side. 
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type less quickly than they could, for fear of making 

mistakes. 

A ‘word processor is a special-purpose personal 

computer for storing and manipulating text; there are also 
programs available that run on general-purpose personal 

computers and provide much the same facilities. With a 

word processor, you would not need to type the whole 

document a second time, just to ‘edit’ the draft stored in the 

computer. Typing mistakes are corrected as quickly as they 

are made, by pressing a ‘delete’ key which simply means 

‘remove that last character from the document’: because at 
that stage nothing has been printed on paper, there is no 

rubbing out to do 
The text is stored by using a number to represent 

each character. Essentially this means there is a different 

number for each key on the typewriter keyboard; for most 

keys there are in fact two numbers, one for the shifted (or 

upper case) character and one for the unshifted (or lower 

case) character. Note that there are also codes for the keys 

that do not actually print anything, such as ‘space’, ‘new 

line’, ‘tab’, and ‘backspace’. The sequence of key presses is 

stored in the computer as a sequence of these codes. 

For example, in the code that is used on almost all 

types of personal computer (including the Spectrum but not 

the ZX81), the lower case letters have codes a=97, b=98, 
c=99, and so on up to y=121 and z=122, the code for a 
capital letter is 32 less than the code for the corresponding 

lower case letter, and the codes for space and exclamation 

mark are 32 and 33 respectively. Thus the sentence 

Go away! 
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would be encoded as 

Til. Y40 SP, 97, 119, 987, LL, 35 

To change it to 

Gone away! 

we require the computer to copy ail but the first two codes 

two places further up the memory and put the codes 110 

and 101 (for 'n' and ‘e’) in the gap; this is an example of the 

‘editing’ referred to earlier. In practice the codes would be 

copied up one place at a time: once when you typed the 'n’ 

and again when you typed the ‘e’. Suppose you missed the 

*e’ key and hit ‘w’ instead; the text would read 

Gonw away! 

encoded in the computer as 

TAR AG Mh Copan BICEP Cr oui 

and you would hit the ‘delete’ key to tell the computer to 

remove the 119 that has just been inserted and close up the 

gap again by copying the remaining six numbers one place 

back. All this copying back and forth may appear tedious, 

WORD PROCESSOR - a computer doing the job of a type- 
writer; the text is stored in the computer and can be vie’ 

ascreen so that the operator can check that it is correct before 

printing it. The text can be kept on backing store 

retrieved, updated, and reprinted as required 
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but it is the kind of thing that a computer can do extremely 

quickly, and is much easier for the user than having to tell 

the computer in advance how many codes are to be 

inserted. 
The facilities provided by word processors, 

therefore, are to type in text, to edit it, to print it out, and to 
store it away for future use. For this you need a keyboard to 

type on anda screen of some kind to see what you have 

typed (all personal computers have these, of course); some 

kind of storage device that will preserve the data even when 

the computer is switched off (disc is ideal but cassette tape 
is acceptable); and a typewriter or other printer of adequate 

quality to type the documents out on. 
It is this last requirement that makes the ZX 

computers unsuitable for word processing (except as noted 

in the next paragraph). The basic computer does not have 

any means of producing printed output; the add-on ZX 

printer uses special paper and the characters it prints do 
not approach typewriter quality. You cannot print on your 

own letterhead or invoice forms, for example; the best you 
can do is to print on the special aluminised paper that the 
printer uses and then cut out the text and stick it onto your 

own paper — a tedious process which results in an 

appearance that will be unacceptable in many situations. 

However, it is possible to attach a typewriter- 

quality printer to a ZX computer although it requires some 
special-purpose electronic circuitry to be constructed. You 

can expect that anyone who sells a device of this nature will 

also sell the necessary word-processing programs to go 

with it. 
There are some more advanced facilities that word 
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processors provide. One example is arithmetic on figures in 

tables: converting figures from one basis to another ina 

report, perhaps, or calculating totals on an invoice. An 

example of the first would be a table which listed income 
and expenditure for the various different divisions of an 

organisation for the last five years. The figures might be 

typed in in thousands of dollars, and the table might also 

show the expenditure in each case as a percentage of the 

corresponding income figure, and profit both in thousands 
of dollars and as a percentage of the profit made by the 
whole organisation in that year. 

The character codes are almost always chosen so 

that the value of a digit is equal to the difference between its 

code and the code for the digit zero. Thus in the Spectrum 

the code for zero is 48, '1’ is 49, ‘2’ is 50, and so on. When 
you subtract 48 from a character code, if the result is 6, say, 

then the character is ‘6’, If the result is less than zero or more 

than 9, the character is not a digit. The word processor can 

easily identify where the number begins (usually it will start 
at a ‘tab’ character or even a special code inserted by the 

user to mark it) and work out its value, and then perform 

whatever arithmetic operations the user has requested. 

Another common facility is checking for typing 

errors by verifying that each word in the document is a 

correct spelt word. The words can easily be identified —a 

word is simply a group of letters preceded and followed by 

codes that are not letters, such as space, new line, and 

punctuation — and compared against words held ina 

‘dictionary’ file. Allowances can easily be made for letters 

being in upper or lower case (for instance by converting 

everything to lower case before doing the comparison). 
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Some care is needed in organising the words in the 

‘dictionary’ so that they can be found quickly enough, but 
this, too, is not.a particularly difficult problem. The system 

needs to be able to add words to its dictionary: when a word 

is found that is not in the dictionary, the user is asked if this 

word is a typing error (in which case the document can be 

edited to correct it) or a new word to be added to the 

dictionary. 

Thus if you mistype ‘ti’ instead of ‘to’ the spelling 

checker will tell you that the word ‘ti’ is not in its dictionary 
and you can make the necessary correction, but if you type 
‘too’ in mistake for ‘to’ the program does not say anything 

about it because ‘too’ is also a word in its dictionary. 

For the program to detect this kind of error would 

require it to be able to parse and, in many cases, in some 

sense ‘understand’, sentences in English. This is something 
that cannot be reduced to a sequence of simple arithmetic 

operations, and although a complicated program running 

on a powerful computer would be able to do it sufficiently 

well to detect a fair proportion of errors of this kind it is 

outside the scope of present-day personal computers. 

LIMITATIONS 

We have seen that computers in general can do 

any jobs that can be described as a sequence of simple 

arithmetic operations. This includes not only obviously 

numerical processes, such as those involved in keeping 

accounts, but also storing and editing text and pictures, 

which are represented inside the computer by sequences of 

numbers, However it stops short of being able to deal with 

the kind of idea or concept that people learn by example 
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rather than from rigorous definitions: we know what a dog is 

because from a very early age we have been shown dogs 

and pictures of dogs and told ‘this is a dog’, and have learnt 

to distinguish a dog from a cat by various features such as 

the shape of its head and the texture of its fur, but how can 

these criteria be transiated into numbers? 
Although computers are able to do calculations 

very quickly, it is quite easy to write a program that involves 
a huge number of calculations and thus takes a very long 

time to run. The effect of increasing the number of 
calculations tends to be imperceptible up to a certain point 

and then becomes apparent quite suddenly: if the computer 

will do 100 000 calculations per second, then anything that 

takes less than 10 000 calculations will appear to take 
almost no time at all; increasing the number to 50 000 

introduces a slight hesitation, 100 000 a much more 
noticeable one, and by 300 000 there is a significant delay 

while the program runs. Thus the difference between 50 and 

500 is not noticeable, but the difference between 50 000 

and 500 000 is quite dramatic. 

The number of calculations needed to do a given 

job can also become very large because of the way in which 

more complex operations are defined in terms of simpler 

operations. For instance, we may define simple operations 

PARSE — to analyse a piece of text to discover its str , SO 

that the individual words etc. from which it is made up can be 
interpreted in the correct context; for instance, in English, to 

divide a sentence into subject, verb, object, etc 
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that consist of 100 calculations each (not at all a large 

number, particularly if any repetition is involved) and more 

complex operations that consist of 100 of the simpler 
operations. Then a program that consisted of 100 of the 
more complex operations — not at all a large program — 

would do a total of 1 000 000 calculations when it was run. 
With ZX BASIC we have very much this kind of 

structure: There are simple operations such as fetching a 

number that has been stored away in the memory, which 

includes finding where it has been stored, or multiplying two 
numbers together, which the computer has to do by a kind 
of ‘long multiplication’ because it cannot deal with the whole 

number in one go. The more complex operations, which are 
the BASIC commands, are defined in terms of these simpler 

operations, and the BASIC program is built up from BASIC 

commands. 
Because the computer does so many individual 

calculations for each BASIC command, it cannot manage 

more than a few hundred commands each second, and a 

single command that makes heavy use of certain of the 

‘simple’ operations, such as converting a number into 

character form (particularly on the ZX81) and calculating 
trigonometric (etc.) functions (and particularly the to-the- 

power operation), can take a second or more to obey. 
More powerful computers are able to do more 

calculations each second, and often require fewer individual 

calculations to perform a particular operation. They often 

(but by no means always) have a more sophisticated means 

of translating commands into sequences of individual 

calculations than is possible with the resources available to 
ZX BASIC, so that fewer such calculations need to be 

38 



performed to obey a particular command. 

Apart from the speed with which the computer 

obeys commands, the aspect that is usually most important 

is the amount, and type, of memory available. The only type 

of memory available to the program in a ZX computer is in 

the RAM chips that are inside the computer or (for the 

2X81's add-on memory) plugged into the back. This is 

‘volatile’ memory: when you switch the computer off, all the 

data stored in it are ost 

The most common type of ‘non-volatile’ memory, 

which will retain the data when you switch the computer off, 

is magnetic disc. Data stored on disc have to be read into 

RAM before the computer can use them, but the computer 

can fetch any part of the data when the program needs it 

and store updated records back on the disc when required; 

this is covered more fully in Chapter 10. 

The only kind of nonvolatile memory available on 

the ZX computers at the time of writing is the cassette tape. 

This not controlled by the computer, so its use is limited to 

the user-controlled operations of storing a complete copy of 

a program on the tape (by the SAVE command) and 

retrieving it (by the LOAD commana). Fortunately, when the 

program is saved the data it is keeping in memory are 

saved with it, so that when it is loaded again it can continue 

VOLATILE — when applied to memory, means it loses the data 

ored in it when the computer is turned off. S 

RAN is volatile, although CMOS RAM (which draws vi 

current) can be made to appear n atile by supplying 

er from a small battery while the main power is off 
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where it left off (there are examples of this in Chapters 9 and 

10), but while the program is running it must have all the 

data it needs in RAM. A computer with a disc, on the other 

hand, does not need to fit all its data into RAM because 
when processing a series of data records |t only needs to 

have in RAM the records it is actually working on — a record 

is transferred back to the disc when it has been finished with 

and another one is read into the part of the RAM vacated by 

it. 

In practice this means that in ‘record-keeping’ 

applications the maximum total size of the information (or 

‘data base’ to use the jargon word) that can be kept is much 

smaller in the ZX computers than in a computer with a disc. 
Most of the jobs of this kind that are done on a computer are 
of a commercial nature, such as stock control, payroll 

accounts, and mailing lists; this is because companies are 
better able to justify the expenditure on a computer system 

and they also tend to have large amounts of data to keep 

up-to-date. There are however several personal ‘data base’ 

applications that could be done on a computer, including 

addresses, phone numbers, birthdays, recipes, and bank 

(etc.) accounts, as well as membership lists for clubs or 

societies. 

Fortunately many of these only involve 

comparatively smal! amounts of data and so can be viable 

on a ZX computer, but because only small amounts of data 

are involved it is likely to be just as easy to use a pencil and 

notebook as it is to use a computer. The computer is more 

likely to be a benefit where some arithmetic is to be done on 

the data (as in the example in Chapter 10) than where the 
data consists simply of text, such as lists of addresses. Also, 
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you can fill up the space in the computer's memory more 

quickly with text than with numbers: if you have the ZX81 

with the add-on RAM, for instance, you might have about 13 

K of RAM available for your data in which you could fit some 

2500 numbers but only about 130 names and addresses or 

about a dozen recipes. 

DATA BASE — lection of records (qv) holding information 

about a particular topic, such as the properties of different 

chemicals or a company’s stock records and accounts. If the 

records are not all kept in the same computer, it is a ‘distri- 

buted’ data base 

K—2 f 10 or 1024, not to be confused with k which is 1000. Ifa 

computer is described as having 16 K of memory, it means 

16 K bytes (which is equal to 16 384 bytes). Just to be confu 

ing, when referring to the individual memory chips 16 K usually 

means 16 K bits, which is only 2 K (or 2048) b’ 
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STORING] DATA 

If you write on a piece of paper ‘We have 17 
widgets in stock’, this conveys information to anyone looking 
at it who can read and understand English. The written 

words do not, however, look at all like 17 widgets, or indeed 

17 of anything. A Roman might have scratched on a clay 
tablet ‘XVII widgeti habemus’, which looks quite different 
again. 

We are, therefore, quite used to storing information 

in forms that do not bear any resemblance to the things 

described. We also often leave a large part of the 

information to be deduced from the context; for instance a 

card in a drawer labelled ‘stock records' may just say 
‘widgets... 17°. 

Computers also store information in forms that are 

convenient for them (not because the computers prefer it 

that way, but because it makes life easier for the people who 
make them), Computers, as we saw in Chapter 2, are not 
good at reading words written on pieces of paper, so the 

format of the information is such that it can easily be sensed 
and manipulated electronically. 

Information written on paper is made up froma 
repertoire of shapes: 10 digits, 26 capital letters, 26 lower 
case letters, and a number of other symbols including 

punctuation marks and accents and signs such as ‘+' and 

*%'. We use the letters to make up words, and the words 
(together with punctuation marks) to make up sentences. 

We use the digits to represent numbers; because there are 
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ten different digits, this is called ‘decimal’ numbering (from 

the Latin for ‘ten’). The Romans did not have separate digits, 

but used letters (I, V, X, L, C, D, M) in their notation for 

numbers. 
Sometimes quite different ways of representing the 

letters etc. are used, for instance patterns of dots in Braille 
or long and short pulses of sound in Morse code. And of 

course there are alternative ways of conveying whole words: 

most notably in spoken form but also sign language and 

shorthand and pictograms. 
We saw in Chapter 1 that information inside a 

computer is represented in ‘binary’ form as a string of ‘bits’ 

each of which can take one of two values. The bits may be 

stored on magnetic media such as tape and discs (from 
which they are read by moving the media past a ‘read head 

that converts the magnetic signal into an electrical one; 

cassette recorders are an example of this), in the form of 

holes in paper tape or cards, and in the form of magnetic or 

electrical signals in the computer's ‘main memory’, from 

which any bit can be read directly without having to move 

any mechanical parts such as a tape drive mechanism. 
There are a number of different ways in which bits 

are represented on magnetic media, but only the engineers 

who design computers need to know the details of them. 
The ZX81 uses a system of long and short ‘tone bursts’ very 

much like the dots and dashes of Morse code but about a 
hundred times faster; a dot represents a 0 and a dasha 1. 

O i paper tape and cards, a hole represents a 1 and the 
esence of a hole represents a 0. Main memory in the 1960s 

consisted of magnetic ‘cores’, magnetised one way round to 
represent a 0 and the other way round to represent a 1. 
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Microcomputers use silicon chip memories; these have a 
number of ways of storing the bits internally, but at the pins 

which form the electrical connection to the rest of the 

computer they all use a ‘high’ voltage (above about 2 V) to 

represent a 1 and a ‘low’ voltage (below about 1 V) to 
represent a 0. 

In the same way that letters are grouped together 

to form words and sentences, bits are grouped together into 

‘bit strings’. A single bit can only be one of two things, a1 or 
a 0; sometimes there are only two possible values for the 

data we need to store (true or false, present or absent, male 

or female) and in this case a single bit is sufficient. A pair of 

bits can have one of four values (00, 01, 10, or 11) and can 

thus represent data where there are up to four possibilities 

Each bit added to a bit string doubles the number of 

possible values, so three bits have eight values, four bits 
have 16, and so on. A group of eight bits, called a ‘byte’, 

can thus make one of 256 values. 

It should be emphasised that not only can a bit 

string be represented in many different forms (electrical, 
Magnetic, etc.) but it can in turn represent many different 

things. The 256 different values in a byte can, for instance, 

represent the whole numbers 0 to 255, or the whole 

numbers —128 to +127, or the fractional numbers 0 to 255/ 

256 (in steps of 1/256), or the various characters that can be 

produced by a printer or shown on a TV screen, or the 

different operations that the computer can carry out on the 

data, or indeed the members of any set of not more than 256 

things. There is nothing in the bit string to show which set of 

things is being represented, so a particular byte value could 
mean 186, or —70, or (on the ZX81) a white-on-black letter 
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U, or (on many machines including the ZX Spectrum) a 
colon, or an instruction to compare the values stored in two 

certain places in the computer, or (on the ZX Spectrum) that 

a character should be in red on white and flashing; or any 

other meaning you care to give it. Only by the context can 

you decide which meaning is appropriate. 

Almost al! high-level languages use ‘data types’ to 

distinguish between different kinds of ‘values’ that can be 
represented. The data type does a number of jobs; it 

defines which values are inc|uded, which value each 

possible bit string corresponds to, how long the bit string is 

(i.e. how many bits it contains: there is usually no explicit 

indication of where a bit string ends in the way that the end 

of a word is shown by a space or punctuation mark) and 

which arithmetic ‘operations’ are available. 

In ZX BASIC there are just four data types: 

numbers, strings, arrays of numbers, and arrays of 

characters. Numbers, for instance, occupy 40 bits and 
cannot be larger than about 10°°; they are accurate to about 

nine decimal digits except that all numbers less than about 

10° are stored as zero. The various parts of the program 

that do arithmetic on numbers, including those that convert 

them to and from the decimal representation, need to agree 
on the exact way in which each number is represented by a 

40-bit bit string, but the user of the computer wil! not 

normally need to be bothered with such details 

When a program is translated into machine code, 

most of the information that the data type conveys is left 

behind. In the same way, a program in a traditional general- 

purpose language such as BASIC only conveys a limited 

amount of information about the way in which the rather 
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limited repertoire of the data types is used to represent 

values encountered in the real world. The programmer may 

for instance want to store the amount of one-inch hexagonal 

steel bar which a company has in its warehouse; the 

computer has no knowledge of steel, bars, hexagons, or 

inches, and the data type will probably just indicate that it is 

a number. But the number could be the number of pieces, 

the total length in feet, the total |ength in metres, or the 

weight in imperial or metric or US short tons; it is up to the 

programmer to ensure that the correct units are assumed at 

each place in the program that the number is used. 

DATA TYPE — details of the bit string stored in a variable: how 

the computer can find out how long it is, what operations can 

be done on it, and how it corresponds to the text form used in 

the program. 
VALUE - the thing represented by a bit string, whether stored 

in a variable or being processed by the program; the informa- 

tion required to discover the value, given the bit string, is 

included in its data type (qv), 
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VARIABLES 

Most computer languages store data in ‘variables’. 

Just as in algebra, a variable is something that has a value 

that can change, but there the similarity ends. In algebra, 

we have things like 

y=ax*+bx+c 

in which a, b, and c are ‘constants’, which take particular 

values, and x and y are ‘variables’ which can take a range of 
values. We can draw a graph (as in Chapter 7) showing 
which values of y correspond to which values of x. Having 

drawn the graph, we can see all the values of x and y at the 

same time. 

The computer, on the other hand, is essentially a 

serial device, and so variables in a computer have to have 
their values one at a time. At any one time a variable in a 
computer can only have one value, but it may have different 

values at different times and this is indeed the essence of 

how computers work. In BASIC we say 

LET variable = value 

and the computer first works out the value and then 

‘assigns’ the value to the variable; the variable has this value 

until another value is assigned to it. 
Something which is particularly confusing at first to 

anyone used to the algebraic sort of variable is 

LET x = x/2 

which looks as of we are wanting x to have a value which is 
equal to half of itself (i.e. zero), But look at what the 
computer does: it takes the value of x (which must have 
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been assigned to it previously) and divides it by 2, then 

assigns this new value to x. To put it another way, x is 

assigned a new value which is half its old one. Similarly 

LET x = x+1 

(which would be nonsense as an algebraic equation) 

assigns to x a new value which is one more than its old one. 

Although this describes adequately what a variable 

does in terms of the notations in the high-level language, it is 

worth looking at how a variable is actually stored in the 

computer. 

Most of the early languages were ‘compiled’ into 

machine code; BASIC, as we shall see shortly, is an 

exception to this, but the way in which it uses variables is 

similar. In a compiled language, a variable has 

a aname, 
b adata type, and 

© arepresentation of the value 

The name is used in the program to identify which particular 

variable is being talked about (and is for this reason 

sometimes called an ‘identifier’) just as the name ‘Joe 

VARIABLE — a place in the computer's memory where a bit 

string is stored. In most high-level languages, the program- 

mer's only direct access to the memory is to store data in, and 

retrieve it from, variables: see ‘data type’ and ‘identifier’. 

IDENTIFIER — the name given to a variable or other entity ina 

program. In most programming languages (though not in ZX 

BASIC) the identifier is only used in the text (or ‘source code’) 

form of the program, a more direct way of establishing the vari- 

able’s type and location being used in the machine code. 
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Bloggs’ would be used to identify a particular person. The 

representation is a bit string representing the variable's 

value at any time, which is the value most recently assigned 
to it. This bit string is often of a fixed length (a fixed number 

of bits) so that a particular group of bit cells (i.e. places in 
the memory in which bits can be stored) can be set aside to 

contain it, and any new value will occupy exactly the same 

amount of memory as the old one it replaces. 

The data type describes all those things the 

compiler needs to know about the value in order to translate 
(‘compile’) the program Into machine code, such as how 

many bits it requires and what machine instructions to use 

when doing arithmetic on it. 
The name and data type are thus used when the 

program is compiled (at ‘compile time’) while the value is of 

course only present when the program is run (at ‘run time’). 

The name and data type are not usually available at run 

time, although some aspects of the data type will be implicit 

in the machine code operations that use the variable. 
In languages of the sort just described, there are 

two distinct phases — compile and run — and the compile 

phase is completed before the run phase begins. In 

interactive BASIC, as on the ZX computers, the user is able 

to type in part of a program and run it and then type in some 
more and run that. Obviously the second part is not 

compiled until after the first part has run, so it is not possible 

to throw away the ‘name’ and ‘type’ information at the end of 

compilation in case more compilation is required later. 

In fact most BASICs, including ZX BASIC, differ 

from the earlier languages more radically than this in that 

they are not compiled at all but interpreted: instead of 
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translating the instructions in the program into machine 
instructions which will be obeyed later, the computer obeys 

them as it goes along. This means that it is not necessary to 

find space in the computer's memory for all the machine 

instructions, and it does not have to process any of the 

instructions in the program that are not going to be obeyed 
(i.e. those that are there to deal with situations that do not 

happen to arise in this particular run). On'the other hand, an 

instruction that is to be obeyed many times has to be 

translated many times whereas in a compiled language it 

only gets translated once. 

(The ZX BASICs are actually reasonably efficient in 

this respect. Keywords such as PRINT are stored as single 
codes so that the computer can immediately look up in a 

table what kind of action to take rather than having to 

identify them from the separate letters P,R,|,N,T. The codes 

are only translated into letters when the program is listed on 

the screen or printer. Numbers are translated into binary 
when they are typed in and the binary is stored alongside 

the character form in the program.) 
in the ZX computers, all three parts of the 

information about a variable are therefore stored together 

and are available all the time. String variables are 
distinguished from numeric variables in the program by the 

dollar sign at the end of the name, and arrays (see below) 
are distinguished by the parentheses that follow the name, 
so the computer can always tell the data type of a variable 

without needing any ‘context’ information. In many 

languages, each name must be ‘declared’ before it can be 

used; the declaration specifies the data type. Thus in Algol 

68 
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BEGIN REAL x, STRING s 
‘declares’ that will the variable x will be of type ‘real’. (a 
floating point number) and the variable s will be a string. We 

can then say 

x := 5;  s i= "Hello" 

but not 

s:=5 

which would attempt to assign to s a value which it cannot 

represent. In BASIC there are no declarations (except 
insofar as the DIM command declares the size of an array 

as mentioned below) but the data type is deduced from the 

form of the name: if it ends in a dollar sign it is a string, 

otherwise it is a number, so we can say 

LED x S75, 
LET s = 
LET s$ = "Hello" 

but not 

LET s$ = 5 
LET s = "Hello" 

Note, by the way, that s and s$ are different variables even 

though their names are similar. 

In the ZX BASICs, and in most other BASICs, the 
variables are kept jumbled together in one part of memory, 

and if a variable that has not been mentioned before is used 

it is added to the top of the heap. There are some 

restrictions to this process, as follows. 

If you try to use the value of (as distinct from assign 

to) a variable that does not exist, the ZX BASICs signal an 
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error. This is because it is assumed that you have made 

some mistake such as mistyping the name or forgetting to 

put in the command that should have assigned a value to it 

Therefore, the first time the computer comes across each 

name (other than an array) must be to the left of the equals 

sign ina LET or FOR commana. 

Some BASICs simply assume the value is zero if 

the offending variable is a number, or the ‘empty’ string 

(which contains no characters) if it is a string. This is helpful 

if it is what you intended but it can cause programs to do 

some very strange things if it is not. 

An array is a group of variables of the same type 

that are all collected together under one name; arrays are 

dealt with more fully in Chapter 5. The whole group is 

created at the same time by a DIM command, which 

specifies how many variables are required. Because it does 

not also specify a value, all the variables have zero (if 

numeric) or the ‘space’ character (otherwise) assigned to 

them. The first time the computer comes across each array 

name must therefore be in a DIM command, but once it has 

obeyed the DIM command you can use the ‘elements’ (the 

CHARACTER STRING — a number of characters considered 

together (and in a particular order) as a single object (cf. ‘bit 

string’). BASIC allows character strings to be manipulated asa 

whole or dissected into their individual characters 

ARRAY — a collection of variables all of the same type, with a 

single identifier (qv). The individual variables (or ‘elements’) 

are selected by one or more numbers called ‘subscripts’ 

because they correspond to numbers in algebra which are 

written as subscripts: 
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individual variables from which the array is made up) 

without having to assign to them with a LET command first. 

Some languages allow you to treat the whole array 

as a single value, for instance to assign it to another array. 

Its representation is after all simply a (usually) rather large 
bit string which happens to consist of the values of the 

elements one after the other. It is also quite common to be 

able to group variables of different types together into a 
‘record’ which again can then be treated as a single value, 

the individual variables of which it is made up being the 
‘fields’ of the record. These facilities are, however, not 

available in BASIC. 

ASSIGNMENTS 

It was rather glibly stated above that assignment 

commands take the form 

LET variable = value 

without too much being said about how the value was 

expressed. The simplest kinds of value are variables and 

‘literals’. The current value of a variable is indicated by 
simply writing the name of the variable as in 

LET x = y 

which assigns to variable x a copy of the value in variable y. 
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(In BASIC this will always result in the values of x and y 

being the same bit string, but in other languages it is 

possible for x and y to be of different types — perhaps two 
different ways of representing numbers, in which case the 

computer would translate the value from one representation 
to the other.) 

The value in a variable is thus represented 

indirectly by giving the name of the variable; the same name 

may correspond to different values at different times if the 
variable has been altered in the meantime. 

A literal is a value that is represented directly as 

itself in the text of the program, and is thus always the same 
value whenever the command containing it is obeyed. In 

BASIC there are just two types of literal, number and string, 
as in 

LET x = 42 

LET q$ = "What?" 

Numbers are of course in decimal notation, and can be a 
whole number as in the example above, or with a decimal 

point as in 3.162, or in what is often called ‘scientific 

notation’ in which a letter E is used to mean ‘times ten to the 
power’. Ten to the power nis the number which is written as 
a1 with n noughts after it, and ten to the power —n is written 

as a 1 with nnoughts before it and a decimal point after the 

first nought. Thus 5.4E3 is 5.4 x 1000 or 5400, and 47E-6 is 
47 x 0.000001 or 0.000047. Table 3.1 shows the 

correspondence between powers of ten and the prefixes 
used in metric and SI units, so for instance 1.25 centimetres 
is 1.25E—2 metres and 94 MHz is 94E6 Hz. 
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Table 3.1 SI prefixes 

d deci- E-1 dadeka- £1 
Gecent-= E=2 h hecto- E2 
m milli- E-3 k_kilo- ES 

myria- E4 

@ micro- E-6 M mega- E6 

n nano- E-9 G giga- £9 

popes "E—12 T tera- ie 
f femto- E-15 P peta- E15 

a_atto- E=18 E exa- E18 

Literal strings are always enclosed in quotes. These 
notations are used in almost all computer languages 

So far, then, we have seen how a variable can store 
numbers and strings that we have typed in and copies of 

things that have already been stored in other variables. But 

a computer ought to be able to compute, or derive, new 

values from existing ones, and the notation used for this is 
called an ‘expression’. 

Expressions are built up from arithmetic and similar 

operations; the symbols that show what operations to do are 
called ‘operators’ and the values on which the operations 

are done are called ‘operands’. For instance in the 

expression x+3 the operator is the plus sign and the 

operands are the value of the variable x and the literal value 

3. The operation to be done is adding these two values 

together, and the value of the whole expression is the result 

of this operation, so if, say, the value currently stored in x is 

5 then the value of the expression is 5+3, or 8 

58 



An expression can have more than one operator, 

as in 

Dre Si 25) 

but we have to decide just what the operands are. Is 2+3 an 

operand of the multiply operator, so that the value is 5x5 or 

25, or is 3*5 an operand of the addition operator so that the 

value is 2+15 or 17? 
Some languages do all the operations in the order 

in which they appear, from left to right, so that in the 

example the addition is done first and the result, 5, is an 

operand of the multiplication. One or two do them in order 

from right to left, but most (including BASIC) use the 
concept of ‘priority’. Each operator has a ‘priority’, and the 

operators with the highest priority are done first. Operators 

with equal priority are done from left to right. Multiplication 

has a higher priority than addition, so 3*5 is worked out first 

and the result, 15, is then an operand of the plus sign and 

the value of the expression is 17. 

Just as in ordinary arithmetic or algebra, 

parentheses can be used to group things together into a 

single operand, as in 

(era as ap ee) 

OPERATOR — a symbol or identifier indicating an arithmetic or 
other operation, similar to a function as far as the computer is 

concerned. The parameters are called ‘operands’ and do not 

have to be written in parentheses. 
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where the expression in parentheses is an operand of the 
multiplication and the value of the whole expression is 25. 
Obviously 

3% 15 

is not a valid expression and so cannot be an operand of a 

The priorities are mostly arranged so that an 
expression without any parentheses is evaluated in a way 
that will appear sensible to the programmer. Multiplication 
and division have a higher priority than addition and 
subtraction so that an expression such as 

a®*x+b-c/x 

is evaluated in the same way as the corresponding 
algebraic expression 

ax + b= O/x 

There are a number of other operators, mostly to do with 
comparing values to see whether one is bigger than the 
other etc. and with combining the results of several such 
comparisons, and their priorities are listed near the end of 
the manual that comes with the computer, 

There is never any harm in using parentheses to 
show in what order the operations should be done even 
where they are not strictly needed (except, perhaps, if the 
computer is so full that there is not room for them). 
Therefore, when in doubt (and where someone reading the 
program might be in doubt) parenthesise. 

A few languages (notably POP-2 and Forth) and 
some calculators use ‘reverse Polish notation’ for 
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expressions. Polish notation was invented for use 

particularly in formal logic and put the operator first, as in 

25% 305 or * F023. 5 

meaning respectively ‘add 2 to the result of multiplying 3 by 

5’ and ‘multiply the result of adding 2 to 3 by 5’. Reverse 

Polish puts the operator last as in 

eS Ie Tod or 23 tek 

which is more convenient for computers. Both forward 

Polish and reverse Polish have the advantage that neither 

brackets nor priorities are needed; the order in which 

operators and operands appear defines uniquely in what 

order the operations are to be done and what their operands 
are 

Operators such as plus and multiply are called 

‘binary’ operators because they have two operands. There 

are also ‘unary’ operators that have just one operand; they 

are also called ‘prefix’ operators if they are written before the 

operand and ‘postfix’ operators if they are written after it 

Binary operators (except in Polish notation) are also called 

PREFIX OPERATOR — an operator which precedes its 

operand, such as‘—' or‘NOT’. In ZX BASIC, 'LOG’, ‘COS', etc., 

are prefix operators whereas in most BASICs they are func- 

tions. 

POSTFIX OPERATOR — an operator which follows its operand 

or operands. In reversed Polish notation, all operators are 

postfix operators 
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‘infix’ operators because they are written between their 
operands. 

BASIC does not have any postfix operators; an 
example of a postfix operator in ordinary mathematics is the 

exclamation mark used to indicate ‘factorial’ as in ‘4!’ which 

means ‘factorial 4' or 4x3x2x 1. In a programming 

language that recognised measurements such as length 

and weight as data types in their own right (in which case a 
computer would be able to be more helpful in the example 

involving steel bar earlier in this chapter) postfix operators 

such as ‘ft’ and ‘Ib' might be defined to convert ordinary 

numbers into a measure of length etc. However, no such 

language is available at the present time. 

ZX BASIC has two prefix operators of the ordinary 
mathematical kind, minus and NOT. (The latter is used in 

Boolean arithmetic, described in Chapter 4.) There are also 

many prefix operators which are ‘functions’ such as SIN and 

COS and LOG: in most BASICs these are written with their 
operand in parentheses rather like array elements, as in 

SIN(x) or LOG(COS (x) ) 

but in ZX BASIC they have the status of operators so that the 

rather more natural form 

SIN x or LOG COS x 

can be used. 

Prefix operators need to have a priority just as infix 
operators do, because 

SIN x+y  couldmean_ SIN (xty) 

or (SINx) +y 
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and in fact most of the prefix operators have a priority higher 

than any infix operator so that it is the latter meaning that is 

used. One exception is NOT, which although it has a higher 

priority than the infix Boolean operators comes below the 

other infix operators for a reason that will become clear in 

Chapter 4, and the other is minus, which comes below ‘to 

the power’ so that for instance —x ¢ 2 means —(x f 2) or —x* 

and not (—x) f 2 which would be (—x)x(—x) or +x° 

GETTING THE ANSWERS OUT 

We have now seen how the computer can have 

values specified to it, calculate other values from them, and 

store all the values away in variables, To use the computer 

as a simple calculator we clearly need one more facility 

namely the ability to display the values so that the user can 

read them, and this is done by the PRINT command 

The PRINT command simply consists of the word 

PRINT (to see the results on the TV screen, LPRINT to see 

them on the printer) followed by the values you want printed, 

separated by semicolons. String values are displayed by 

sending to the screen (or printer) the characters they 

contain. Each character can be thought of as representing a 

key being pressed on an electric typewriter; most are 

‘printing characters’ and cause the relevant character to be 

printed and the ‘print position’ (where the next character will 

INFIX OPERATOR -— an operator which has one operand 

before it and another after it. The ‘four functions’ add, subtract, 
multiply, and divide in normal arithmetic are examples of infix 

operators. 
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go if it too is a printing character) to be moved on one place, 

but others include ‘space’ (which moves the print position 

on without printing anything) and, on the Spectrum, codes 
that alter the colour etc. of following printing characters. 

Numbers are converted into strings, and the 

resulting string values are treated as above. (There is also a 
prefix operator STR$ that does the same conversion if you 
need it within a program.) Unlike some BASICs, ZX BASIC 
does not include any ‘space’ characters in the string into 

which a number is converted, so for instance 

4 = Be 
2 LET z = 42 

ele) PRINT z 

LET x 
LET y 

PRINT x;y 

both print the same thing. If a comma is used instead of the 
semicolon, at least one space will be inserted between the 

numbers, in fact sufficient spaces to bring the print position 

to the centre of the line or the beginning of the next line 

(whichever comes first). Often there will be text to insert 

between two numbers anyway, as in 

PRINT n;" eggs at ";c;"p/doz cost "5 

n¥c/12;"p" 

which raises a number of points worthy of remark. Spaces 
are included in the pieces of text to separate the numbers 

from the words, so that if, say, nis 6 and cis 78 the output 

reads 

6 eggs at 78p/doz cost 39p 

and not (for instance) 

6eggs at78p/doz cost39p 
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Although this may be obvious looking at the example 

outputs here, it is surprising how often it is forgotten when a 

PRINT command is being written. The reason ZX BASIC 

does not insert spaces in numbers is that otherwise the 

output might look like the following: 

6 eggs at 78 p/doz cost 39 p 

and inserting spaces in PRINT output is easier than taking 

them out. All the above formats are preferable to 

number of eggs = 6 

cost (p/doz) = 78 

total cost (pence) = 39 

which may have been appropriate in the days of the 

punched card tabulaior and is far too prevalent today. 

Finally, note that (unlike Fortran, for instance) BASIC allows 

calculated values as well as simply values from variables in 

a PRINT command, and the above example is more efficient 

(in space to store the program, in time to obey it, and in 

reducing the amount of ‘clutter’ the human reader has to 

contend with) than 

LET total = n*c/12 

PRINT n;" eggs at ";c;"p/doz cost "stotal;"p" 

which uses two commands instead of one and introduces 

an extra variable. 
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DED ANE DECISIONS 

In Chapter 3 we considered the commands LET 

and PRINT which allow the computer to be used in much the 

same way as a desk calculator. That is, calculations (which 

are typed in in the form of expressions) can be performed 

and the results displayed on the TV screen (with PRINT) or 

on the printer (with LPRINT, which is exactly like PRINT) or 

stored away for later use (with LET). 
Programs consist of sequences of commands; 

there are of course commands other than LET and PRINT 

and LPRINT, many of which are introduced later in this 

section and all of which are described fully in the manual 

that comes with the computer. The program is built up from 

‘lines’; on the ZX81 there is one command to each line, but 

on the Spectrum several commands can be written on one 

line, separated by colons. Each line has a line number 

which shows where it goes in the program; if you type in a 

line without a line number it is obeyed immediately and then 

thrown away, but a line that begins with a number is added 

to the program and is not obeyed at this stage. 

The manual describes the details of how programs 

are typed in. The screen is divided into a top part, which is a 

‘window’ through which the program can be seen, and an 

area at the bottom in which the line currently being typed is 

displayed. Therefore, when the program is changed (by 

inserting or removing or replacing a line) the result of the 

change is immediately apparent, This contrasts with many 

BASICs in which the screen merely shows a record of the 
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lines that have been typed recently, although a ‘listing’ of the 
program can be displayed in response to a command. 

Some computers permit this listing to be altered without 

necessarily doing the corresponding alterations to the 
program. 

A further feature of ZX BASIC is that lines are 

entered into the program only if their syntax is correct, 

whereas other BASICs will accept anything and only check 
it when the program is run. Syntax is concerned with the 

way words etc. are put together to form commands; 

semantics are concerned with the meaning of the command 
and semantic correctness usually depends on the context 

within which the command is obeyed. Thus 

LET x$ = SQR y and _ LET > THEN IF 

are syntactically incorrect and would be rejected, while 

LET x = SQR y 

is syntactically correct and is accepted into the program, 

but may fail at run time if the value of y is negative or if y 

does not exist at all. This still applies even if the semantics 

do not in practice happen to depend on the context, so that 

LET x = SQR -1 

is accepted as syntactically correct even though it will 
always fail at run time. 

Natural languages such as English also have 
syntax and semantics. For instance ‘The fat cat on the mat’ 

is syntactically not a sentence because it does not include a 

verb. ‘The green sky is sleeping furiously’ is syntactically 
correct but semantically does not appear to make sense. 
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The computer does not reject incorrect commands it does 

not understand because it gets a pedantic satisfaction from 

making you do it again properly, but because any sense 

that it might make of the command might not be what you 

intend, for instance 

LET x$ = SQR y 

could have been typed in mistake for 

LET x§ = STRS y Of LET x$ = STRS SQR y 

or LET x = SQR y 

and the computer is not intelligent enough to be able to 

decide that any particular one is more likely. 

In the same way that the text of this book is divided 

into paragraphs, it is helpful if a program can be divided 

visually into separate sections. The REM command (short 

for ‘remark’) is provided for this purpose: it instructs the 

computer to ignore the rest of the line, which can then be 

used for a description of what the following piece of code 

does, for the benefit of the human reader. (On the Spectrum, 

SYNTAX — the structure of a language, which tells you the con- 

text within which to interpret the various words that appear ina 

statement (cf. ‘parse’). For instance, the syntax of ‘The cat ate 

a mouse on the mat’ shows which of the things appearing in 

the sentence (the cat, the mouse, the mat) did the eating and 

which it was that got eaten. 

SEMANTICS — the meanings of individual words and phrases 

in a language, within the framework defined by the syntax, qv. 

The syntax defines that the cat ate the mouse, and the seman- 

tics defines what a cat is, and what a mouse is. 
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note that it ignores the whole of the rest of the line, even 

though if you type a colon as part of the remark it goes into K 
mode as if it was expecting another command.) 

On the Spectrum, a blank line can be inserted into 
the program by typing a line consisting of the line number 

and a space. (There has to be something following the line 

number because otherwise the line with that number (if any) 

will be deleted from the program, and nothing will be 

inserted.) On the ZX81 the nearest thing to a blank line is a 
line containing the keyword REM and nothing else. 

Unfortunately, even by being careful to lay out the 
program in a ‘well-structured’ way we cannot entirely 

overcome BASIC's essentially ‘write-only’ nature (see 

Chapter 1). But if we cannot make it easy for other people to 

understand how a program works we can still make it easy 
for them to use it without needing to see the command lines 

from which it is made up at all. 

Often two quite separate people are concerned 
with a program, the programmer who writes it and the user 

who will run it. The user simply wants his data processed, 

and is concerned only with the data values and not at all 

with the variables in which the programmer chooses to store 

them. Moreover he will not want to type any more than is 

necessary. 
The INPUT command is the means whereby the 

user enters data into the computer. With the LET command, 
the programmer is able to assign a value to any variable at 

any time: the programmer controls the order in which the 
assignments are done, and must be assumed to 

understand the effects of them. With the INPUT command, it 
is still the programmer who decides what variables are to be 
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assigned to and at what stage; it is however the user who 

provides the values to be assigned. 
An INPUT command consists of the keyword 

INPUT and a variable (although on the Spectrum more 

elaborate forms are also possible), and the effect is just the 

same as aLET command except that the value is typed in 

by the user instead of being included as part of the 

command. In most BASICs (and indeed in most other computer 

languages) the input value must be a literal, but in the ZX 

BASIC it can be anything that could appear to the right of 

the equals sign in a LET command. This is useful for typing 

in values such as PI/2 and in circumstances where the user 

knows the names of some of the variables available at that 

point in the program, but it also permits cheating in 

programs that give practice in arithmetic by asking the 

answers to sums. (This problem can be avoided on the 

Spectrum by using INPUT LINE, checking that the line 

contains nothing but digits and then using VAL to convert it 

to a number; ordinary string input will not do because the 

user can rub out the quotes and use STR$. Of course in 

many circumstances where this kind of program is used the 

pupil will have nothing to gain by such cheating anyway.) 

When the INPUT command is obeyed, the user is 

presented with the ‘L‘ cursor at the bottom left of the screen, 

enclosed in quotes if a string is required or on its own ifa 

number is required. It is easy for the programmer, who is 

familiar with the way the program works, to forget that the 

user will often not have any idea what the computer is 

asking and hence not know what to reply. Itis therefore 

important to get into the habit of always putting a message 

on the screen indicating what value is being requested. On 
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the Spectrum this can be done as part of the INPUT 

command, but on the ZX81 it must be done by preceding 
the INPUT command with a PRINT command. It is important 

to word the message in terms that the user will understand. 

Suppose a variable r holds the percentage rate of interest 
payable on an investment: a suitable message when 
INPUTting ris ‘Type in the percentage rate of interest per 

annum’ or ‘Interest rate (percent per annum)?’ and definitely 
not ‘Value of r?’ even though this is how the programmer 
thinks of it. 

DECISIONS 

When the computer is being used as a calculator, 
commands are typed in one by one and each command is 
obeyed before the next one is typed. There is no clear 

distinction between the roles of the programmer, who 
decides what commands are to be obeyed by the 

computer, and the user, who supplies the data for those 

commands. In particular, results from earlier commands, or 

data not directly used in the calculations, may influence the 

choice of which commands are given subsequently. For 

instance, income tax might be deducted at different rates 

depending on the tota! amount of income; interest on 
different kinds of bank account may be calculated in 
different ways. 

Where the action to be taken by the computer 

depends on things that will not be known until the program 

is run, the programmer has to allow for all the possible 

circumstances. (Programs often fail because a combination 

of circumstances arises that the programmer did not think 
of.) The IF command is used to switch the computer to one 
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course of action or another depending on a value which it 
calculates. This is only useful if the calculated value is not 
known when the program is written; one example of this is a 

value which is input by the user when the program is run (or 

is calculated from one that is). Another very common 

example occurs in a ‘loop’, which is a sequence of 

commands that is obeyed repeatedly until some condition is 
fulfilled: at the end of the sequence the computer tests to 

see whether it should repeat it or go on to the next part of the 
program. This is a little different from the case where the 

programmer specifies alternative courses of action, one or 
the other of which will be taken depending on the 

circumstances, because both courses are taken when the 
program is run, but at different times. 

The IF command takes the form 

IF condition THEN line 

in which ‘line’ represents anything that could be a command 

line (though without a line number, of course). If the 

condition is satisfied, the line following THEN is obeyed, 

otherwise it is ignored, just as a line starting with REM is 
ignored. For instance 

IF x=y THEN LET x=5 

tests if the values of x and y are equal: if so, 5 is assigned to 

X but if not the LET command is ignored and x retains its 
former value. On the Spectrum, where several commands 

can be put on one line, note that the whole line is ignored if 

the condition is not satisfied; most of the BASICs that allow 

several commands on aline do this, but there are a few 
which only ignore the first command after the THEN, so that 
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IF x=y THEN LET x=5: LET y=4 

would assign 4 to y whether or not x and y were equal. This 
is rather like the priority of operators in expressions — on the 

Spectrum the colon has a higher priority than THEN, but in 

some BASICs it has a lower priority. 

Some BASICs, and many other languages, allow 
an ELSE part which is obeyed only if the condition is not 

satisfied, as in 

IF x>0 THEN LET y=x ELSE LET y=-x 

but ZX BASIC does not. 

The condition usually takes the form 

value comparison value 

in which the two values are of the same type (numbers or 

strings) and the comparison operator is one of 

o > ic a= SS o 

meaning respectively ‘equal to’, ‘greater than’, ‘less than’, 

‘greater than or equal to’, ‘less than or equal to’, and ‘greater 

than or less than.’ The last three may also be thought of as 

‘not less than’, ‘not greater than’, and ‘not equal to’. 
It is convenient to think of the comparison 

operators as yielding a ‘Boolean’ value — TRUE or FALSE — 

the former if the condition is satisfied, the latter if it is not. 

(More is said about Boolean arithmetic later in this chapter.) 

Thus x=5 is TRUE if x holds the value 5 and FALSE if x holds 
any other value; x>3 is TRUE if x holds a value which is 
greater than 3 (such as 4 or 597.6 or 3.000001), and FALSE 

if it holds the value 3 or any value less than 3 (such as 0 or 
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2.9 or —47), If the condition is TRUE the part after THEN is 

obeyed; if the condition is FALSE it is ignored 

The comparison operators can appear in 

expressions in the same way as ordinary arithmetic 

operators; the comparison operators have a lower priority so 

that expressions such as 

x*y > m5 

have the obvious meaning. 
In some languages a separate data type is used 

for Boolean values, but in ZX BASIC they are stored as 

numbers, with zero representing FALSE and any other value 

representing TRUE. Any Boolean value generated by the 

computer uses 1 to represent TRUE. 

Boolean values can be stored in numeric variables 

just like any other numbers, so we can write 

LET smaller = x<y 

LET p = x=3 

LET p=x=3 

to assign 1 to the variable smaller if the value in x is less 

than that in y and 0 otherwise, and to assign 1 to p if x holds 

the value 3 and 0 otherwise. The third line of course means 

the same as the second as far as the computer is 

BOOLEAN — Boolean arithmetic uses the two ‘truth values’ true 

and false instead of the numbers used in the algebra with 

which most people are more familiar. It is thus helpful for 

describing calculations on values th an be stored ina 

single bit. 
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concerned, but a person reading it is more likely to be 
misled into thinking that it sets both p and x to the value 3. 

Using these variables we can write commands like 

IF smaller THEN PRINT x;" is smaller" 

IF p THEN LET x = y+5 

and in fact between the IF and the THEN we can use 
anything that has a numeric value — if the value is zero the 

part to the right of the THEN is ignored, if the value is 

nonzero it is obeyed. 
In ordinary mathematics, we are used to writing 

things like 

1<x<5 

to mean x is greater than or equal to 1 and less than or 

equal to 5, i.e. xis in the range 1 to 5 inclusive. In ZX BASIC 

we can write 

Eee een 

and we might expect it to mean the same, but on closer 

consideration this turns out not to be so. The two operators 
are of the same priority, so are done from left to right. 

Therfore the value of ‘1 <=x’ is worked out as either TRUE 
(1) or FALSE (0), which then goes on to be the left operand 

of the second ‘<=’ operator. The expression thus reduces 

to either ‘0 <=5’ or ‘1 <= 5’, and in either case yields 

TRUE! So 

IF 1 <= x <= 5 THEN 

PRINT "Value is in range" 
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always prints the message ‘Value is in range’ whether x is in 

the range 1 to 5 or not. 
A final caveat on the comparison of numbers 

concerns values that have been derived from calculations in 
which some of the numbers used were not stored exactly in 

the computer. The only numbers that are stored exactly are 
whole numbers less than about 4 000 000 000 and numbers 

(within the range the arithmetic allows) that are the result of 

multiplying or dividing these by powers of two, viz. by 2, 4, 

8, 16, 32, 64, etc. Furthermore, literal numbers written with a 

decimal point or an E are always liable to be inaccurate 

because of the method the BASIC uses to convert them 
from the decimal form in which they are typed to the binary 

form used inside the computer. 
The comparison operators work by subtracting one 

operand from the other and seeing whether the result is zero 

or positive or negative. The details of how this is done, in 

particular the ‘rounding’ of operands and results to 32 bits or 
about 91/2 decimal digits, have some very curious effects. 

For instance the literal 0.25 is converted into binary by 
working out (2+5x0.1)x0.1 but the constant 0.1 cannot be 

represented exactly in binary and the final result is about 

5107"! less than one-quarter. The division sum V is 
however worked out exactly. It happens that when one of 

these numbers is subtracted from the other the result is 
rounded up by the same amount of about 5x 107", so that 

VYa—0.25 yields about 10~'° while 0.25— V4 yields O. It 
follows that 0.25= 1/4 is TRUE but 14=0.25 is FALSE! 

In any programming language it is always wise to 

allow for the possibility that numbers (other than whole 
numbers below a certain size) may be inexact, and for 
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instance to replace 

IF x=y THEN ... 

by something like 

IF ABS (x-y) < 1E-8 THEN ... 

if x and y are known to be between about 0.5 and 10, or 

IF ABS (x-y) < 1E-8 * ABS x THEN ... 

if we have little idea what size they will be. 

As well as using Boolean values in IF commands 
we can use them in Boolean arithmetic, which was invented 

by the French mathematician George Boole. Remember that 
we have just two values, zero representing FALSE and any 
value greater than zero representing TRUE; we will assume 

for the moment that none of the values we encounter will be 
negative. 

If x and y are two such values then xxy is zero if 

either x or y is zero; if both are nonzero then xxy is nonzero 

also. Similarly x+y is zero if x and y are both zero but if 
either is greater than zero then (because neither of them is 

negative) the sum is greater than zero also. 

in Boolean arithmetic the multiply operator is also 

called AND, so that x AND y is TRUE only if x and y are both 

TRUE; the addition operator is also called OR because x OR 
yis TRUE if xis TRUE or yis TRUE, or both are. 

Although Boolean arithmetic would work 
satisfactorily in most cases using the ordinary arithmetic 

add and multiply operators, as in 

IF (y>l) + smaller * (p<3) THEN... , 
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the operators AND and OR as in 

IF y>1 OR smaller AND p<3 THEN ... 

are also provided. These have the correct effect even if their 

operands are negative or so large that adding or multiplying 
would result in a value too large to store in the computer. 

The third Boolean operator that is available in ZX 
BASIC is NOT, which is a prefix operator with only one 

operand. NOT x has the value 1 if xis 0, and 0 otherwise, so 

NOT xis TRUE if, and only if, x is not TRUE. 

The priorities of the Boolean operators are chosen 
as follows. AND has a higher priority than OR in the same 

way that multiply has a higher priority than add, so that the 
operations are grouped in the same way in each of the two 
examples above. NOT, being a prefix operator, has a higher 
priority than either of these, but all the Boolean operators 

have a lower priority than the comparison operators so that 
the parentheses can be omitted in the second example 
above. 

A somewhat devious use of AND allows the 

equivalent of the ‘conditional expressions’ that are provided 

in some other languages. The value of x AND y is in fact the 

same as x if yis TRUE, and zero if y is FALSE. Thus for 

instance the value of 

(atb AND q) + (b*c AND NOT q) 

is (a+b) +O if gis TRUE, and 0+(b*c) if q is false, so that 

the whole expression has the effect of 

IF q THEN a+b ELSE b*c 

79 



The left operand of AND (though not of OR) may also be a 

string, in which case if the right operand is FALSE the value 

of the expression is the empty string (a string with no 
characters in it). The ‘+’ operator between two strings 

means ‘concatenate’, and concatenating the empty string 

(like adding zero to anumber) has no effect. Therefore, 
exactly the same construction may be used as with 

numbers; for example 

(a$ AND x=y) + (bS AND x<>y) 

has the effect of 

IF x=y THEN a$ ELSE b$ 

A slightly more elaborate example is 

("greater" AND x>y) + ("less" 

AND x<y) + ("equal AND x=y) 

Unlike the conditional expressions in most languages, it is 

not necessary to have the ELSE part, so we can write 

PRINT x;"" is ";"not " AND x>y;"equal to "3y 

and 

PRINT x;" inch"; "es" AND x<>1 

in ZX BASIC. 
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STTIRIINIGIS} 

In Chapter 3 we saw briefly that an ‘array’ is a 

group of variables all of the same type, collected together 
under one name. The invidual variables are called 

‘elements’ of the array and are selected by a number called 

an ‘index’ or ‘subscript’; it is called a subscript because in 

ordinary mathematical notation a subscript would be used, 
as in v3 or bp, but on the computers that run BASIC we 

cannot write subscripts in this form so it is putin 

parentheses instead, as in v(3) or b(n). 

Each array is said to have a particular number of 

‘dimensions’. For a one-dimensional array we imagine all the 
elements being laid out along a line, for a two-dimensional 

array they form a rectangle, for a three-dimensional array 

they form a cuboid. For four or more dimensions we need to 

go into hyperspace, but the idea is the same. The 

‘dimensions’ of a three-dimensional array, for example, are 

the length and width and height of the cuboid, i.e. the 
number of elements in each direction. 

The DIM command is used to create (i.e. reserve 
space for) an array, and specifies its dimensions. Thus 

DIM v(10) 

sets up a one-dimensional array v with elements v(1), 

v(2),... V(10); and 

DIM c(4,3,2) 
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sets up a three-dimensional array with elements c(1,1,1), 

Clk) oul, |) etle,2), CUluaal) pela,2),C(2,1il)}.. < .; 
c(4,3,2). Elements are always numbered from 1 upwards in 
each dimension. 

!f the name of the array ends in a dollar sign, the 

elements of the array are characters instead of numbers, so 

DIM c$(4,3,2) 

sets up a three-dimensional array of characters. It can also, 

however, be used as a 4X3 (and hence two-dimensional) 

array of strings, each string being exactly two characters 

long (because in this case the last dimension of the 

character array is 2). 

The maximum size of an array depends on the 

amount of storage available in the computer. An array of 

numbers takes four bytes for the name etc., plus two for 

each dimension and five for each element; an array of 

characters is similar except that only one byte is taken for 
each element. For example: 

DIMa(10) 44+2x1+5x10= 56bytes 
DIM a$(10) 44+2x14+1x10=  16bytes 
DIM a$(6, 100) 4+2x2+1x(6x100)= 608bytes 
DIM a(3,3,3,6) 4+2x4+5x(3x3x3x6)= 822bytes 
DIM aS(6,6,6,6,6) 

4+2x5+1x(6x6x6x6x6)= 7790bytes 
DIM a(9,9,9,9) 4+2x4+5x(9x9x9xQ) = 32817 bytes 

If the other things competing for space (the 
program, other variables, display file, etc.) are all quite 
small, then the approximate amount of space available is as 

shown in Table 5.1. As an indication of what can be stored 
in it, the table also shows the dimensions of a two- 

84 



dimensional numeric array of approximately this size. 

Table 5.1. Storage space 

Computer Total RAM Bytes 2-Darray 
available 

ZX81 (European) 1K 8g00 (12, 13) 
TS1000 2K 1800 (12,30) 

ZX81 + 16K RAM pack 16K 15400 (30, 100) 

Spectrum 16K 8700 (30,58) 
Spectrum 48K 41500 (83, 100) 

As an example of how an array might be used in a 

program, suppose you want to store the pattern of colours 

on a Rubik's cube. 

DIM c(6,3,3) 

creates an array c in which you can store the 3x3 pattern of 

colours on each of the six faces: c(1,1,1) might be at the top 
left of the front face, c(1,1,3) at the top right, c(1,3,2) centre 

bottom, and so on. How you choose the numbers and 
orientations of the other faces may well make a substantial 

difference to how easy it is to write routines to do the various 

rotations that are possible with the real cube: in the worst 

case you would have to write a separate piece of code to 

deal with each face. 
It is sometimes convenient to use an array as a 

‘look-up table’, where the translation from one value to 
another cannot be calculated easily using the normal 

arithmetic operations and functions. For instance, suppose 

you decide to number the cube as follows: 
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(3,2,3) (3,3,3) 3,1,3) 
(3,1,2) (3,2,2) (3,3.2) 
Gian) left side (3,1,1) (3,2,1) (3,3,1) right side 

(231) (252,9)(2 A), 1), 0,2) 1,3) (5,33) (6,3,2)(5;3; 1) 
Me aoseteT (1,2,1) (1,2,2) (1,2,3) (5,2,3) (5,2,2) (5,2,1) 

(2,3,3) (2,2,3) (2,1,3) (1,3,1) (1,3,2) (1,3,3) (5,1,3) (5,1,2) (5,1,1) 

(4,3,3) (4,3,2) (4,3,1) 
bottom (4,2,3) (4,2,2) (4,2,1) 

(4,1,3) (4,1,2) (4,1,1) 

(6,3,1) (6,2,1) (6,1,1) 
back (6,3,2) (6,2,2) (6,1,2) 

(6,3,3) (6,2,3) (6,1,3) 

Then if you look at any face f with (f,1,1) in the top lefthand 

corner the colours on that and the adjacent faces are stored 
in the following elements of c: 

(61,1)°(62;1)- (63,1) 

Chast pat hla) 1,2) oh) 1353) 

(2) han =(he2) Geis) (Ge3 
3) (6S) 8.2) 6333)" G13) 

(b,3,3) (b,3,2) (6,3,1) 

The values.of ¢, /, 6, and r are different for each f. For 

instance if f=1, indicating that you are looking at the front 
face, then t=3, [=2, b=4, and r=5. If f=2, so you are 

looking at the left side, then t=1, /=3, b=6, and r=4. Note 

that you had to look at it sideways to get the (2,1,1) element 

in the top lefthand corner. If we store the values of t, |, b, and 
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rfor each fin four 6-element arrays, we can find them easily 

when required for operations such as rotating one face, and 

all the faces can be dealt with by the same piece of code. 
On the Spectrum we can write 

10 DIM t(6): DIM '1(6): DIM b(6): DIM r(6) 
20 FOR i=1 TO 6 
30 READ t(i), 1(i), b(i), r(i) 
40 NEXT i 
SQ DATATI 254555 la Oat ge esl NON Oa hss 

Ae Gin imag ens 

but on the ZX81 the DIM commands have to be on separate 
lines and READ and DATA are not available. (Chapter 22 of 

the ZX81 manual shows a way round this.) 

Once these arrays are set up, we know that the 

colour above (f, 1 /) is c(¢(A),/,1), for instance, and that to the 

right of (f,/,3) is c(r(f), 4—i,3). 

YOU DO NOT ALWAYS NEED ARRAYS 

There are, however, situations in which an array is 

not the right way to deal with repetitive data. 

Suppose we have to find the mean of a list of 

numbers x; to X,, which is the result of adding all the 

numbers together and then dividing by n. Acommon 

approach to this is to divide the program up as 

read in the numbers 

calculate the mean 

write out the answer 

and the program might go something like 
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10 PRINT “How many numbers? " 

20 INPUT n 

30 DIM x(n) 
40 PRINT "Now type in the numbers" 

50 FOR i=l TO n 

60 INPUT x(i) 

70 NEXT n 

100 LET sum = 0 
110 FOR i=l TOn 

120 LET sum = sumtx(i) 

130 NEXT i 

140 PRINT "Mean is ";sum/n 

This program has two FOR-loops in it, but actually there is 

no reason why we cannot amalgamate them and replace 

lines 50 to 130 by 

50 LET sum=0 
60 FOR i=l TO n 

70 INPUT x(i) 

120. LET sum = sumtx(i) 
130 NEXT i 

But now look at what is happening: the program reads the 

first number into x(1) and then adds it on to sum, it never 

uses x(1) again but goes on to read the next number into 

x(2), and so on. Each time round it uses a new element of x 

which it then never uses again, so it could instead have just 

one variable and use it over and over again, as in 

50 LET sum=0 
60 FOR i=l TOn 

70 INPUT x 
120 LET sum = sumtx 

130 NEXT i 
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Now we do not need line 30 either; if nis at all large, a great 

dea! of space has been saved. This version of the program 
does a small amount of calculation between reading one 

number and asking for the next, but the time it takes to do 

this is not likely to be noticeable. The original version did 

much of its calculation after the last number has been input, 

and if nis large there may well be a noticeable pause 

between typing in the last number and seeing the answer on 

the screen. 
Sometimes a bit of algebraic manipulation of the 

original problem can make the programming more efficient. 
If we also want to work out the standard deviation, s, using 

the formula 

s? = sumsqdev | (n—1) 

where sumsaqdev is the sum from 1 ton of (x,—mean)?, then 

we Can only begin to calculate it after we have worked out 

the mean, and we therefore need to store all the numbers (in 
the array x) in order to work out sumsqdev at the end of the 

program. But note that 

(x,—mean)? = x2 — 2 X x, X mean + mean? 

so the formula can be rewritten as 

s° = (sumsq — 2 x sum X mean + n X mean*)/(n—1) 

where sumsgq is the sum of x4, which can of course be 

calculated as the numbers are being read in. Replacing 

mean by sum/n we get 

s* = (sumsq — 2 x sum? /n +n x sum? /n?)/(n—1) 
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which reduces to 

s* = (sumsq — sum?/n) / (n—1) 

Here is the program modified to work out the 

standard deviation as well. It is also modified to avoid 

asking the user how many numbers there will be, and to 

echo the numbers on the screen so that the user can always 

see the last 20 or so numbers he typed. It is written for the 

Spectrum; the main modification required for the ZX81 is to 

insert a SCROLL command in front of each PRINT (except 

for those before line 100) and to change ENTER to 

NEWLINE in lines 40 and 50. 

10 PRINT AT 10,0; "Mean and standard deviation" 
20 PRINT 

30 PRINT "Type each number terminated" 
40 PRINT "by ENTER." 
50 PRINT "Then type ENTER again." 
60 PRINT 

70 LET sum=0 
80 LET sumsq=0 

90 LET n=0 

100 INPUT x$ 

110 IF x$=""'' THEN GOTO 190 

120 LET x=VAL x$ 

130 LET n=ntl 

P40 -PRINE nse “3z 

150 LET sum=sum+x 
160 LET sumsq=sumsqtx*x 
170 GOTO 100 

180 REM 

181 REM here to print mean and s.d. 

182 REM 
190 IF n=0 THEN GOTO 280 
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200 PRINT 
210 PRINT " Mean "; sum/n 
220 IF n=1 THEN GOTO 280 

230 LET v = (sumsq - (sum*sum/n)) / (n-1) 
240 PRINT " Variance "; v 
250 PRINT "Standard devn "; SQR v 

260 REM now check this is really the end 

270 PRINT 

280 PRINT "Any more numbers? (reply Y or N)" 

290 INPUT x$ 
300 IF x$="Y" OR x$="y'' THEN GOTO 100 

310 IF x$<>"N'" AND x$<>"n"' THEN GOTO 280 

PROCESSING TEXT 

The operations that are typically done on arrays of 
numbers are fairly familiar to most people: ordinary 

arithmetic on individual elements, and totalling rows and 

columns. The computer does these operations in very much 

the same way that people do them, but rather faster. 

Operations on character arrays and strings are 

unfamiliar because the computer's view of a character 

string is quite different from a person's, The character string 
is converted into a string of numbers on which simple 
arithmetic operations are then done; this is a rather 

laborious method, but it is the ony one available, and the 

computer's speed at doing the arithmetic that is involved 

makes it much less laborious than it would be for a person. 
The numbers (or ‘codes’) into which the various 

characters are translated are listed in Appendix A of the 

2X81 and Spectrum manuals. Because of the way the TV 

picture is made, the codes used in the ‘display file’ on the 
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ZX81 had to be the numbers 0 to 63 for ordinary characters 
and 118 for ‘newline’. (The display file is the representation, 

stored in the memory, of the picture on the TV screen; on the 

ZX81 this consists of a list of character codes with a 
‘newline’ code to mark the end of each line.) The codes 
were chosen in a way that seemed convenient; for instance 

the digit n has code 28+n and the nth letter of the alphabet 

has code 37+n. Again because of the way the hardware 

makes the TV picture, adding 128 to the code fora 

character produces that same character but in white-on- 

black instead of black-on-white. 

The same codes that are used in the display file 

are used in the other places that characters are stored, for 

instance in the text of the program and in variables, and 
some of the codes that cannot be used in the display file are 

used to represent ‘tokens’ such as the keywords LET and 
PRINT and THEN; in particular, adding 192 to the code for a 

letter gives the code of the keyword that shares a key with 
that letter on the keyboard (for instance letter G is code 44, 

44+192=236, and code 236 is GOTO which is on the same 

key as G). 
The Spectrum display file does not store character 

codes directly, and therefore does not restrict the choice of 

character codes. However, the Spectrum was always 
intended to support the serial interface add-on which allows 

data to be exchanged with other data processing 
equipment, and the Spectrum character codes have 

therefore been chosen to be, as far as possible, compatible 

with devices using various international standard codes: 
ASCII and ISO-7 and the newer codes for videotex (also 

called viewdata), teletex (a kind of super-telex for word 
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processors), and teletext (which is broadcast along with 
television pictures). 

We have already seen how a string can be stored, 
printed out, and joined onto another string, but BASIC also 

allows you to dissect a string and look at the individual 
characters or groups of characters it contains. ZX BASIC’s 

method for doing this is called ‘slicing’ in the manual; this is 
the name used for a similar facility for dissecting arrays in 
Algol 68, but it can be used on strings as well as on 
character arrays. Like the functions LEFT$, MID$, and 
RIGHTS in other BASICs, it lets you select a part of the string 
starting in a specified place and of a specified length. 

However, a part of the string is specified purely in terms of 

the number of characters from the start of the string: if the 
string contains a sentence in English, say, then to select the 

second word you must first find where it is. The following 
piece of program assigns to w$ the nth word of the 

sentence in s$: 

100 LET k=0 
110 FOR i=l TO n 
120 LET k=k+1 
130 IF s$(k)=" " THEN GOTO 120 
140 LET j=k 
150 LET k=k+1 
160 IF s$(k)<>" " THEN GOTO 150 
170 NEXT n 
180 LET w$ = s$(4j TO k-1) 

Lines 120 and 130 move k on to the start of the word, which 
we remember as /, then lines 150 to 160 move it to the 

character after the end of the word. Starting from there, we 

search for the next word, and repeat the process until the 
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nth word is found. If we run off the end of the string, the 

program will stop with error code 3. 
The operator LEN gives the length of a string, so 

line 160 above could have read 

160 IF LEN s$>=k THEN IF s$(k)<>" " THEN GOTO 150 

to prevent error 3 happening on the last word. The operator 

VAL interprets the contents of a string as a numeric 

expression and yields its value, and on the Spectrum VAL$ 

is also available, which does the same job for an expression 

that yields a string, but there is no facility to obey a whole 

command contained in a string. 
(Note, by the way, that 

160 IF LEN s$>=k AND s$(k)<>" " THEN GOTO 150 

would still give error 3 at the end of the string because s$(k) 

would still get evaluated whatever the value of the left 

operand of AND.) 
As was indicated in Chapter 2, examining the 

individual characters in a string is a long way from the kind 

of processing people do when looking at a piece of text; it is 
not possible to stand back and look at the whole string at 

one go. The piece of program above dissects a string into 
individual words, but using a rather simple-minded 
definition of ‘word’: the kind of thing a user might type in real 

life is 

"Fred,Joe and Jim." 
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so we need to extend the program to recognise “Fred” and 
“Joe” as two words (the program as written reckons the first 
word is “Fred,Joe”) and to separate “Jim” from the full stop. 
On the Spectrum, we also have to cope with the fact that 

letters can be in upper or lower case: “THE” and “The” and 

“the” must be recognised as the same word even though 

they are different strings. If the program is to make any 

attempt to interpret a whole sentence written in English, it 

needs to have some kind of ‘dictionary’ to tell it the 

meanings of all the words the user might possibly type 

Because of the difficulty of writing a program that 
can interpret English sentences correctly, it is often better to 

present choices to the user in the form of a ‘menu’ rather 

than ask a question and attempt to interpret the answer. For 
instance, the program 

10 PRINT "Where is the Vatican?" 
20 INPUT c$ 
30 IF c$ <> "Rome" THEN PRINT "Wrong!" 

will print ‘Wrong!’ if the user types any of the following: 

"ROME" "Rome." " Rome’ "It is in Rome." 

although none of them could be considered to be a wrong 
answer. The program could be modified to make some 

attempt at picking out the word ‘Rome’ from these answers, 

perhaps as follows (lines 30 to 50 are not needed on the 
ZX81 which does not have lower case letters): 

10 PRINT "Where is the Vatican?" 
20 INPUT c$ 
30 FOR i=l TO LEN cs: 

REM convert to upper case 
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IF c$(i) >= "a" AND c$(i) <= "z'"' THEN LET 

ce$(i) = CHRS (CODE c$(i) - CODE "a" + CODE "A') 

NEXT i - 

FOR i=l TO LEN c$ - 3 

IF c§(i TO i+3) = "ROME" THEN GOTO 100 

NEXT i 

PRINT "Wrong!" 

This won't print ‘Wrong!’ if the reply contains the letters 

R,O.M,E together anywhere in it, which is somewhat over- 

generous as it means that ‘Cromer’ would be taken to be a 

correct answer. We can allow for this by adding, perhaps, 
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100 

110 

120 

GOTO 130 
REM check "ROME" isn’t part of a longer 

word 
IF i>l THEN IF c$(i-1) >= "A" AND 

e$(i-1) <= '"Z'' THEN GOTO 80 

IF i < LEN c$ — 3 THEN IF c$(it4) >= "A" 

AND c$(it+4) <= "Z'' THEN GOTO 80 

but this will still not trap 

"50 miles north of Rome." 

as a wrong answer. To be sure there is no confusion, the 

‘menu’ approach is preferable, as in 
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PRINT "Where is the Vatican?" 
PRINT 

PRINT "1. Florence" 
PRINT "2. Monte Carlo" 

PRINT "3. Norwich" 



60 PRINT "4. Rome" 

70 PRINT "5. Naples" 

80 PRINT 
90 PRINT "Type the number corresponding" 

100 PRINT "to the correct answer." 
110 INPUT city 
120 IF city <> INT city THEN GOTO 80 : 

REM not a whole number 

130 IF city < 0.9 OR city > 5.1 THEN GOTO 80 : 

REM not in range 1 to 5 

140 IF city <> 4 THEN PRINT "Wrong!" 

Restricting the user's choice is perhaps undesirable in this 
kind of quiz game (because if he just guesses he has one 

chance in five of being right), but in more typical situations 
where the program is asking the user what he wants it to do 

next it is usually helpful. 
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6] 

EROERAMS en ONEERS 

So long as you are using your personal computer 

as a glorified calculator, or to produce pictures on the TV 

screen, or even for it to play simple games with you, it does 

not matter too much how your programs are written 

provided they fit in the amount of memory you have 

available and produce the required results. But if you are 
writing a large or complicated program, or one that other 

people will use, or one that someone else will later need to 

modify, or one in which it is important to be reasonably sure 

that the results correspond correctly to the input data, then 

there are a number of guidelines that should be followed. 

Actually, if you are writing ‘serious’ programs you 
probably should not be using BASIC at all. Several 
languages are available on cassette for the ZX computers. If 

you buy one, make sure you know whether it implements the 

whole language or only parts of it, also check how much of 
the computer's memory it takes up. Preferably read the 
reviews in the microcomputer magazines. Remember that 

each time you switch off the computer you lose what is in the 
memory, so you will have to read the cassette in afresh each 

time you want to use it: only BASIC js in the machine when 

you switch on. 

As the name, Beginner's All-purpose Symbolic 

Instruction Code, implies, BASIC is intended as a way of 

introducing people to computers and programming, in the 

expectation that they will later graduate to programming in 

other languages. But, as many people in the software 
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industry have noted (not least the members of the Alvey 

committee which reported recently to the UK government on 
certain aspects of computing in the 1980s), BASIC can get 

you into some very bad habits 

STRUCTURED PROGRAMMING 

The larger a program is, the more difficult it 

becomes to keep track of the effect of any particular 

commands on the rest of the program, or the state of play as 

regards things that other parts of the program should be 
updating. Questions arise such as: Is it all right to use 

variable j, or is there some other part of the program that has 

left something stored there which it is expecting to be able 

to retrieve later on? Has nextvalue (which is supposed to 

hold the value that the program will look at next) been 

updated yet, or are there circumstances in which it still 

holds a value that has already been dealt with? Can we print 

a message here without obliterating, or otherwise interfering 
with, something written by another part of the program? 

Techniques for limiting these kinds of problem 

have two main components: 

1. Break the program up into pieces of manageable size. 

It is not possible to be very precise as to how big is 
‘manageable’: up to perhaps 40 or 50 commands in 

average circumstances, but a straightforward process 
which happens to require a lot of commands can take more, 

a complicated one should be limited to rather fewer. 

2. Use comments to show what each piece does, what 

resources it uses, etc. 
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There are usually things that are true throughout the 

program, and can be documented in a comment at the top 

of the program (if that does not take up too much memory) 

or outside the computer altogether (if you can be sure it will 

not get lost); for example in a program to play a board game 

such as chess there will probably be an array which holds 

the current position and a variable which shows whose 
move it is: the documentation should define how the 

information is encoded in them. Then when writing the part 
of the program that displays the board on the screen you 

need refer only to this documentation; it is not necessary to 
look at the part of the program that sets up the initial position 

nor at the part that updates the position when a move is 
made. Similarly, the comments on individual parts of the 
program can assume that you already know the information 

that is in this ‘global’ documentation, and need not repeat it. 

Incidentally, the design of just how the information 

is to be represented in the memory (called the ‘data 

structure’) is the most important part of most non-trivial 

programs. Once this has been done, the program usually 
falls automatically into a number of sections each of which is 

concerned with updating a part of the data structure to take 

account of a change in the thing represented, such as 

making a move in a chess game or adding anew 
transaction to a bank balance. If the data structure has been 
well designed, these operations should be fairly easy. When 

designing the data structure you should always try to use a 
representation that will be convenient for the program. In 
particular consider how you can avoid making the number 

of different operations (and hence the number of different 

sections in the program) unnecessarily large. In the chess 
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game, for instance, do you just need one routine for ‘make a 
move’, or do you need separate routines for ‘white’s move’ 

and ‘black’s move’? If you favour having just one, however, it 
is going to be significantly more complicated than either of 

the separate ones? If so, it might be better to use two after 

all. 

During the 1970s the term ‘structured 

programming’ became current. This is a technique whereby 

you describe the task your program has to do in terms of 
‘lower-level’ tasks; the description should be of manageable 

size, i.e. less than a page. For the chess game this might be 

1. set up initial position, set ‘white to move’, ask whether 

computer is to play black or white or both or (if two people 
are using it as a kind of electronic chess board) neither; 

2. display board on TV screen, indicate whose move it is; 

3. if the player cannot move, indicate ‘checkmate’ or 

‘stalemate’ and go to 7; 

4, If it is the computer's move, work out what the move 
should be; if the user's move, ask for the move to be input; 

5. make the move, or if it is ‘resigns’ go to 7; 

6. swap from ‘white to move’ to ‘black to move’ or vice versa, 
and go to 2; 

7. show (on the screen) which player has lost, and ask 

whether another game is to be played; if so go to 1. 

Each of these seven tasks is in turn described in terms of 
lower-level tasks, and so on until all the tasks have been 

defined as sequences of commands in BASIC (or whatever 

programming language is being used — but for the purpose 

of this book we will assume it is BASIC). 

A feature of BASIC which very few other languages 
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share is that each line of the program has a number, and 

you may as well make use of this to assist understanding of 
the program by using line numbers from 1000 up for step 1, 
2000 up for step 2, and so on. If step 2 consists of six lower- 

level steps, these should start at 2100, 2200, . . ., 2600; line 

2000 should contain a REMark indicating what step 2 does. 

Some structured-programming purists would insist 
on a more Girect manifestation of the top level in the 

program, as in 

10 GOSUB 1000 

20 GOSUB 2000 
30 GOSUB 3000: IF done THEN GOTO 70 
40 GOSUB 4000 

50 GOSUB 5000: IF done THEN GOTO 70 
60 GOSUB 6000 
62 GOTO 20 

70 GOSUB 7000: IF another THEN GOTO 10 
72 GOTO 9999 

They would also insist on eliminating all GOTOs from the 

program. In the ‘block-structured’ languages, particularly 

the newer ones, such as Algol 68, Pascal, BCPL, and C, 
facilities are provided which can replace most uses of 
GOTO: in the example above, lines 20 to 65 would be 

bracketed together as a ‘block’ in some way (which 

depends on the language), the GOTOs on lines 30 and 50 

would take the form of ‘exit fram the block’ commands and 

that on line 62 would be shown as ‘repeat the block’. Lines 

10 to 70 would be another block (with the first block ‘nested’ 
inside it), with the IF... GOTO replaced by a command of 
the form ‘repeat while (another)'. We can do some of these 
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things in BASIC, as in 

10 FOR a = O TO O STEP -l 

15 GOSUB 1000 

20 GOSUB 110 

70 GOSUB 7000 

72 LET a = another: REM go round again if TRUE 

75 NEXT a 
78 STOP 

110 FOR b = O TO | STEP 0 

120 GOSUB 2000 
130 GOSUB 3000: IF done THEN RETURN 

140 GOSUB 4000 
150 GOSUB 5000: IF done THEN RETURN 

160 GOSUB 6000 
170 NEXT b 

but this does not really seer to make what the program is 

doing any clearer. 

Many of the advocates of structured programming 

concentrate on the elimination of GOTOs with almost 

religious fervour (sometimes actually quoting Genesis 

chapter 11 verse 7 in which, in the Authorised Version, God 

says ‘Go to, let us go down, and there confound their 

language, that they may not understand one another's 

speech’ as evidence that it is GOTOs that make programs 
incomprehensible). However, it is possible to find very clear 

and comprehensible programs that use GOTOs, and very 

obscure and muddled ones that do not. 

But if you are writing in ZX BASIC you do not really 
have any sensible alternative to using GOTOs, and you 
should be aware of how to use them and how not use them. 

In most languages, if you wish to GOTO a 
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command that command must have a ‘label’. A label is very 
much like the name of a variable, in that it identifies the part 

of the memory in which the line is stored; usually it has the 

same form as a variable name (letter followed by letters and/ 

or digits) though in Fortran it is anumber. Many compilers 
have the ability to generate a ‘cross-reference’ table which 
shows where each label is used. When you are looking at a 

piece of the program, either to check whether it is correct or 
to see whether a change you are proposing to make will 

upset something else, you can be sure (1) that the only 

ways into the piece of program are at the top and at each 

label, and (2) that each place from which it is entered can 

be found in the cross-reference table. You can therefore be 

certain of being able to check every context in which the 

piece of program can be used. 

In BASIC, every line has a line number and is 

therefore potentially the target of aGOTO. No cross- 
referencer is provided in the standard firmware, although it 

would not be too difficult to write a crude one in BASIC. 
(Look in Chapters 27 and 28 of the manual in the case of the 

2X81, and Chapters 24 and 25 in the case of the Spectrum, 
to find where to PEEK and what to look for there; in each 

case Appendix A tells you that the code for GOTO is 236.) 

The problem is made worse by the availability of commands 
like 

GOTO (#+5)*100 

which is liable to GOTO anywhere — remember that jis not 

necessarily a whole number nor is it necessarily positive, it 

could for instance be —3.53 in which case the command 
reduces to GOTO 147, and if there is no line 147 it will 
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GOTO the next highest line number. 
It is therefore most important to put a REMark at 

any place that is liable to be GOne TO from any other part of 

the program. This also applies (indeed rather more so) to 

places that are the target of a GOSUB,; in this case the 

REMark should make clear what the end effect of the 

GOSUB will be (i.e. what will have been done by the time the 

RETURN is reached). 

Another criticism often levelled at GOTOs is that 
indiscriminate use leads to a program which, if you trace all 

the paths the computer can follow through it, looks like a 

plate of spaghetti. (It has also been said that the more 

extreme forms of ‘structured programming’, with their many 

separate layers of program, resemble a dish of lasagne, 
which is just as difficult to see through.) We have found that 

a good rule that helps avoid this kind of problem is 

Backwards jumps should only be used for loops. 

A backwards jump is one that GOes TO a command that 

precedes it in the program, such as 

120 IF n<>0 THEN GOTO 100 

(100 being before 120). A loop is a sequence of commands 

that is obeyed several times, for example 

100 INPUT n 

110 LET total = total+n 

120 IF n<>0 THEN GOTO 100 

in which lines 100 to 120 are obeyed repeatedly until a zero 
value is input. (We assume that a message such as ‘type in 
the numbers, terminated by a zero’ is printed before the 
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loop is entered.) Clearly there has to be a backwards jump 
at some point in the loop (unless FOR . . . NEXT is used, 

which is not very appropriate here). But the program should 

be arranged such that there are no backwards jumps 

except those from the middle or end of a loop back to the 

beginning. For example, suppose you have to take different 

action at a certain point if the variable x contains the value 

zero: 

240 IF x=0 THEN GOTO 2500 

260 [action if x is nonzero] 

280 [next part of program] 

2500 REM here from 240 if x=0 
2520 [action if x is zero] 
2540 GOTO 280 

This contains a backwards jump on line 2540, and we can 

see that if there are many sections like lines 2500 to 2540 

scattered around the program it will have the spaghetti-like 

structure alluded to earlier. However, we can rearrange it as 

240 IF x<>0 THEN GOTO 270 

250 [action if x is zero] 

260 GOTO 280 

270 [action if x is nonzero] 
280 [next part of program] 

LOOP - a part of a program that is obeyed over and over 

again; also used as a verb, meaning to obey a sequence of 

commands repeatedly. Acommon consequence of a bug (qv) 

is that the program stays in a loop forever. 
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which has no backwards jumps, and has a much cleaner 
structure (similar, in fact, to the form the program would take 

in a'GOTO-less’ language) so that we can see what it does 
without having to keep track of odd bits of program in other 
parts of the listing. 

RELIABILITY 

The novice programmer is usually surprised, the first time 
he lets someone else try out a program he has just written, 

to discover just how easily it can be made to fail, and indeed 
how difficult it is for the guinea-pig user to get it to work at 
all. 

Usually the problem is that the user's input is not 
quite in the form that the programmer expected. Perhaps 

when asked to type a list of words he puts commas between 

them when the programmer expected spaces, or several 

spaces where the programmer expected just one. Perhaps 

he was not told that none of the words may be more than ten 

letters long. Perhaps he was asked for a number but not told 
that it must be a integer (i.e. a ‘whole number’), or less than 
a hundred, or greater than zero. To the programmer, 

knowing how the program works, such restrictions might be 

obvious, and it is sometimes difficult for him to remember 
that the user does not have this information. Often the 

reason that the program does not cater for a particular form 

of input is that the programmer would himself never think of 

using it anyway: it would never occur to him that adjacent 

words in a list should be separated by anything other than a 
single space, so the program does not allow for several 
spaces, or a comma. 

The programmer's defence against this problem is 
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a kind of ‘belt and braces’ approach: 

(1) Make sure that the user has been told exactly 

what the program expects. 

(2) Make sure that the program can cope with any 

kinds of input, even those that are not in accord with the 
instructions given in (1). 

There is a limit to the effectiveness of (1): users are 

often too eager to get on with trying out the program to take 

the necessary time to read the instructions carefully; indeed, 

in the computing trade it is generally believed that users 
only look at the instructions as a last resort, if all other 

attempts to get the program to work have failed. The user's 

understanding of some of the words you use may not be the 

same as yours. If you build all the instructions into the 

program and display them on the screen at appropriate 

times, you may have to abbreviate them for lack of space. 

With (2) we attempt to trap wrong inputs which are 
the result of mistyping or of the user's misunderstanding of 

what is required. The program should check whatever 
assumptions it makes about the input data, preferably 
immediately after they are input. For example, suppose we 

want the user to choose an integer in the range 1 to 999 

100 PRINT "Think of a number less than 1000" 
110 PRINT "What is your number?" 
120 INPUT number 
130 IF number<1000 THEN GOTO 160 
140 PRINT "Your number was too big" 
150 GOTO 100 

160 IF number>O THEN GOTO 190 

170 PRINT "We need a number greater than 0" 
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180 GOTO 210 

190 IF number=INT number THEN GOTO 230 

200 PRINT "We need a whole number" 
210 PRINT "Think of another number" 
220 GOTO 110 

230 REM NUMBER is an integer, 1 to 999 

The INPUT command ensures that what we get is a number, 

and we then check that it obeys any restrictions we have 

assumed later in the program. Here we have told the user 
that it should be less that 1000 and have assumed that most 

users will not think of choosing a negative or fractional 

number. Each of the conditions is checked, and the user is 

told if his number is rejected, including the reason for the 
rejection. This last is most important; there few things more 
infuriating than a computer which refuses to process the 

things you give it without giving some Indication of what is 
wrong. (This is why when ZX BASIC rejects a command line 

because of a syntax error it positions the ‘S’ cursor at the 
place where it thinks the error is. It might pernaps have 
been more helpful if it also told you the nature of the error, 

but often the nature of the error is fairly obvious once its 

position has been pointed out, and in many cases the 

computer would have difficulty deciding just what the cause 

of the error was.) 
The above piece of program does not give the user 

a long message listing all the restrictions on the input, it just 

gives the important details. It then checks all the 
assumptions, including those the user has been told about. 

If you are systematic, you should be able to make certain 

that the input to a program conforms to whatever 
assumptions the rest of the program makes about it. You 
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can then be sure that the program should perform correctly 

whatever inputs the user gives it. 

SPEED 

The ZX computers do not run programs particularly 

quickly, and so it can be important for the programmer to be 
aware of how to avoid making the program slower than it 

has to be. Some aspects of the design of the BASIC are 
inherited from the ZX80, in which the requirement to fit the 

whole system into a very small amount of memory was 

paramount. To keep the internal design simple (and thus to 
minimise the space used by the machine code program that 
interprets the BASIC) the various things that have to been 

kept in memory (the BASIC program, variables, strings, etc.) 
are simply stacked one after the other so that if a particular 

item is required the computer searches through from the 
beginning until it finds it; if one needs to be inserted the 

others are moved up to make room, and if one needs to be 
removed the others are moved back to close up the space. 

This saves keeping (and keeping up-to-date) the multitude 

of pointers which would be needed to find things more 
quickly, at the expense of a fair amount of searching and 
(when things have to be moved) copying; but since there 

cannot be very much to search through or to copy anyway 

(because there is so little room) this does not take very long. 

The name of a variable, for instance, is stored in 

the program without any additional information as to where it 

is stored, so every time a variable is used when the program 
is run the computer searches through the part of the 

memory where the variables are kept, looking for the 

variable with the required name. In a ZX81 with only 1K of 
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RAM this will not take very long, as there cannot be very 
many variables to search through, but in one with 16K, or in 

a Spectrum (especially one with 48K), there is room for a big 

program with lots of variables and If the computer has to 
keep finding the one that happens to be at the end of the list 

this will slow the program down noticeably 

Whichever language and computer are used, in 

the typical program only about 20% of the commands are 
obeyed often enough for it to matter at all how long they 

take. Except where animated displays are being generated, 
what usually matters to the user is the time between hitting 
ENTER, at the end of a command or piece of input, and 

seeing either results or an invitation to supply more input, so 
any command that is obeyed only once or twice during this 

time is not likely to make a significant difference. 
Some of the techniques for reducing the run time of 

a program apply to most languages on most computers, 

and are largely common-sense measures such as not doing 

inside a loop (and hence once each time round) a 

calculation that could be done outside it. But there are a few 

peculiarities of the ZX BASIC that deserve special mention 

in this context. 
GOTO searches the program from the beginning 

for the line you want, so a line near the beginning of the 
program can be found more quickly than one near the end. 
The natural way to write a program is with the initialisation 

(which is just done once) first, then data input, then 

processing and output. But this would put the part of the 
program most likely to benefit from faster GOTOs in the 
place where GOTOs are slowest, so a better order would be 

GOTO initialisation 
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processing & output (often-used loops) 

processing & output (rest of) 

STOP (or GOTO end) 
initialisation 

data input 
GOTO processing 

This includes a backwards jump that is not part of a loop, 

and indeed it is already less clear just what the program is 

doing, so we see that we have to choose between a faster 

program and a well-structured one. The extra GOTOs are 
obeyed just once each, so the time they take does not 

matter. 
NEXT and RETURN are also jumps and use the 

same mechanism as GOTO to find the FOR or GOSUB 

instruction to return to. NEXT is particularly important 

because it is always part of a loop, and therefore obeyed 

many times. 
You may be able to reduce the number of lines in 

your program by, for example, replacing 

140 PRINT "Value is "; 
150 PRINT x 

by 
140 PRINT "Value is ";x 

or 

270 LET q = x + LOG y 

280 LET q = q * EXP z 

by 

270 LET q = (x + LOG y) * EXP z 
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On the Spectrum you can put several commands 

on one line, separated by colons, and since it is the number 

of lines rather than the number of commands that matters 
this can speed things up considerably. Also, there is a little 

extra processing to be done at the end of a line, so putting 

your commands on fewer lines will speed the program up a 

little anyway. But it is still likely to be worth starting a new line 

for a FOR or GOSUB command, because the special kind of 
jump done by NEXT and RETURN searches for the line 

containing the FOR or GOSUB (skipping down just looking 

at the line numbers) and then scans through the line 

counting the commands in it unti! it comes to the one after 

the FOR or GOSUB. 

In this case, the format that will run faster is also 

likely to be fairly good from the point of view of readability, 
as in 

2100 LET a=5: LET b=0: LET c=7 
2110 GOSUB 1000 
2120 FOR n=1 TO 50: LET q(n)=q(n)+r(n): NEXT n 
2130 GOSUB 1200 
ere 

The way in which variables are found is in many 
ways similar to the way in which program lines are found, 

and it is usually done rather more often. Each variable that 

has been assigned to is described by a record which 

specifies its type, name, and value. (Trying to use a variable 

for which no record exists causes error 2.) Assuming the 

program is started by RUN, there are no records present 
when the program starts; new records are added at the end 
by DIM, LET, FOR, and INPUT commands, and the records 
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are searched from the beginning so the oldest one is always 

looked at first. 
In detail: DIM adds a new record describing an 

array. FOR, and also LET assigning to a numeric variable, 

will use the existing record for that variable if there is one, 

otherwise it will add a new one. LET assigning to a string 

variable always adds a new record; if there is an existing 

one, it is removed and all the later records are moved back 

to close up the gap. LET will never create a new record 

when assigning to an array element. 

As a general rule, therefore, the arrays and 

numeric variables that are going to be used frequently 

should be DiMensioned or assigned to before anything else 

even if they are not going to be used until later. String 
variables will usually gravitate to the end in any case. 

Short names should be used for numeric variables 

(arrays and strings are restricted to one-character names 

anyway — another hang-over from the ZX80). A variable with 

aname six or seven characters long takes twice as long to 

search past as one with a one-character name. The 

characters that are the value of a string variable take a 

similar amount of time to search past. 
Note that the computer searches for a variable 

each time it appears in the program. Thus in 

100 FOR j=ntl TO n+10 
110 LET a(j) = a(j)*3 

120 NEXT j 

in which line 100 is obeyed once and lines 110 and 120 are 

obeyed 10 times, it searches for n twice (both on line 100), a 

20 times (all on line 110, twice each time round), and / 41 
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times (once on line 100, three times each time round on line 
110, and once each time round on line 120). In all, these 

three lines therefore contain 63 searches for variables and 9 

jumps. 

It takes about the same time to search past a 

variable as a program |ine, so the extra time to find the 

twenty-first variable (say) instead of the first is about the 

same as the extra time to GOTO the twenty-first program 
line instead of the first. This is a little more than the time it 

takes to do a floating point addition or subtraction, but 
somewhat less than the time required for a multiplication or 

division. 

The other trap for the unwary is in some of the 

operations on numbers. The ‘to the power’ operator is 

always worked out using the formula 

xf 0, .=.- EXP, (n.* LOG x) 

except when x=0. This means that x 7 2 takes about twenty 

times as long to calculate as x*x does, and may give a less 

precise answer. Similarly x f 3 takes about ten times as long 
as x*x*x. Also, x f n causes an error A if x is negative 
because you cannot take the LOG of anegative number, so 

if x=—3 then x*x is +9 but x T 2 stops the program with error 

A. Moral: use multiplication instead of ‘to the power’ 
whenever possible. 

SQR x is worked out as x f 0.5, and thus also takes 
rather a long time to calculate, but there is not really any 
viable alternative. Some of the trigonometric functions are 

slower than others: TAN x is worked out as SIN x/ COS x; 

ASN uses SQR and ATN, as does ACS 
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SI 

CERAREICAL PRESEN GAC) 
DATA 

The programs in this chapter are concerned with 

displaying numeric data on the screen in pictorial form. We 

saw in Chapter 2 that this is the kind of task to which 
computers are well suited, and a pictorial display often 

gives a much better over-all impression of trends etc. in the 
data than a column of figures would. 

The most literally ‘graphical’ presentation is by 
drawing a graph, as of a value y which depends on another 

value x. Mathematicians say y is a ‘function’ of x and show 

this by writing y=f(x). The graph is drawn by considering 
each possible value of x in turn, working out the 

corresponding y, and (starting from a fixed point called the 
‘origin’) measuring x units along the paper and y units up 

the paper and marking the place. 

In ZX BASIC, the PLOT command does most of the 
work of this for us. Having worked out the values x and y, we 

need only say 

PLOT x,y 

to get the relevant point blacked in on the screen. Thus: 

10 FOR x=0 TO 255 

20 LET y=SIN x 
30 PLOT x,y 
40 NEXT x 

But if you try the program in this form you will find it 

does not plot a sine wave; in fact it stops with error B 
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(indicating that the graph does not fit on the screen) before 
getting very far at all. We need to make sure the graph is 
large enough to see properly without being too big to fit on 
the screen. 

As the manual (Chapter 18 for the ZX81, Chapter 
17 for the Spectrum) describes, the screen is divided into a 
rectangular array of ‘picture elements’, called ‘pixels’ for 
short. The rows and columns are identified by whole 
numbers (which we will call ‘co-ordinates’) starting with zero 
in the bottom lefthand corner; on the ZX81 there are 44 rows 
and 64 columns, so the top righthand corner is column 63 
and row 43. We will find it more convenient to think of the top 
righthand corner as (x=63, y=43); this is why the rows are 
numbered upwards. The pixels on the Spectrum are much 
smaller than those on the ZX81, and there is room for four 
times as many in each direction, so the co-ordinates go up 
to (x=255, y=175). 

Different computers behave in different ways when 
a picture does not fit on the screen. Consider the simple line 
drawing in Fig. 7.1(a) positioned on a screen as in Fig. 
7.1(b). Part of the picture is off-screen and does not appear; 
this technique is called ‘windowing’ because it is as if the 
screen is a window through which you are looking at the 
picture, and you see only those parts of the picture that are 
opposite the window. 

Another technique is called ‘wraparound’; here the 
parts that fall off one edge appear at the opposite edge, as 
in Fig. 7.1(c). This is rather as if you had drawn the picture 
on a Car tyre inner tube (a shape mathematicians calla 
‘torus’) and then cut the tube open and flattened it out. 
Wraparound was much used in the early days of graphical 
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(a) Intended picture. (b) Effect of windowing. 

PIXEL — the smallest part of a picture for which the computer 

can define the colour, brightness, etc. The size of a pixel 

defines the maximum resolution available. 

WINDOWING — using the TV screen (or part of it) as a ‘window 

through which you see a part of a picture; the rest of the picture 

is stored in the computer's memory but the only way to see it is 

by moving the position of the window. 

WRAPAROUND - when referred to computer graphics, is an 

alternative to windowing (qv): when a line goes off one side of 

the screen, it comes on again at the opposite side, so that the 

whole picture is visible although possibly in a rather jumbled 

form 

= 
Ea E 

h| Gi i 

ey Integer out of range 270:1 

c) Effect of wraparound. (d) Appearance in ZX BASIC. 
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displays because, with the technology then available, it was 

much easier to implement, but windowing is normally more 

convenient for the user. 

ZX BASIC does not use either of these techniques, 
but simply signals error B whenever PLOT etc. finds that a 
point does not fit on the screen. However, it is not too 

difficult to check inside your program that you are not 

plotting points off-screen, and even to do your own 

windowing. In the above example we can change line 30 to 

30 IF x>=0 AND x<=63 AND y>=0 AND y<=43 

THEN PLOT x,y 

On the ZX81 this plots the point only if it fits on the screen; 
on the Spectrum it plots it only if it is in the lower lefthand 

corner of the screen, so that your picture will not obliterate 

whatever is already in the rest of the screen. By varying the 

four numbers against which the values of x and y are tested, 
you can have a rectangular window of any size anywhere in 

the screen. By using different tests you can have windows of 
other shapes; for instance 

30 IF x>=0 AND x<=y-8 AND y<=40 THEN PLOT x,y 

defines a triangular window and 

30 IF (x-128)f2+(y-88)f2 < 1600 THEN PLOT x,y 

defines a circular Gne in the middle of the screen on the 
Spectrum. (On the ZX81 you would have to use smaller 
numbers to keep it on the screen.) 

As indicated at the end of Chapter 6, it would be 
better to use (x—128)*(x—128) instead of (x—128) 7 2 to 
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reduce the time taken to do the test. (Even though the 

computer has to find x twice, at 

this is still a lot quicker than usi 

ind do the subtraction twice, 

ng ‘to the power’ operator.) 

Whatever kind of window we use, we still do not get 

anything that looks much like a sine wave; we need to 

choose the right scale at which to draw the picture. For any 

x, the value of sin x is in the range —1 to +1. This is why we 

have had so little success so far: all the points plotted were 

either in the bottom two rows of 

of the screen. 

We therefore need to 

picture. Scaling is done by mu 

pixels or just off the bottom 

‘scale’ and ‘translate’ the 

tiplying all the coordinates by 

a certain number (so the picture gets bigger or smaller but 

is still centered on the same ori igin), translation is done by 

adding the same number to al the y co-ordinates so that it 

moves up or down, or to the x co-ordinates so that it moves 

sideways. Considering only the y co-ordinates for the 

moment, we can do 

25 LET y = y*20+22 

on the ZX81 or 

25 LET y = y*80+88 

SCALE (verb) — to change the size of a picture by multiplying 
the coordinates of all the points in the picture by the same 

number. 

TRANSLATE -— to move a picture by adding the same pair of 

numbers (one for the x direction, another for the y direction) to 

the coordinates of all the points in the picture. 

123 



on the Spectrum to get the y values into the range 2 to 42 on 

the ZX81 or 8 to 168 on the Spectrum which fits comfortably 
on the screen. 

What about the x direction? One complete cycle of 
the sine wave takes from zero to 27 or about 6.3, so if we 

divide the pixel co-ordinate by 10 we will get one complete 

cycle on the ZX81 or four on the Spectrum. We may as well 

start at x=0, so no translation is needed. Note, by the way, 

that in the x direction we are starting from the pixel co- 

ordinate and calculating the value, whereas in the y 

direction it is the other way round: we start with the value 
(derived from the x value) and calculate the pixel co- 

ordinate. 

Let us now rewrite the program in the ZX81 version. 
Note that we are now assured that each point (x,y) is on- 

screen so there is no need for any windowing. 

10 FOR x=0 TO 63 
20 LET y = SIN (x/10) 
25 LET y = y*20+22 
SO SPLOT -xyy: 

40 NEXT x 

This calculates the y co-ordinate in two stages 

(lines 20 and 25) before using it on line 30. We can make the 

program slicker by calculating it all in one go, and putting 

the expression in the PLOT command instead of putting the 

result in the variable y and taking it out again: 

10 FOR x=0 TO 63 
30 PLOT x, 20 * SIN (x/10) + 22 
40 NEXT x 
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This will work on the Spectrum too, but produce a 

rather small picture in the bottom lefthand corner of the 

screen. To fill the screen we should do 

10 FOR x=0 TO 255 
30 PLOT x, 80 * SIN (x/10) + 88 
40 NEXT x 

You should try one of these out on a ZX81 or 

Spectrum, and experiment with changing the various 

constants (two in line 10, three in line 30) to see what 

happens. 

A MORE GENERAL VERSION 

We can adapt the program to print the value of any 
expression as follows. This shows the power of the VAL 

operator in ZX BASIC, which allows the string to contain any 

expression rather than just a literal number. The version 

given is for the spectrum. 

10 LET i= 
20 DIM y(255) 
30 LET ymin = 

55 LET xstep = 0 

60 PRINT "Graph plotting" 
70 PRINT 

80 PRINT "Type the value of y as an" 

90 PRINT " expression involving x." 
100 PRINT 
110 PRINT "Be careful to use the single" 
120 PRINT " keys for SIN, LOG, etc" 

130 PRINT " instead of spelling them" 
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330 
340 
350 
360 
370 
380 
390 
400 
410 
420 

PRINT " out letter by letter." 
INPUT f$ 
CLS 

PRINT "y = "3£$ 
PRINT 

PRINT "x start at?" 
INPUT x 

PRINT "x finish at?" 
INPUT xmax 
LET xstep = (xmax-x)/255 
CLS 

PRINT "y = "3;f£$ 
LET yO = VAL fs 
LET ymin = yO 

LET ymax = yO 

REM now get the rest of the y’s and 
find the max and min 

FOR i = 1 TO 255 
LET x = x + xstep 
LET y(i) = VAL f$§ 
IF y(i) < ymin THEN LET ymin = y(i) 

IF y(i) > ymax THEN LET ymax = y(i) 

NEXT i 

REM now we know the range that y covers 

IF ymin = ymax THEN LET ymax = ymin+l 

LET yscale = 168 / (ymax-ymin) 
PLOT 0, (yO-ymin) * yscale 
FOR i = 1 TO 255 
PLOT i, (y(i)-ymin) * yscale 
NEXT i 

For the 2X81, change 255 to 63 wherever it occurs, and 

change 168 to 41 on line 380. On the Spectrum you can 
delete lines 180 to 210 and 240 and 250 if you replace line 

220 with 
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220 INPUT "x start at ";x;", finish at ";xmax 

On lines 10 to 50 we make sure that the variables we will be 
using most often are mentioned before f$; as explained at 
the end of Chapter 6, this helps keep as short as possible 

the pause between when the user enters the last inputs and 

when the results start to appear. We keep the values in an 

array to save having to calculate them twice; if each one 

takes quite a long time to work out, this speeds up the 
second loop (lines 400 to 420) quite a lot, while if they take 

only a short time the program will run quite quickly anyway 
and there is no significant penalty. On the other hand, we 
could simply work out all the values twice over, as in 

260 LET ymin = VAL f$ 
270 LET ymax = ymin 

280 LET xmin = x 
290 REM now find the max and min y values 
300 FOR i=1 TO 255 

310 LET x = x + xstep 
320 LET y = VAL f$ 
330 IF y < ymin THEN LET ymin = y 
340 IF y > ymax THEN LET ymax = y 
350 NEXT i 
360 REM now we know the range that y covers 
370 IF ymin = ymax THEN LET ymax = ymin + 1 
380 LET yscale = 168 / (ymax-ymin) 
390 LET x = xmin 
400 FOR i = 0 TO 255 

410 PLOT i, (VAL f$ - ymin) * yscale 
415 LET x = x + xstep 

420 NEXT i 
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(Lines 10 to 250 are the same as before except that line 20 

is a LET rather than a DIM.) This will start to draw the graph 

a little earlier (because the loop on |ines 300 to 350 is a little 
quicker) but will usually take longer to draw it; psycho- 

logically this might be better as the user can see that the 
program is doing something and indeed can see how far it 

has got. 

Note that if ysca/e was set up as (ymax—ymin) /168 

we would have to divide rather than multiply in line 410, and 
division takes longer than multiplication. Similarly in line 310 
we find the next x from the old one rather than deriving each 

one afresh from /as in 

310 LET x = xmin + i * xstep 

because this would involve an unnecessary multiplication. 

HISTOGRAMS 

As well as drawing graphs where the pairs (x,y) are 
associated by some mathematical formula such as the one 

stored in f$ in the program above, we can draw graphs in 
which the pairs (x,y) represent experimental or other data 

from the ‘real world’. The graphical form may well reveal 

trends or periodic variations that are not nearly so apparent 

from the raw figures. A program to draw such a graph is 

10 PRINT "Caption for graph?" 
20 INPUT c$ 
30 PRINT c$ 
40 PRINT "Minimum y value?" 

50 INPUT ymin 
60 PRINT ymin 
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70 PRINT "Maximum y value?" 

80 INPUT ymax 
90. IF ymax>ymin THEN GOTO 130 

100 PRINT "Maximum must be greater than" 

110 PRINT " minimum!" 

120 GOTO 70 
130 LET yscale = 168 / (ymax-ymin) 
140 PRINT "Now input the y values in" 

150 PRINT " order from left to right" 

160 INPUT y 
170 CLS 
180 PRINT c$ 
190 LET x=0 

200 LIF y>=ymin AND y<=ymax THEN 

PLOT x, (y-ymin) * yscale 

210 LET x = xtl 

220 IF x>255 THEN GOTO 9999 

230 INPUT y 
240 GOTO 200 

We should probably print a further message between lines 

150 and 160 telling the user that STOP can be used if there 

are less than 256 numbers (see Chapter 9 of the ZX81 

manual or Chapter 2 of the Spectrum manual). 

Note that we check (on line 90) that the maximum 

and minimum values supplied by the user are sensible, and 

(on line 200) we do not assume that the y values will in fact 

necessarily come within these limits. No effort is made to 

maximise the speed with which the program runs because it 

has very little to do between being given one input value 

and asking for the next. 
Another kind of display that is often used is the 
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histogram. We can make the program plot a histogram by 
simply replacing line 200 with 

200 IF y>ymax THEN LET y=ymax 

202 FOR j=0 TO (y-ymin) * yscale 
204 PLOT x,j 
206 NEXT j 

and making a suitable alteration to the message printed by 
line 10. On the Spectrum it will be quicker to use DRAW: 

keep the new line 200 but instead of 202 to 206 use 

204 IF y>=ymin THEN PLOT x,0: DRAW 0, 
(y-ymin)*yscale 

Histograms are often drawn with the individual 

columns separated; all we need to dois to replace line 210 
with 

210 LET x = x+2 

On the Spectrum we may want to make them rather 

chunkier; to do this replace lines 200 to 220 in the original 
program by 

200 IF y>ymax THEN LET y=ymax 
202 IF y<ymin THEN GOTO 210 

204 LET y = (y-ymin) * yscale 

206 FOR j = x TO x+3: PLOT j,0: DRAW O,y: NEXT j 

210 LET x = xt6 

220 IF x>252 THEN GOTO 9999 

Sometimes it is helpful to have histograms in 
several colours, The ZX81 allows grey as well as black and 
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white, using the characters available in G mode on keys 

ASDFGH when SHIFT is held down (see Chapter 11 of the 

ZX81 manual). They are not supported by PLOT, so you 

have to either use PRINT AT or else accumulate the picture 

in a character array and then copy it to the screen when it 

complete. An example program for the ZX81 using PRINT 

is 

AT can be made by replacing lines 200 to 220 of the original 

program by 

192 REM define character codes for block 
and half-height block 

194 LET block = 8 

196 LET half = 9 

198 REM draw column upwards 
200 LET y = (y-ymin) * yscale 
202 FOR v=21 TO 1 STEP -1 

204 IF y>1.5 THEN GOTO 210 

206 IF y>0.5 THEN PRINT AT v,x; CHR$ half; 
208 GOTO 216 

210 PRINT AT v,x; CHR$ block; 

212 LET y = y-2 
214 NEXT v 

216 LET x = xtl 
218 IF x>3l1 THEN GOTO 9999 

220 REM swap colours for next column 

223 LET block = 136-block 

226 LET half = 140-half 

HISTOGRAM -— a graphical representation of data in which 

each number is shown as a rectangle the area of which is 

proportional to the value depicted. Usually all the rectangles 

are the same width, so that the height is also proportional to the 

value. 
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Line 223 swaps block between 8, the code for a grey 
square, and 128, the code for a black one; line 226 swaps 
half between 9, for a grey half-square, and 131 for a black 
one. If you change these lines to 

223 LET block = 13-block 

226 LET half = 13-half 

then the black columns will be half-width, leaving a gap 
before the next grey one. There are no characters available 
which would allow you to make narrower grey columns 
unless you turn the histogram on its side (cf. Exercise 3 in 
Chapter 11 of the ZX81 manual). 

On the Spectrum, you have eight colours available 
including black and white, and you also have two brightness 
levels. You can draw the columns as wide as you like, and 
have gaps of any width between them; the version of the 
Program on page 130 had columns four pixels wide all in 
the same colour with a gap two pixels wide, but if we add 

195 LET colour = 2 

206 FOR j = x to x+4: PLOT INK colour; j,0: 

DRAW INK colour; 0,y: NEXT j 
210 LET x = xt8 

225 LET colour = 7-colour 

(which will cause the existing lines 206 and 210 to be 
deleted) then the columns will be alternately red and pale 
blue, five pixels wide with a three-pixel gap. 

Although the Spectrum graphics have high 
resolution when used for monochrome pictures (with the 
same ‘paper’ and ‘ink’ colours over the whole screen), for 
multicoloured pictures the resolution with which you can 
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specify the colours is much lower. The screen is divided into 

‘character positions’ each consisting of an 8x8 array of 
pixels, so there are 64 pixels in each character position. 
When you are using the screen for the text (as in the PRINT 

command) each character printed occupies a character 
position. For each character position you can specify the 
‘paper’ and ‘ink’ colours (in each case one of eight colours, 

if you count black and white as colours), and also whether 

the character is highlighted (by being brighter than normal) 
and whether it is to flash. In the case of text this allows you 

complete freedom to specify the colour of each character 
independently. 

When drawing pictures, however, you need to be 

aware that all the 64 pixels that make up a character 

position share the same colour specification. If any of them 
is to be highlighted, or to flash, then all must do so, You only 
have two colours — paper colour and ink colour — available. 

Suppose you want to draw a histogram with 

adjoining red, blue, and green columns on a white 

background. Suppose you start by drawing the red column 

in the righthand half of a column of character squares in red 
ink on white paper (say with the x value going from 4 up to 

7) in the manner of line 206 in the program just above. You 
can go on to draw the blue column next to it (with x from 8 to 

11) in blue ink on white paper. If you now try to add the 
green column, in green ink, which we will suppose is half as 
high as the blue column, you will find that the bottom half of 

the blue column (which shares character squares with it) 
changes to green because you are changing the ink colour 

in those character squares. 

You can create the green column by changing the 
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paper colour to green, but this also is done a whole 
character position at a time: when you change the bottom 

row from white to green the next seven rows change as well. 

You can thus only get one-eighth the resolution that is 
otherwise available on the Spectrum, and indeed only one- 
half the resolution that is available on the ZX81. Now 

suppose the blue column is (say) 50 pixels high and the 

green column is higher: you will be changing the paper 

colour above the top of the blue column to green. To be sure 

of avoiding this problem, the height of the blue column has 

to be a multiple of eight pixels also. 
One way round this restriction is to use half-tones 

to generate intermediate colours in the same way that the 

ZX81 generates grey. (This is mentioned in Chapter 17 of 
the Spectrum manual.) For instance, keeping lines 10 to 130 
from the program above, we can have 

140 REM set up user-defined characters b to i 
as half-tone 

150 FOR i=USR "b'' TO USR "b'+62 STEP 2 

160 POKE i, BIN 01010000: POKE i+1, BIN 10100000 

170 NEXT i 

180 REM now make a to h into 0 to 7 rows 
(out of 8) of half-tone 

190 FOR i=0 TO 7 
200 FOR j=USR "a" + 8*i TO USR "a" + 7*i + 7 

210 POKE j,0 

220 NEXT j 
230 NEXT i 

240 PAPER 7: INK 0: CLS: PRINT c$ 

250 FOR i=l TO 16 
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260 
270 
280 

290 
300 
310 
320 

330 
340 
350 
360 
370 

380 
390 
400 

1000 

1010 
1020 

INK 2: LET c$="red" 

GOSUB 1000 
FOR j=i*16-12 TO i*16-9: PLOT j,0: 

DRAW O,y: NEXT j 
INK Ll: LET c$="pale blue" 
GOSUB 1000 
FOR j=21 TO 1 STEP -1 

IF y<7 THEN PRINT AT j,i*2-1: 
CHRS(145+y);: GOTO 350 

LET y=y-8: PRINT AT j,i*2-1; CHRS(152); 
NEXT j 
LET c$="'dark blue" 
GOSUB 1000 
FOR j=i*16-4 TO i*16-1: PI.OT 3,0: 

DRAW 0O,y: NEXT j 

NEXT i 

GOTO 9999 

INPUT (i); "st " AND i=l; "nd " AND i=2; 

RchhntgAND sere CCS) cere sicie 

LET y = (y-ymin) * yscale 
RETURN 

The program draws the red column in one set of 
character squares and the blue and half-tone blue in 

another. The half-tone blue is done before the full-colour 
blue because PRINT writes the whole character square, but 

it can be done afterwards by 

PRINT OVER 1; AT j,i*2-1; CHRS(145+y); 

which will not disturb the parts that have already been 

written by DRAW. 
A number of variations on the above themes are 
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possible and should be done as exercises. They include: 
drawing a line between adjacent points on a graph so that 

the graph forms a continuous line even where one y value 

differs from the next by more than 1; drawing axes on the 
graph and labelling them; and histograms in which each 

column has more than one colour. An example of the last is 
a histogram of sales showing home-market sales in full- 

colour and export sales in half-tone. 

SCATTER DIAGRAMS 

Another way of presenting ‘real-wor|d’ data is in the 
form of a ‘scatter diagram’ in which we simply plot (x,y) 

pairs. This lets us see whether there is any correlation 

between x and y. if there is, the points will be grouped 
together around a line or curve, but if there is none the 

points will be randomly positioned all over the screen. 
A suitable program to make a scatter diagram on 

the ZX Spectrum is 

10 REM x is max, n is min, v is value 

20 DIM x(2) 

30 DIM n(2) 
40 DIM v(2) 

50 PRINT "Caption? "; 

60 INPUT c$ 
70 PRINT c$ 

80 FOR i=l TO 2 

90 PRINT "Minimum ";"'xy"(i);" value? "; 

100 INPUT n(i) 

110 PRINT n(i) 

120 PRINT "Maximum ";"xy'"(i);" value? "; 

130 INPUT x(i) 

140 IF x(i)>n(i) THEN GOTO 170 
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290 
300 
310 

PRINT "Maximum must be greater than", 

“ minimum!" 

GOTO 90 

PRINT x(i) 

NEXT i 

PRINT "Now type in (x,y) pairs" 

PRINT "STOP terminates" 

INPUT v(1) 

CLS 

PRINT c$ 
INPUT v(2) 

FOR i=l TO 2 

IF v(i)<n(i) OR v(i)>x(i) THEN GOTO 300 

LET v(i) = (v(i)-n(i)) / (x(i)-n(i)) 
NEXT i 

PLOT v(1)*255,v(2)*168 

INPUT v(1) 

GOTO 240 

On the ZX81 line 290 becomes 

290 PLOT v(1)*63,v(2)*41 

because of the lower-resolution graphics. 

The expression 

"xy"(i) 

SCATTER DIAGRAM - used for results of experiments (or 

similar data) that consist of a pair of numbers, where we are 

looking for a relationship between the two numbers in the pair: 

for each pair a point is plotted at the corresponding (x,y,) 

coordinates. 
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used in lines 90 and 120 is a ‘slice’ in which we select the /th 
character of the string “xy”. Thus x is printed when j=1, and 
y when /=2. In fact x will be printed if i is anywhere in the 

range 0.5 to 1.5, and yif it is anywhere in the range 1.5 to 

2.5; if itis outside the range 0.5 to 2.5 the program stops 

with error code 3 (subscript out of range) or B (integer out of 

range). Contrast this with 

(''x'' AND i=1) + ("y" AND i=2) 

which still yields x when /=1 and y when i=2 but yields the 
empty string (and does not cause an error) ifi has any other 
value including, for instance, 1.0001 or —42. 

To see how a scatter diagram might look without 
needing to have any real data, we can do the following. 

Firstly for a completely random pattern: 

10 FOR i=1 TO 200 

20 PLOT RND*255, RND*168 

30 NEXT i 

The regular lines of dots that appear are an artefact of RND, 
which produces numbers that are not quite as random as 

they should be. As usual, for the ZX81 the multipliers in line 

20 should be 63 and 41 (or 43 as there is no caption). Also 
you should have only 30 or 40 points rather than 200, 

otherwise most of the screen will be black. For the kind of 
distribution more likely to occur in nature, again with no 
correlation between x and y: 

10 FOR i=1 TO 200 
20 GOSUB 1000 
30 LET x=v 
40 GOSUB 1000 
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50 LET y=v 
60 IF x<0 OR x>l OR y<O OR y>1 THEN GOTO 20 

70 PLOT x*255, y*168 
80 NEXT i 

90 STOP 
1000 REM Set v to a weighted random number 

1010 LET v = RND*1.9999 + .00005 
1020 LET v = 0.1 * LN (v/(2-v)) + 0.5 
1030 RETURN 

As before, any apparently regular patterns are an artefact of 
RND. For a scatter diagram in which the two values are 

linearly related, replace line 50 by 

50 LET y = 0.2 + x*0.6 + v0.2 

An example of a non-linear relationship is produced by 

50 LET y = 3*(x-0.4)*(x-0-4) + v*0.2 
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3) 

STATISTICS 

The purpose of a scientific experiment is to test a 

hypothesis (or theory) by seeing if an outcome predicted by 

the hypothesis occurs in practice. Sometimes the 

experiment is such that its outcome is unequivocal — there is 

no doubt whether the predicted event has occurred — but 

often, particularly in the life sciences, statistical methods 

must be used to show whether the result of the experiment 
accords with the hypothesis. More precisely, we need to 

know how likely the observed event (or set of events) would 
be if the hypothesis is correct. 

For example in an experiment in which a number of 

plants are grown from seed the hypothesis being tested 
might predict that half of them would have yellow flowers, a 
quarter of them red flowers, an eighth blue flowers, and an 

eighth purple flowers. Suppose 404 plants survive and 
flower; the hypothesis does not predict that you will get 202 
yellow ones, 101 red, 50 blue, 50 purple, and one with blue 

and purple stripes. Rather it is predicting that each one of 

the 404 plants has an even chance of having yellow flowers, 
31 against red, and 7-1 against each of blue and purple. If 

the hypothesis is true it is still possible for all 404 to turn out 

to be blue, but it is so extremely unlikely that you would think 

that either the hypothesis was false or there was something 

very wrong with your experiment. In practice you will get a 

result such as 190 yellow, 126 red, 47 blue, and 41 purple, 

and you will want to know just how likely this result is if the 
probabilities are as stated above. 
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This is calculated using x°, which measures how 

different the observed results (here 190, 126, 47, and 41) 
are, overall, from the expected results (here 202, 101, 50.5, 

and 50.5). The likelihood of results deviating from the 

expected by as much as the observed results do is 
calculated from x? and the number of ‘degrees of freedom’. 

The number of degrees of freedom is always one 
less than the number of possible outcomes of each event in 

the experiment. In the example here, we have 404 events 
each of which has four possible outcomes, yellow, red, blue, 
or purple, so that the observed results consist of four 
numbers which must add up to 404. There are three 

degrees of freedom because any three of those numbers 

can vary independently; we may get any number with yellow 

flowers, and any number of the rest may have red flowers, 

and any number of what remains may have blue flowers, but 

then all that are |eft over must have purple flowers 

The following program works out the probability 
according to equations derived from M. Abramowitz and 

|.A. Segun, Handbook of Mathematical Functions, Dover 
Publications Inc., New York, 1965, equations (26.4.4), 

(26.4.5), (26.2.1), (26.2.5), and (26.2.17). The version for the 

Spectrum is given first, then the alterations for the ZX81 

(which only affect the INPUT prompts and the presentation 
of the results on the TV screen) are given. 

Lines 10 to 80 set up a table on the screen so that 
several sets of results can be processed. Lines 100 to 160 

set up coefficients that are used in the calculation of q(x) 
which is needed if the number of degrees of freedom is odd. 

Using this method instead of writing the coefficients directly 
into line 520 as literals gives a rather tidier layout; it does 
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make the program run more slowly but this is unlikely to be 
perceptible. Lines 310 to 350 accumulate x? as the sum of 

(x-e)?/e 

where e isthe expected and x the observed value, avoiding 

use of the ‘to-the-power’ operator which is very slow. 
If v, the number of degrees of freedom, is an even 

number, we ist to calculate 

(v—2) 

oe x2'/(2K4x6x ... X2/) 

or, to put it eee way, 

s= X7/2+ x4*W(2x4)+ x9/(2x4x6) +... 

+ x” ?/(2x4x6x.., (v—2)) 

which the program works out as 

s= x7/2x (1+ x7/4x(14+x7/6x... 

x (1+ x?/(v-2) x (1 +0))...)) 

The loop at lines 420 to 440 starts at the righthand end of 

this expression, keeping the intermediate result in gq each 

time; the final step is done at line 460 which calculates the 
probability as 

exp (— x7/2) x (1+ s) 

If vis an odd number, we have 

s=x+ x7/34+ x5(3x5) +... 

.+ XP(3x5x7xX. ..x(v—2)) 
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which is worked out as 

s=xXx(1+ x73x(1+ x7/5x... 

22% (1 + xXPv—2) x (14+ 0))...)) 

As before, the loop at lines 420 to 440 does most of the 
work; this time the last step is in line 530 which calculates 

the probability as 

EXP (-chi2/2) * SQR (2/PL) * (1-p(chi) + s) 

using the value of 1—p(ch/) calculated on the previous line. 

10 REM chi-squared test 
15 REM set up screen 

20 CLS 
30 PRINT "Degrees of 2 Proba-"" 
40 PRINT " freedom chi bility" 
50 PRINT 

60 PLOT 0,156: DRAW 255,0 

70 PLOT 85,0: DRAW’0,175 
80 PLOT 170,0: DRAW 0,175 

100 REM coefficients in polynomial 
110 LET bl = 0.31938153 

120 LET b2 = -0.356563782 

130 LET b3 1.781477937 
140 LET b4 = -1.821255978 

150 LET b5 = 1.330274429 

160 LET p = 0.2316419 

200 REM input data 

210 INPUT "Degrees of freedom: ";v 
300 REM calculate chi-squared 
310 LET chi2=0 

320 FOR n=1 TO vtl 
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330 

340 
350 
400 
410 
420 
430 
440 
450 
455 
460 
470 
500 
510 
520 

530 

600 
610 
620 
630 
640 
650 
660 
700 
710 
720 
900 

1000 

INPUT "Observed value: "; x, 

"Expected value: "; e 

LET chi2 = chi2 + (x-e)*(x-e)/e 

NEXT n 

REM work out probability value 

LET ‘0 

FOR n=v TO 3 STEP -2 

LET q = 1 + (chi2/n) * q 

NEXT n 

IF n=] THEN GOTO 500 
REM here if v is even 

LET q = EXP (-chi2/2) * (1 + (chi2/2) * q) 

GOTO 600 

REM here if v is odd 
LET chi = SQR chi2: LET t = 1/(1+p*chi) 
LET b = ((((b5*t+b4 )*t+b3 )*t+b2)*t+bl )*t 

LET q = EXP (-chi2/2) * SQR (2/P1) * 

(b + chi*q) 

REM display results 

LET x=v: GOSUB 1000 

PRINT x$; 

LET x=chi2: LET n=4: GOSUB 2000 
PRINT AT 23-PEEK 23689,11; x$ 

LET x=q: LET n=6: GOSUB 2000 
PRINT AT 23-PEEK 23689,22; x$ 

INPUT "Another set of data? (Y/N) ";a$ 
IF ag = "Y" OR aS = "y'' THEN GOTO 200 

IF ag © "N" AND a§ © "n'' THEN GOTO 700 

GOTO 9999 
REM Set x$ to value of x rounded to an 

integer and right-aligned in 10 

characters 
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1010 
1020 
1030 
2000 

2002 
2010 
2020 
2030 
2040 
2050 

LET x$ 2 "+ STR$ INT (x+0.5) 
now LET x$ x$(LEN x$ - 9 TO ) 

RETURN 

REM Set x$ to value of x rounded to n 

decimals and right aligned in 10 
characters 

REM Assumes 0<x<10*(9-n) and 0<n<9 
LET x$ = STRS INT (x * LOfn + 0.5) 

LET x$ = "00000000"(LEN x$ TO n) + x$ 

LET x$ =" "(LEN x$: TO 8).+ x$ 

LET x$ = x$(TO 9-n) + "." + x$(10-n TO) 
RETURN 

In the routine on lines 2000 to 2050 line 2010 sets x$ to the 

required string of digits without its decimal point, line 2020 
adds zeroes to the left of x$ if required to ensure there are at 
least n+1 digits, line 2030 adds spaces to bring it up to 9 

characters, and line 2040 inserts the decimal point. 

The main changes required for the ZX81 are to 
replace lines 50 to 80 by 

FOR i=0 TO 43 
PLOT 20,4 
PLOT 42,4 
NEXT i 
FOR i=0 TO 63 
PLOT i,39 
NEXT i 

and to replace ‘AT 23—PEEK 23689,’ by ‘TAB’ on lines 640 
and 660. (On the Spectrum we cannot use TAB because it 
outputs spaces to the screen which would obliterate the 
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vertical lines drawn by lines 70 and 80. On the ZX81, TAB 

skips over them in the same way that AT does. Incidentally, 

on both machines the ‘comma’ PRINT separator outputs 

spaces but ‘new line’ at the end of a PRINT command does 
not.) 

Where there is just one degree of freedom, the 

results given by the above program are a little misleading 

because the distribution of x? is continuous whereas the 

observed values are discrete. That is to say, the way in 
which we calculate the probability of x? being within a 

certain value does not take into account the fact that only 

certain values of x? are possible. Yates's correction allows 

for this, and gives a better value for the probability in the 
case where there is just one degree of freedom; the 

following lines should be added to the program to 
implement it. 

220 IF v<>1 THEN GOTO 300 

230 INPUT "With Yates’s correction? (Y/N)";a$ 
240 IF a$="N" OR a$="n" THEN GOTO 300 
245 IF aSO"y" AND aSO"y" THEN GOTO 230 

250 INPUT "Observed value: "; x, 
expected value: "; e 

260 LET x = ABS (x-e) - 0. 33 LET chi2 = x*x/e 

270 INPUT "Observed value: "; x, 
"Expected value: "; e 

280 LET x = ABS (x-e) - 0.5 
285 LET chi2 = chi2 + x*x/e 
290 GOTO 400 
300 REM calculate chi-squared without 

correction 
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REGRESSION 
At the end of Chapter 7 we looked briefly at scatter 

diagrams, which are appropriate for occasions on which 

two values are measured and we are looking for some 

correlation between them. In this section we will look at how 

the computer can provide some objective measurements of 
how the values are related. 

Here, as with the x? test, we are considering the 

outcome of a number of separate trials. The x® test is used 

where each trial has only a finite (and often quite small) 

number of possible outcomes, as with the flower-growing 

example in which there were just four possible outcomes of 
each trial (yellow, red, blue, or purple; we discounted any 
trials in which we got no flowers at all). For each possible 

outcome the number of trials with that outcome is counted. 
Inthe x® test we assumed that the differences between 

trials were due to chance (or to random variations in some 

factor we were not measuring) and investigated how likely it 

would be that the particular set of outcomes we observed 
would occur if the hypothesis was correct. 

The techniques described in this section are 

appropriate where each trial produces two measurements 

(which will be called x and y here) and we are looking for a 

correlation between the two things measured, which would 

indicate that they are connected in some way. A relationship 

between the two measurements is sought, such that we can 
say that y consists of some function of x (i.e. a value worked 

out using an algebraic formula involving x) plus an 
additional component which is a random variation. 

The implication is that there is a causal relationship 
between whatever is measured by x and whatever is 
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measured by y, so that given the value for x in a particular 

trial we can predict the value of y more accurately than we 

could otherwise. This contrasts with the x° example, in 

which we did not have any information that would (for 

example) allow us to select beforehand which plants were 

more likely to have red flowers. 

For instance, we might enquire whether people's 

height is related to the height of their parents. We might ask 
a number of college students for their own height (for the 

variable y) and the average of the heights of their parents 

(for the variable x). We should obviously do this separately 

for male and female students, because men are on average 

taller than women. The kind of result we might expect is that 

tall parents will tend to have tall children and short parents 

will tend to have short children, and that there willbe a 
certain amount of random variation in the heights of children 

of parents of a particular height, with the children tending to 

be slightly closer to the average height than their parents. 

We can express this as 

y=a-+ bx + random variation 

and we hope to take enough pairs of measurements to be 
able to identify the values of a and b with reasonable 

confidence. 

As well as finding the numerical values for a and b 

we will plot a scatter diagram and draw on it the line 

y=at+bx. 

10 REM x is max, n is min, v is value 
20 DIM x(2) 
30 DIM n(2) 
40 DIM v(2) 
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150 

INPUT "Caption: "; c$ 
PRINT c$ 
FOR i=l TO 2 

INPUT "Minimum ";"xy"(i);" value: "; 
n(i), "Maximum "3"xy"(i);" 

value: "; x(i) 
IF x(i) > n(i) THEN GOTO 120 

PRINT ''Maximum must be greater than", 
"minimum!" 

GOTO 80 

NEXT i 

PRINT "Now type in data as two numbers” 
PRINT " separated by a comma inside" 
PRINT " the quote marks, e.g." 
PRINT 

PRINT " 2 .47,15.438"" 
PRINT 

PRINT "Use STOP (inside the quotes) to" 

PRINT ' terminate." 
REM read in data and accumulate sums 

LET sx=0: LET sy=0: LET sxx=0: 

LET sxy=0: LET n=0 

INPUY d$ 
FOR i=l TO LEN d$ 

IF d$(i) = ",'' THEN GOTO 310 

IF d$(i) = " STOP " THEN GOTO 500 

IF i>3 THEN IF d$(i-3 TO i) = "STOP" 

THEN GOTO 500 

NEXT i 
INPUT "Your input must include either", 

"a comma or STOP ";dS 
GOTO 240 

REM here if i*th character of d$ is comma 

LET v(1) = VAL d$( TO i-1) 
LET v(2) = VAL d$(itl TO ) 



340 

350 

360 
370 
380 
390 

400 
410 

420 
430 
500 
510 
520 
530 
540 
600 
610 
620 
630 
640 
650 
660 
670 
700 
710 
720 

730 
740 
750 
760 
800 
810 

LET sx = sx + v(1): 
LET sxx = sxx + v(1)*v(1) 

LET sy = sy + v(2): 

LET sxy = sxy + v(1)*v(2) 

LET n= n+1 
IF n=] THEN CLS: PRINT c$ 

FOR i=1 TO 2 

IF v(i) < n(i) OR v(i) > x(i) 
THEN GOTO 230 

LET v(i) = (v(i)-n(i)) / (x(i)-n(i)) 
NEXT i 
PLOT v(1)*255, v(2)*151 

GOTO 230 
REM here at end of data 

IF n=0 THEN STOP: REM no data at all 

LET b = (sxy - sx*sy/n) / (sxx - sx*sx/n) 

LET a = sy/n - b * sx/n 
PRINT AT 1,0; "y = "3a5" + "3b; "x" 

’ REM now draw line with this equation 

LET xl = n(1): LET yl =a+ b* xl 
LET x2 = x(1): LET y2 =a+b * x2 
IF yl > x(2) THEN GOTO 700 
IF yl >= n(2) THEN GOTO 800 

REM here if must start at bottom edge 

LET yl = n(2) 

GOTO 720 
REM here if must start at top edge 

LET yl = x(2) 
REM here if not at lefthand edge 
REM finish if not on screen at all 

IF b=0 THEN GOTO 999: REM horizontal 

LET xl = (yl-a) / b 
IF xl < n(1) OR xl > x(1) THEN GOTO 999 

REM line starts at (xl,yl) 
IF y2 > x(2) THEN LET y2=x(2): GOTO 840 
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820 IF y2 >= n(2) THEN GOTO 900 
830 LET y2 = n(2) 
840 REM here if finishes at top or bottom 

850 REM we now know it is on screen 
860 LET x2 = (y2-a) / b 
900 REM here when start and end points found 

910 LET v(1) = 255 / (x(1)-n(1)) 
920 LET v(2) = 151 / (x(2)-n(2)) 
930 PLOT (xl-n(1)) * v(1), Cyl-n(2)) * v(2) 
940 DRAW (x2-xl) * v(1), (y2-yl) * v(2) 

For the ZX81 the INPUT commands on lines 80 and 
290 must be converted to use PRINT for the captions in a 

similar manner to the program in Chapter 7; if you restrict 

them to the first three lines of the screen, they will not 
overwrite the scatter diagram. Lines containing several 

commands must be split up, for instance line 340 is 

replaced by 

340 LET sx = sx + v(1) 
345 LET sxx = sxx + v(1)*v(1) 

Line 810 however must not be replaced by 

810 IF y2 > x(2) THEN LET y2=x(2) 

815 GOTO 840 

because this would always GOTO line 840, even when y2 

was not greater than x(2). In fact the job done by lines 800 to 

860 is exactly the same as that done by lines 630 to 760, 
except that the tests on lines 740 and 760 are not needed 

the second time. Lines 630 to 760 were written in a way that 

is compatible with the ZX81, lines 800 to 860 in a way that is 

more convenient on the Spectrum. Therefore for the 2X81 
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we just need to replace lines 810 to 830 with a copy of lines 

630 to 710 with the line numbers suitably changed and y1 

replaced by y2. Conversely, on the Spectrum we can make 

the program neater by replacing lines 630 to 710 witha 

similarly modified copy of lines 810 to 830. 

(Make sure you understand why the tests are only 

needed once: first we find where the line, which we are 

drawing from left to right, comes onto the screen — top, 

bottom, or lefthand edge — then we find where it leaves it 
The tests on lines 740 and 760 detect the cases in which the 

line does not come onto the screen at all; having come onto 

the screen it must then go off it again and, if we are drawing 

it from left to right, this must be at the top, bottom, or 
righthand edge.) 

The multipliers 255 and 151 in line 420 and lines 

910 and 920 need to be changed to 63 and 37 for the ZX81, 
and the DRAW command on |ine 940 must be replaced by 

the line-drawing routine from Chapter 18, Exercise 6, of the 

2X81 manual 

The word STOP in line 260 is the token STOP which 

is a shifted A on the keyboard (symbols shift in the case of 

the Spectrum, which has two shift keys) but in line 270 it is 

the letters S,T,O,P. We check for both because this is easier 

and also more helpful than explaining in detail to the user 

that one or the other must be used. (Note, by the way, that 

either wil! work in the program in Chapter 7: one gives code 

D, the other code 2.) The program should be refined to 

check the input more thoroughly, making sure that the 
substrings before and after the comma are valid numbers 
(consisting only of digits, point, letter E, and leading and 

trailing spaces) before applying VAL, so that the user will 

153. 



get a helpful error message and an opportunity to retype 
rather than have the program abort with code C, A further 

refinement of help to the user might be to display the last x 

and y co-ordinates, and the number of pairs so far, on the 

second and third lines of the screen, for instance by 

375 PRINT AT 1,0; "Point number ";n; 

" was'',v(1),v(2), 

The comma at the end of the PRINT command ensures that 
the previous message is obliterated. Suppose the fifth y 
value is 12.7863 and the sixth is 103; if the comma was not 

there the sixth y value would appear as 1037863 (the 103 

being the true value and the 7863 left over from last time). 
Line 540 needs to obliterate the last message printed by line 

375. Because we do not know how long the two numbers 
will be we cannot be sure how many commas will be 

needed to clear the rest of the area without clearing any of 

the scatter diagram; therefore it is better to clear the area 

first by 

535 PRINT AT 1,0,,,, 

which clears two lines as required. 

ZX BASIC restricts the names of arrays to one 
character. (This is another hangover from the ZX80.) Thus 

we cannot call the maximum and minimum values max and 
min (see lines 10 to 30) and they have been reduced to the 

rather less mnemonic letters x and n. Arguably x should not 
be used as x(1) and x(2) can be confused with the x1 and 
x2 used for the horizontal co-ordinate; perhaps the 
maximum should be called m. We should perhaps attempt 

to make things a little more readable by adding 
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and talking about (x), m(y), n(x), n(y), v(x), and v(y) 

instead of using literal numbers for the subscripts. We 

should then also change lines 70 and 380 to 

FOR i=x TO y STEP y-x 

to make it clearer what the loops are doing. 

CORRELATION 

The line drawn by the above program is called a 

regression line. The program provides an objective way of 

finding this line, and a subjective assessment (by looking at 

the picture) of how closely the experimental results fit this 

line. But there is a quantity which we can calculate, called 

the correlation coefficient, which gives an objective 

measure of how well they fit. 
If all the points lie exactly on the regression line, the 

correlation coefficient is +1 if the line slopes upwards from 

left to right, —1 if it slopes downwards. For any particular 

REGRESSION LINE — a line drawn on a scatter diagram (qv) 

showing the relationship between the two numbers in ques- 

tion. The points do not normally lie exactly on the line because 

of the effect of other, random, influences on the results of the 

experiment 
CORRELATION COEFFICIENT — a number which shows how 
close the relationship is between two quantities (such as those 

represented by the x and y coordinates in a tter diagram 

av), assuming this relationship is linear. 
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regression line, as the points move further away from the 
line the correlation coefficient gets nearer to zero. If the 

slope of the regression |ine decreases while the points 

maintain their distance from it the correlation coeff cient 

again gets nearer to zero. 

Thus if the correlation coefficient is +1 or —1 we 
can predict the value of y exactly, so long as we know the 

value of x. If the correlation coefficient is zero this snows that 

x has no influence on y: we cannot predict y any better 
knowing x than we could if we did not know x. 

The following lines added to the program above 

enable it to calculate the correlation coefficient also. 

225 LET syy=0 

355 LET syy = syy + v(2)*v(2) 

550 PRINT "Correlation coeff. "; (sxy - sx*sy/n)/ 

SQR ((sxx - sx*sx/n) * (syy - sy*sy/n)) 

The values of the correlation coefficient that can be 
regarded as indicating a close relationship between x and y 

depend on the circumstances, but as a rough guide there is 

still a substantial random component in y for correlation 

coefficients as high as 0.85, as can be seen by running the 

program; you can use real data, data you invent yourself, or 

computer-generated data (using RND) as in the programs 

at the end of Chapter 7. 
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9] 

AIC COUNT IINIGI 

One of the problems with most pocket calculators 

is that there is no record of the numbers that were keyed in 

Someone adding up a column of figures on (say) an invoice 
tends to look mostly at the invoice form and at the keyboard, 

and it is very easy to forget to look at the display during the 

brief time that each number appears on it (between keying 

the last digit and keying the ‘+' operator) to check that the 

number has been keyed correctly. 

A program in a personal computer, on the other 
hand, can remember all the numbers that were keyed in (by 

storing them in an array) and display them on the screen so 
that they can be checked against the original data. If they 

are displayed in a column in a similar format to the original, 

the task of checking them becomes fairly easy. 
Unfortunately, BASIC does not make it very easy to 

display figures properly aligned in a column. The following 

program (for the ZX81) shows the kind of thing that is 

required. 

10 DIM p(201) 
20 PRINT AT 10,0; "Type in the prices to be" 
30 PRINT " totalled; use zero to" 
40 PRINT" terminate the list." 
50 FOR i=l TO 200 

60 INPUT p(i) 
70 LET p(i) = INT (p(i)*100 + 0.5) / 100 
80 IF p(i)=0 THEN GOTO 110 

90 NEXT i 
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100 
110 
120 
130 
140 
150 
160 
170 
180 
190 

200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 

350 
360 

370 
380 
390 
400 
410 
420 
430 

160 

SCROLL 

PRINT ''No room for any more." 
SCROLL 

PRINT "Now check the prices." 

FOR i=20 TO 200 STEP 20 
FOR j = i-19 TOi 

IF p( j)=0 THEN GOTO 200 

SCROLL 

LET n$ = STR$ (p( 5)*100) 
PRINT j; AT 21,24-LEN n$; n$( TO LEN ng - 2); 

"os ("O"tn$)CLEN n$ TO LEN n$ + 1) 
NEXT j 
SCROLL 
PRINT "All correct? ("™Y¥" or MINTN)™ 

INPUT r$ 
IF r$="Y" THEN GOTO 360 

IF r$<"N" THEN GOTO 230 
PRINT AT 21,0; "Line number in error?" 

INPUT j 
IF j<=i AND j>i-20 THEN GOTO 310 
PRINT AT 20,0; "Line ";4;" is not on screen." 

GOTO 150 

SCROLL 

PRINT "Correct value?" 
INPUT p(j) 
LET p(j) = INT (p(j)*100 + 0.5) / 100 
GOTO 150 
IF p(j) < 0 THEN NEXT i 

REM here when all been checked 

LET sum=0 
FOR i=1 TO 200 

LET sum = sum + p(i) 
NEXT i 

SCROLL 

LET n$ = STRS (p( j)*100) 



440 PRINT "Total"; AT 21,24-LEN n$; n$( TO LEN n$ 

— 2)3;'"."; ("O'"+n$)(LEN n$ TO LEN n$ + 1) 

Lines 180 and 190, also lines 430 and 440, print the value of 

p(j) correctly aligned assuming it is already rounded to two 

decimal places (which is done by line 70 or 340); we 

assume that p(j) is in pounds (dollars, francs, marks etc.) so 

that the decimal places are the pence (cents, centimes, 
pfennigs, etc.). How would you modify it to deal with half- 

pence? 
The only change required for the Spectrum is to 

remove the SCROLL commands. The PRINT commands on 
lines 220, 260, and 320 could be replaced by a caption in 

the INPUT command that follows in each case. For the 

version that works in half-pence, you could use one of the 

user-defined characters for the ‘Ve’. 

Often, the price of each item on an invoice is 

broken down into net + tax, the net figure being in turn 

broken down into quantity x unit cost. The following 

program (written for the Spectrum) checks the figures on an 

invoice, perhaps one received from a supplier, on which the 

arithmetic has already been done. To keep it simple, we 

assume all items carry tax at 15%. 

SCROLL — to move a picture up and down, or across, the 
screen, like winding the paper of a scroll from one roll to the 

other 
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LET runtotal=0 
LET netsum=0: LET taxsum=0 

CLS 

INPUT "Quantity (or zero if no more", 
“items): ";qty 

IF qty=0 THEN GOTO 500 
INPUT "Quantity: "; (qty), "Unit price: "; 

price, Nets) Us nets. taxa) so fax, 

"Gross: "; gross 
IF ABS (qty*price - net) < 0.01 

THEN GOTO 110 

PRINT "Net price doesn’t tally." 
PRINT qty;" x ";price;" = ";qty*price 
PRINT "given as ";net 
BEEP 0.5,47: GOTO 30 
IF ABS (net*0.15 - tax) < 0.01 

THEN GOTO 160 

PRINT "Tax doesn’t tally." 

PRINT "15% of ";net;" is ";net*0.15 
PRINT "given as "';tax 
BEEP 0.5,47: GOTO 30 

IF ABS (nett+tax - gross) < 0.001 
THEN GOTO 210 

PRINT "Gross price doesn’t tally." 
PRINT net;" + ";tax;" = ";net+tax 
PRINT "given as ";gross 
BEEP 0.5,47: GOTO 30 

LET netsum = netsum + net 

LET taxsum = taxsum + tax 
GOTO 20 

REM here when finished 
INPUT "Total net (zero if not given):",net 
INPUT "Total tax (zero if not given):",tax 
INPUT "Invoice total: ",gross 
IF net=0 THEN PRINT "Net total ";netsum: 

GOTO 590 



IF ABS (net-netsum) < 0.001 THEN GOTO 590 

PRINT "Net total doesn’t tally." 

PRINT "Calculated as ";netsum 
PRINT "given as ";net 
IF tax=0 THEN PRINT "Total tax ";taxsum: 

GOTO 640 
IF ABS (tax-taxsum) < 0.001 THEN GOTO 640 
PRINT "Total tax doesn’t tally." 

PRINT "Calculated as ";taxsum 
PRINT "given as ";tax 
IF ABS (netsum+taxsum-gross) < 0.001 

THEN GOTO 690 

PRINT "Invoice total doesn’t tally." 
PRINT "Calculated as ";netsum+taxsum 

PRINT "given as ";gross 
INPUT "True total: ";gross 
LET runtotal = runtotal + gross 
INPUT "Another invoice to do? (¥/N)"; rs- 
IF r$="¥" OR r$="y" THEN GOTO 15 
IF r$©"N" AND r$O"n" THEN GOTO 700 

PRINT ,,,,"Total of all invoices this run", 
runtotal 

The main change required to make the program 

work on the ZX81 is to separate out the captions from the 

INPUT commands and put them in PRINT commands as in 

the first program in this chapter. Also the BEEP commands 

must be removed; you should consider other ways of 
attracting the operator's attention such as making the 

screen flash. 
The user is asked to type in all five figures for each 

item, and the program checks that net price, the tax, and the 

gross price have been calculated correctly. The first two 

only need to be correct to the nearest penny, because the 
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true value may have been rounded up or down to a whole 

number of pence; the values given for the net price and tax 
should add up to the gross price exactly, but we have to 
allow for rounding errors in the computer and so we only 

insist on it being correct to the nearest tenth of a penny. 

If any of the figures in an item is wrong, the user 

has to type the whole item again. How would you modify the 

program so that only the incorrect figures had to be 
retyped? Remember that when the computer finds that three 

figures are inconsistent it does not know which of the three 
is at fault. Having found one error, the program does not 

check for any further errors but immediately asks for the 
item to be corrected. This is because the correction will 

probably affect the outcome of the remaining tests: if net 

does not tally with qty x price, it may well be that net has 
been mistyped, in which case the other two tests will fail 
also, or that net was wrongly calculated in the first place and 

the figures for tax and gross must now be recalculated. 
The program asks for all the figures to be typed in, 

rather than just asking for the quantity and unit price and 
working the others out. There are two reasons for this; one is 
that the actual figures are used for net and tax, which may 

be up to a penny different from the calculated figures and 

thus (if there are a lot of items) make a noticeable difference 

to the total. The other reason is that it would be quite easy 
for the user to fail to notice a discrepancy between the 

figures displayed on the screen and those on the invoice 

form, so it is better for the comparison to be done by the 
computer. There is then no need for the kind of checking of 

input that was done in the first program in this chapter, 
because the numbers are checked against each other. 
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If we replace line 150 with 

145 INPUT "Is tax figure correct? (Y/N)";r$ 
150 IF rg="N" OR r$="n" THEN GOTO 30 
155 IF r§<>"Y" AND rS"y" THEN GOTO 145 

then the program will cope with the occasional item at a rate 

of tax other than 15%. Consider how you would modify the 
program so that it always required the percentage rate of 

tax to be input, or (by inserting some commands between 

lines 110 and 120) so that it asked the rate of tax only if the 

input figures were not consistent with a rate of 15% 
Consider also how you would modify it to give a discount on 
the net price, so that net was not compared against 

qty * price 

but rather against 

qty * price * (100-discount) / 100 

Alternatively, by a similar modification at line 100 to that just 

described for line 150, the program could report the 
percentage discount (or surcharge) that appeared to have 
been applied and ask if this was correct. If net was smaller 

than qty x price, the discount would be calculated as 

100 * (1 - net / (qty * price)) 

otherwise the surcharge would be calculated as 

100 * (net / (qty * price) - 1) 

The program might be written so that it misses this out if the 
rate of discount or surcharge is clearly absurd, but it would 

not be easy to decide on a suitable criterion for ‘absurd’ — 

adjustments to prices of finished goods caused by 

changing prices of certain metals, for instance, can be very 
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large — so it is probably better to leave it to the user to 
decide what appears reasonable. 

The second part of the program checks the totals 

on the invoice; it allows for the possibility that the individual 
totals of the net and tax figures may not be given on the 

original invoice and it displays them on the screen in case 
they are needed for tax records. It also keeps a grand total 

of all the invoices; it could easily be altered to keep separate 

grand totals for net and tax. 

INCOME TAX 

Another kind of tax calculation, at least in the UK, is 

PAYE (an acronym for ‘pay as you earn’) which is deducted 
from wages by employers when the wages are paid. 

Readers who are not directly interested in PAYE should still 

find the program instructive as an example of the kind of 
data processing that is frequently required in a commercial 

environment 

Each week the total pay since the start of the tax 

year is calculated and the ‘free pay’ (which is the amount of 

pay the employee can have without paying any tax) is 

deducted from it. The remainder, the ‘taxable pay’ is then 

looked up in the Tax Tables (which are supplied to all 

employers by the Inland Revenue) to find how much tax 

should have been paid since the start of the tax year; the 
amount that had been paid by the previous week is 

subtracted to find how much is payable in the current week. 

This amount is deducted from the employee's pay and 

remitted to the Inland Revenue. 

The following program does most of the arithmetic 

involved; as in the previous example, it is written for the 
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Spectrum but the only changes required for the ZX81 are to 

move the captions from INPUT commands into PRINT 

commands and to insert a CLS command before line 200 
The program can very simply be adapted for monthly-paid 

employees by substituting ‘month’ for ‘week’ throughout. 

10 LET all tax = 0: LET all pay = 0 
100 INPUT "This week’s pay: "; pay, 

“Previous total pay: "; prev pay, 

"Total free pay: "; free pay, 
"Previous total tax: "; prev tax 

150 LET total pay = prev pay + pay 

200 PRINT " last week this week" 

210 PRINT 
220 PRINT "week’s pay''; TAB 22; pay 
230 PRINT "total pay "; prev pay; TAB 22; 

total pay 

240 PRINT "free pay"; TAB 22; free pay 

250 PRINT "taxable"; TAB 22; 
total pay - free pay 

260 INPUT "Total tax due: ";total tax 
270 LET tax = total tax - prev tax 

280 PRINT "total tax "; prev tax; TAB 22; 
total tax 

290 PRINT "week’s tax"; TAB 22; tax 

300 PRINT 

310 PRINT "net pay"; TAB 22; pay - tax 

400 PRINT 

EEO DDN meat cease aor ae ee ere, Mi 

420 PRINT 

500 REM accumulate totals of pay & tax 
510 REM for all employees 
520 LET all tax = all tax + tax 
530 LET all pay = all pay + pay - tax 

540 INPUT "Any more employees? (Y/N) ";r$ 
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550 IF rg="y" OR r$="y" THEN GOTO 100 
560 IF rg$<"N" AND r$<>"n"' THEN GOTO 540 

600 PRINT "Total to pay to employees" 

610 PRINT" this week we asb pay: 
620 PRINT "to Inland Revenue "; all tax 

The user types in the previous week's total pay and 

total tax from the Deduction Card, the current week's pay, 

and the ‘total free pay’ figure found by looking up the 

employee's tax code in the tax tables. The computer works 

out the new ‘total taxable pay’ figure, which the user has to 

look up in the tax tables to find the new ‘total tax due’ figure; 
the computer can then work out the remaining figures. 

The display on the screen (generated by lines 200 

to 290) shows the figures to be entered on, or checked 

against, the Deduction Card, in the order in which they 
appear on the Card. A better display, in which the figures 

are correctly aligned with their decimal points under each 
other and exactly two digits in the ‘pence’ column, would be 

produced by the method used in the first program in this 
chapter (lines 430 and 440). Note that this assumes that all 
the figures will be an exact number of pence; ideally we 
should hold them as pence rather than pounds, to avoid 

rounding errors in the calculations. (The computer can hold 
whole numbers up to about 4 000 000 000 exactly, but 

cannot hold numbers expressed as decimal fractions 
exactly. If your wages bill is more than £40m, you will 

probably have a larger computer to do your payroll!) For 
example: 

265 LET total tax = INT (total tax * 100 + 0.5) 

273 LET m$ = STRS prev tax: LET n$ = STRS 
total tax 
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275 IF LEN m$ = 1 THEN LET m$ = "O"+mS 

277. IF LEN n$ = 1 THEN LET n$ = "O"tn$ 

280 PRINT "total tax"; TAB 21-LEN m$; m$(TO LEN 

m$-2); "."; m$(LEN m$ - 1 TO LEN mS); TAB 30- 

LEN n$; n$(TO LEN n$-2); "."; n§(LEN n$ - 1 TO 

LEN n$) 

The version of the program given below uses a subroutine 

(at line 1000) to print a number correctly aligned. 

If we store the various totals for each employee on 

cassette from one week to the next, the user will not need to 

enter these particular figures. The general shape of the 

program is 

(1) set up arrays; 
(2) perform one week's processing; 

(3) save on tape; 

(4) when reloaded from tape, repeat from 2. 

The program below also includes National 

Insurance contributions; the contribution each week is 

based on the pay in that week, which is looked up in another 

of the Tax Tables. Unlike the version above, it copes 

correctly with the case where the employee's total pay is 

less than his free pay. 

10 INPUT "Maximum number of employees: "; n 

20 DIM n§(n,20): REM each employee’s name 

30 DIM p(n): REM total pay to date 

40 DIM t(n): REM total tax to date 

50 LET i=l: GOSUB 2000 

80 LET all tax = 0: LET all nic = 0 
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90 
100 
110 

120 
130 
140 
150 
160 
170 
180 
200 
210 
220 

225 
230 
235 
240 
245 
250 
253 
256 
260 
265 
270 
275 
280 
285 

290 
300 
303 
306 
310 

170 

LET all pay = 0 
PRINT "Name: ";n$(i) 
INPUT "This week’s pay: "; pay, 

"Total free pay: "; free pay, 
"Total NI contr’n: "; tnic, 
"Employee’s NI contr’n: "; enic 

LET pay = INT (pay * 100 + 0.5) 
LET free pay = INT (free pay * 100 + 0.5) 

LET tnic = INT (tnic * 100 + 0.5) 
LET enic = INT (enic * 100 + 0.5) 
LET total pay = p(i) + pay 

LET taxable pay = total pay - free pay 

IF taxable pay < 0 THEN LET taxable pay = 0 
PRINT TAB 11; "last week this week" 
PRINT 

PRINT "total NIC"; 

LET v$ = STR$ tnic: GOSUB 1000 
PRINT "employee’s NIC"; 
LET v$ = STR$ enic: GOSUB 1000 
PRINT "week’s pay''; 

LET v$ = STRS$ pay: GOSUB 1000 
PRINT "total pay"; 
LET v$ = STRS$ p(i): GOSUB 1100 
LET v§ = STRS$ total pay: GOSUB 1000 

PRINT "free pay"; 

LET v$ = STRS free pay: GOSUB 1000 

PRINT "taxable pay"; 
LET v$ = STRS (taxable pay): GOSUB 1000 
INPUT "Total tax due: "; total tax 
LET total tax = INT (total tax * 100 + 0.5) 

LET tax = total tax - t(i) 
PRINT "total tax"; 

LET v$ = STRS$ t(i): GOSUB 1100 

LET v§ = STRS total tax: GOSUB 1000 
PRINT "week’s tax"; 



315 
320 
330 
335 
400 
410 
420 
430 
440 

450 
460 
470 
480 
485 
490 
500 

510 

540 
550 

560 
600 
610 
620 
630 
640 
650 
660 

670 
680 
690 

700 

LET v$ = STRS$ tax: GOSUB 1000 

PRINT 

PRINT "net pay"; 

LET v$ = STR$ (pay - tax - enic): GOSUB 1000 

PRINT 

PRINT "--— 

PRINT 
REM check OK before updating arrays 

INPUT "Figures OK? (Y/N) ";r$ 
IF rg="N" OR r$="n" THEN GOTO 100 

IF rg<>"¥" AND r$<>"y" THEN GOTO 440 
LET p(i) = total pay: LET t(i) = total tax 

LET all tax = all tax + tax 
LET all nic = all nic + tnic 

LET all pay = all pay + pay - tax — enic 

LET i=i+l 

IF i <= n THEN IF n$(i,l) O "" 
THEN GOTO 100 

INPUT "Any more employees? (Y/N) "; r$ 

IF rg="Y" OR rS="y" THEN 

GOSUB 2000: GOTO 100 
IF r$O"N" AND r$O"n" THEN GOTO 540 

PRINT "Total pay to employees" 

PRINT" this week"; 
LET v$ = STR$ all pay: GOSUB 1000 
PRINT 
PRINT "To Inland Revenue: tax" 
LET v$ = STR$ all tax: GOSUB 1000 

PRINT " NI contributions" 

LET v$ = STRS$ all nic: GOSUB 1000 
PRINT " total" 
LET v$ = STR$ (all tax + all nic): 

GOSUB 1000 

INPUT "Now write back to tape: start", 

"recording & then press ENTER."; r$ 
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710 
720 
730 
740 
750 
760 
770 
799 

1000 

1010 
1020 
1030 
1040 
1100 

1110 

1200 

1202 
1210 

1220 

1230 

1240 
2000 
2010 
2020 
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SAVE "PAYE'" LINE 760 

PRINT "Rewind & replay the tape" 
VERIFY "PAYE" 

PRINT "Tape checked successfully" 
GOTO 799 

LET i=l: REM restart here when reloaded 

GOTO 80 

GOTO 9999: REM skip over srtn at end of 

program 

REM Print number from v$ on righthand 

side of screen via GOSUB 1200 

LET tab = 30 
GOSUB 1200 

PRINT 

RETURN 

REM Print number from v$ in centre of 
screen 

LET tab = 21 

REM Print number of pence from V$ as 
pounds and pence, with last digit 

in column 
REM number held in variable TAB 

IF LEN v$ = 1 THEN LET v$ = "0" + vS 

IF v$(1) = "=" THEN IF LEN v$ = 2 THEN LET vS @ 
"Lo" + y§(2) 

PRINT TAB tab-LEN v$; v$( TO LEN v$ - 2); 
"."; vS(LEN v$ - 1 TO LEN v$); 

RETURN 

REM Input name for i’ th employee 
INPUT "Employee’s name: "; n$(i) 

IF n$(i,l1) < “ " THEN RETURN 



2030 INPUT "Name must not start with a", 
"space. Employee’s name:", n$(i) 

2040 GOTO 2020 

For the ZX81, there are the usual changes of 
splitting up lines with more than one command and 

separating the captions etc. out of INPUT commands into 
separate PRINT commands. Lines 720 to 750 must be 

omitted because the ZX81 does not have a VERIFY facility, 

and the text ‘LINE 760' must be omitted from line 710 

because the program will start there automatically when 

reloaded it also carries on there after it has been saved, so 

the user will need to abort it with STOP (or by switching the 

computer off). The input on line 700 is ignored and is simply 

there to provide a convenient way of making the computer 

wait until the user has got the tape ready. 
It is worth emphasising that the Spectrum version 

checks that the new data have been correctly stored on the 

tape, but this is not possible with the ZX81. Unless you have 

a second ZX81 to LOAD it into, you will not discover that the 
tape will not LOAD until after the data have been cleared out 

of the computer's memory. It is safer to SAVE the dataa 

second time (using GOTO 700), and listen to both copies on 

the tape to check they make the right noises, before 

throwing away the data in the computer, but even this is not 

a guarantee that it will load correctly next time. 

There is still scope for improvement to the 

program. For instance, if the total amount of tax due is (say) 

£2.20 less than last week, the program shows the ‘tax due 

this week’ as ‘—2.20' whereas it is entered on the Deduction 
Card as '2.20 R’ (R for ‘refund’). How would you make it print 
the latter format instead? The figure for ‘this week's pay’ may 
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well be made up of a basic wage plus a bonus or 

commission, and with superannuation payments etc. 

deducted; in which case the program should ask for these 

figures separately and calculate the week's pay from them. 

Possibly some of the figures (basic wage, superannuation 
contribution) are the same every week, and can be kept in 
arrays in the way that the employee’s name is. 

If you have the ZX printer, you can make the 
program print out 2 payslip for each employee. 

The Inland Revenue publish algorithms whereby 

the figures for free pay, tax due, etc. can be calculated 

instead of asking the user to look them up. However, for a 

firm with only a few employees the effort of programming 

these algorithms and updating them when the tax rules 
change is probably greater than the effort of looking the 
figure up in the tables. 

INTEREST 

Another kind of financial calculation that the 
computer can do is to compare the returns on different 

kinds of investment. Perhaps you have an ordinary savings 

account with a building society that yields 7% interest, tax 
paid, and you think it unlikely you will need to withdraw your 
money in the near future. Should you consider transferring it 

to a different kind of account on which you get 8.25% 

interest, tax paid, but lose 28 days’ interest if you make a 
withdrawal? The following program calculates the total 
amount of interest in each case. 

10 PRINT AT 20,0; “Amount invested (£):" 

20 INPUT amt 

30, ACLS 
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40 PRINT "Interest on £"; amt 

50 PRINT 

60 PRINT “weeks ordinary high yield” 

70 PRINT 

100 FOR n=1 TO 16 
110 PRINT n*4; TAB 8; 
120 PRINT INT (amt * 7 * n*28/365 + 0.5) / 100; 

TAB 20; 
130 PRINT INT (amt * 8.25 * (n-1)*28/365 + 

0.5) / 100 
140 NEXT n 

Lines 120 and 130 print the interest at the relevant rates. The 

amount invested is multiplied by the percentage rate of 

interest to get the annual interest in pence, this is multiplied 

by the factor required to get the interest over the relevant 

period (4n weeks or 28n days) which is rounded to the 

nearest penny and converted to pounds. The interest rate is 

written into the program rather than being asked for as input 

because it is expected that a program of this nature will be 

fairly ephemeral — written for a particular task and then 

thrown away — and there is no point in making it more 

general than it needs to be for that task. Also, the user is 

probably the same person as the programmer and can 

quite easily alter line 120 or 130 if required; indeed, it will 

usually be sufficient to replace lines 10 to 30 with a LET 

command setting amt to the sum you are thinking of 

investing (or reinvesting) and unless you are going to make 

a copy of the results on the printer the captions printed by 

lines 40 to 70 are not really necessary either. 

In this example both forms of investment pay 

simple interest calculated daily, less tax at the standard rate 

(which you cannot claim back if you are not paying tax, but 
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you do have to top up if you are paying tax at a higher rate). 

A bank deposit account might pay 10.5% on which you 
would then have to pay tax. So if the rate of tax is 30% you 

will only have 70% of the interest left after you have paid tax. 
This is therefore calculated as 

130 PRINT INT (amt * 10.5 * 0.7 * n*28/365 
+ 0.5) / 100 

You forfeit 7 days’ interest if you do not give notice of a 
withdrawal, and you can see the effect of this by 

130 PRINT INT (amt * 10.5 * 0.7 * (n*28-7)/365 
+ 0.5) / 100 

It is also important to know how often the interest is 
paid. Suppose that the ordinary account pays interest every 
three months and the high yield account once a year, and 
that in each case you have the interest paid into the account 

so that it is in effect compound rather than simple interest. 

The interest for the first three months on the ordinary 

account is therefore itself earning interest for the remaining 

three quarters of the year, while that for the high yield 
account is not. The following program compares an account 

paying quarterly at the rate of 7% per annum against one 
paying annually at the rate of 8.25% per annum but with no 
interest being paid for the first 28 days (a very subtle 

difference from the earlier example in which it was the /ast 

28 days for which no interest was paid). We assume that the 

quarters are respectively 90, 91, 92, and 92 days long, the 

first being 91 in a leap year, and that the investment is made 

30 days after the start of the first quarter of a year; amt is the 

amount invested, ba/1 the balance in the ordinary account, 
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bal2 in the high yield account, and ini2 the interest accrued 

on the high yield account but not due to be paid until the 
end of the year; days1 is the number of days in the quarter 

for which interest will be paid on the ordinary account, 

days2 on the high yield account, and days3 the number of 

days in the year. 

Lines 10 to 70 are as before except that ‘weeks’ on 

line 60 is replaced by ‘qtr yr’, Lines 100 onwards are 

replaced by: 

100 LET ball = amt 
110 LET bal2 = amt 

120 LET int2 =0 

130 LET qtr = 1 

140 LET yr = 84 

200 DIM d(4) 

210 LET d(1) = 91 

220 LET d(2) = 91 

230 LET d(3) = 92 
240 LET d(4) = 92 

250 LET daysl = d(1)-30 

260 LET days2 = days1-28 

270 LET days3 = 366 

300 LET ball = ball + INT (ball * 7 * 

days1/days3 + 0.5) / 100 

310 LET int2 = int2 + INT (bal2 * 8.25 * 

days2/days3 + 0.5) / 100 
320. PRINT ss Stel gprs Mottau was 

330 PRINT TAB 8; ball-amt; 

340 PRINT TAB 20; bal2+int2-amt 

350 LET qtr = qtrtl 
360 IF qtr <= 4 THEN GOTO 600 

400 REM here at end of year 
410 LET bal2 = bal2 + int2 
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420 LET int2 =0 

430 LET qtr = 

440 LET days3 365 

450 LET d(1) = 90 
460 LET yr = yrtl 
470 IF yr/4 © INT (yr/4) THEN GOTO 600 
500 LET days3 = 366 
510 LET d(1) = 91 
600 REM set up for next quarter 
610 LET daysl = d(qtr) 
620 LET days2 = daysl 

630 GOTO 300 

i! 

On the ZX81 the program stops with report code 5 

after 18 lines but you can get further output by using the 

CONTinue command. The Spectrum asks you whether to 

scroll the screen: use Y or ENTER to see the next screenful 

of output, N or SPACE (for BREAK) to stop. 

In all the above you can get the figures more 

prettily aligned under each other by using the subroutines 
from the programs earlier in this chapter and in Chapter 10. 

You could also show the output pictorially, as a graph or 
histogram, using the techniques introduced in Chapter 7. 

The descriptions assumed you were the lender, but 
the same principles apply if you are the borrower. You 

might, for instance, want to buy a bigger and better 

computer, and want to compare the cost of paying by credit 
card (interest free for the first few weeks, then interest 

compounded monthly) with that of increasing the mortgage 
on your house (much lower interest rate, but no interest free 

period and probably ‘arrangement fees' to be paid). 

Another possibility is an overdraft at your bank: the amount 

of money you would normally keep in your current account 
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reduces the amount of the overdraft but you may also have 

to allow for an increase in bank charges, and the program 

should take account of these factors. 
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NEERING RECORES 

Nearly all computers have the ability to keep data 

on ‘backing store’, which usually consists of magnetic disc 

or tape. There are three main reasons for using backing 

store: to increase the amount of memory available, to 
preserve data while the computer is switched off, and to 

allow data to be removed from the computer for safe 

keeping or so that it can be loaded into another computer. 

For the computer to have free access to the data 

on a tape, it must be able to contro! the movement of the 

tape past the heads. On tape drives intended for use by 
computers, all the controls (record, rewind, playback, etc.) 

are operated electronically by the computer, so that the 

computer can search the tape for a particular record and 

read that record into its memory when required. Cassette 

tape recorders intended primarily for audio use have 

controls which are operated mechanically from pushbuttons 

on the recorder, although most have the facility to connect a 

‘remote pause’ switch that will stop the motor. 
Some personal computers (though not the ZX 

computers) make use of this ‘remote pause’ facility to 

provide a measure of control of the tape. The computer can 

read a record from the tape and then stop the tape until it is 

ready to read the next record, but it cannot rewind the tape 

nor can it change between the ‘write’ (or ‘record’) and ‘read’ 

(or ‘playback’) modes. If the computer can connect to two 

cassette recorders, it can read records from one, update 

them, and write the updated records out to the other. 
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The only form of backing store provided with the 
ZX81 and Spectrum is cassette tape without any ‘remote 

pause’ facility. It has been announced that there is an 
optional ‘microdrive’ for the Spectrum over which the 
computer will have full control, but at the time of writing few 
details are available. 

Because the program does not have any control 

over the tape recorder, it cannot adopt the approach of 

‘read a record, process it, read another, process it, etc.’. 
While it was processing the first record (which might take 

some time if it involved asking for input from the user) it 
could miss the second record. Therefore we have to adopt 
the approach of reading all the data into memory first, then 
processing it, then writing the new data out to tape again, as 

in the second version of the payroll program in Chapter 9. 
This means that any kind of ‘data base’ application has to 

be restricted to the amount of data that can be held in the 
computer's main memory. 

The simplest way of discovering how much data 
will fit into the computer is to DIMension an appropriate set 

of arrays and see how big they can be made before error 4 
occurs. As a rough guide, a ZX81 with the add-on RAM 

pack has about 15 000 bytes available for the BASIC 

program and data; without the RAM pack it has only about 

700 or less, depending how much there is on the screen. 

The TSIO00 without a RAM pack has about 1000 bytes more 

than the European ZX81. The smaller (16 K) Spectrum has 
about 9000 available, and the larger (48 K) Spectrum has 

about 41 000. A typical BASIC program takes very roughly 

20 bytes per commana, and the remainder of the space is 

available for data: characters take one byte each, numbers 
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take five. 
Taking as an example the ‘bank account’ program 

which follows, the program itself requires about 2500 bytes, 

and each record consists of 16 characters and 2 numbers, 

a total of 26 bytes. Therefore, the ZX81 with the add-on RAM 

pack can cope with up to about 480 records, the 16 K 

Spectrum about 250, and the 48 K Spectrum about 1480. 

The unextended ZX81 does not even have room for the 

program! The later version of the program (the one with the 

menu) is about 3000 bytes longer and thus leaves room for 

about 120 fewer records. 

BANK ACCOUNTS 

A fairly typical example of personal record-keeping 

is keeping track of a bank account. The computer record 

not only gives an up-to-date picture of your finances, it 

allows you to plan ahead by loading the data into the 

computer and adding entries for the transactions you 

expect to do in the next few weeks or months. (You should, 

of course, be careful not to save this fictitious future bank 

account on the tape in place of the real one.) You can also 

easily check it against the bank’s version when your 

statement arrives 

This program is written for the Spectrum, and 

MICRODRIVE — an attachment for the Spectrum, similar to a 

cassette tape but an endless loop of tape instead of the more 

usual reel-to-reel cassette and using a rather faster data rate, 
to provide some of the facilities that a floppy disc provides on 

other machines. 
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outputs your balance in red when you are overdrawn. To 
save space on the screen, a single column is used for the 

amount of all entries, credit entries being shown in black 

and debit entries in red. (Your bank statement uses 
separate columns for credit and debit entries.) 

Many banks do not charge for transactions 

provided a certain minimum balance is maintained in the 

account. The program uses a yellow background for the 
balance if it is below this minimum (unless it is actually 

overdrawn), as a warning that you will have to pay charges. 

Some banks require a minimum cleared balance; you can 
get an approximate idea of what your cleared balance is 

likely to be by delaying all credit entries by four working 

days. For instance if you go into the bank on a Thursday and 
draw £50 cash and pay in a £75 cheque, you should make 
the £50 debit entry for that day but make the £75 credit entry 

for the following Wednesday. 

10 REM bank account 
20 LET next entry = 2 

30 LET max entry = 200 

40 DIM d$(max entry,5): REM dates 

50 DIM e$(max entry,11): REM details 
60 DIM a(max entry): REM amounts 

70 DIM b(max entry): REM balances 

100 INPUT "Minimum for free banking: "; 
min free 

110 LET min free = INT (min free * 100 + 0.5) 

120 INPUT "Starting date (5 chs): ";d$(1) 
130 LET e$(1) = "Balance fwd" 

140 INPUT "Starting balance: "; b(1) 
150 LET b(1) = INT (b(1) * 100 + 0.5) 

200 REM draw "statement" form 

184 



INK 0: PAPER 7: CLS 

POKE 23692, 20 
FOR n = 1 TO next entry - 1 
GOsuUB 1000 
NEXT n 

REM here to add an entry 

INPUT "Make an entry? (Y/N) "; rs 

IF r$="N" OR r§="'n" THEN GOTO 620 

IF r$O"¥" AND r$O"y" THEN GOTO 210 
IF next entry >= max entry THEN GOTO 600 

REM make next entry 
INPUT "Date (5 chs): "; d$(next entry) 
INPUT "Details (11 chs): "; e$(next entry) 

INPUT "Amount: "; x: LET x = ABS x 
INPUT "Credit or debit? (C/D): "; r$ 
IF r$="C" OR r$="c" THEN GOTO 480 
IF r$O"D" AND r$O"d" THEN GOTO 440 
LET x = -x 

LET a(next entry) 
LET b(next entry) 

+ a(next entry) 

LET n = next entry: LET next entry = ntl 

GOSUB 1000 

GOTO 300 

REM here if arrays full 
PRINT "Sorry, no more room." 

REM here when finished 

INPUT "Save on tape? (Y/N) "; r$ 
IF r$="N" OR r$="n" THEN GOTO 9999 

IF r$<"¥Y" AND r$"y"" THEN GOTO 630 
SAVE "Bank" LINE 200 

PRINT "Replay tape to verify" 

VERIFY "Bank" 

GOTO 9999 
REM add entry n to statement on screen 

INT (x * 100 + 0.5) 

b(next entry - 1) 
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1010 
1020 
1030 

1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
2000 
2010 
2020 

2030 
2040 

2050 

2060 

IF PEEK 23692 > 20 THEN POKE 23692,14 
PRINT AT 21,0: PRINT 
PRINT AT 0,0; 

"Date Details Amount Balance",, 
PLOT 0,164: DRAW 255,0 

PRINT AT 20,0; d$(n); " "3 e$(n); 
LET w=7: LET v=a(n): GOSUB 2000 
LET w=8: LET v=b(n) 

IF v >= 0 AND v < min free THEN PAPER 6 
GOSUB 2000: PAPER 7 

PLOT 44,8: DRAW 0,167 

PLOT 137,8: DRAW 0,167 

PLOT 193,8: DRAW 0,167 

RETURN 

REM write v pence in w characters (2<w<9) 
LET v$ = STRS ABS v 

IF LEN v§ >= w THEN LET v$ = " *#kkAx' 

(2 TO w) 
LET vg =" 0"(9-w TO 7-LEN vS) + vs 

REM now v$ is w-l chs long & last 2 
are digits 

PRINT INK 2 AND v<0; v$(1 TO w-3); "2"; 
v$(w-2 TO w-1); 

RETURN 

Lines 10 to 150 simply set up the arrays and fill in 
the first entry. Two character arrays hold the date and the 

description of each entry (‘chq' and the cheque number for 
a debit entry which is a payment by cheque, ‘salary’ for a 

credit entry which is your monthly salary, etc.); two numeric 
arrays hold the amount of the entry (positive for a credit 

entry, negative for a debit entry) and the current balance. 
The latter is not strictly necessary, as it can be calculated by 

adding up all the ‘amount’ figures, but it can be useful, if 
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adjustments have to be made, to simply alter the ‘balance’ 
figures without actually inserting the extra entries. (When 

your bank statement arrives you might find that, because of 

paying bank charges, say, or receiving dividends on 

shares, the two do not tally, and you may not wish to insert 

extra records to deal with them.) To eliminate the separate 
‘balance’ figures delete lines 70 and 490 and add 

140 INPUT "Starting balance: "; a(1) 
150 LET a(1) = INT (a(1) * 100 + 0.5) 

225 LET balance = 0 

1065 LET balance = balance + a(n) 

1070 LET w=8: LET v = balance 

Lines 200 to 250 write out the existing entries to the 
screen with the help of the subroutine on lines 1000 
onwards, which scrolls the entries up the screen while 

maintaining the headings at the top of the screen and the 

lines marking the individual columns. Scrolling stops 

periodically, the user being asked to press a key when he 
has read what is on the screen; line 220 prevents this 
happening before anything has been written to the screen 

(try the program without it to appreciate this) and line 1010 

arranges that the ‘pages’ that the user sees overlap by a few 
lines. 

Lines 300 to 520 add a new entry to the records 

and to the screen, and lines 630 to 690 save the new state of 
affairs on tape 

It is important to get the right number of spaces in 

the character string literals: line 1030 has two spaces 

between the words ‘Date’ and ‘Details’, five between 
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‘Details’ and ‘Amount”, and one between ‘Amount’ and 

‘Balance’. The two commas at the end ensure that the 

second line on the screen is cleared of anything that has 

been scrolled up into it. The string on line 2020 has two 
spaces and six asterisks, and that on line 2030 has five 
spaces before the zero. 

The subroutine starting at line 2000 writes out the 

amount or balance correctly aligned (assuming it is in 
pence and is a whole number), or writes a row of asterisks if 

the figure is too large. Line 2030 arranges for the string v$ to 
be of the correct length and puts a zero in the tens-of-pence 
column if the figure is less than ten pence. Line 2050 prints 

it, complete with its decimal point, in red (colour 2) if v was 

negative and in black (colour 0) otherwise. 
To adapt the program for the ZX81, apart from the 

changes to INPUT and to lines with more than one 

command which should by now be familiar, we need to 

change the output format to use the less sophisticated 
facilities that the ZX81 provides. The main differences are: 

(a) We cannot use red for negative figures; probably the 

best compromise is to use white-on-black as in 

2050 LET v$ = v$(1 TO w-3) + "."" + v$ (w-2 TO w-l) 

2052 IF v >= 0 THEN GOTO 2058 
2054 FOR i=l TO w 

2055 LET v$(i) = CHR$ (128 + CODE v$(i)) 

2056 NEXT i 
2058 PRINT vs; 

(b) DRAW is not available for the lines separating the 

columns from each other. We can use the pixel graphics to 
draw rather thicker lines, or the division can be made in 
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some other way, for instance 

1030 PRINT AT 0,0; 
1035 PRINT "Date :Details :Amount :Balance" 
1040 PRINT '"'-----;---------- 

1050 PRINT AT 20,0; d$(n); "3"; e$(n)5 

1060 LET w=6 

1062 LET v=a(n) 

1064 GOSUB 2000 
1070 LET w=7 

1075 LET v=a(n) 

1080 PRINT ":"; 

Note that, whatever method is used, w must be one less 
than in the Spectrum version. 

(c) There is no direct equivalent of the yellow background 

used to show that the balance has fallen below the minimum 
for free banking. However, it can be marked by a character 
in the space between the ‘Amount’ and ‘Balance’ columns 
as in 

1080 LET v$ abi 

1082 IF v< OR v >= min free THEN GOTO 1086 
1084 LET vg = "*" 

1086 PRINT vs; 

on 

(a) Explicit scrolling (using the SCROLL command) must be 
used instead of that implied by the PRINT commands on line 
1020, thus 

1020 SCROLL 

Also, the commands on lines 220 and 1010 (which control 

the ‘Scroll?’ message on the Spectrum) must be replaced 

by something like 
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220 LET scroll count = 19 

1010 LET scroll count = scroll count - 1 
1012 IF scroll count > 0 THEN GOTO 1020 

1014 LET scroll count = 14 
1016 PRINT AT 21,0; "Hit "NEWLINE" to scroll" 

1018 INPUT v$ 

to allow the user to indicate when he has read one pageful 

and the program can go on to the next, although it is 
arguable that the ZX81 prints numbers so slowly that he has 

plenty of time to read them anyway! 

(e) The same changes are needed to SAVE etc. (lines 660 to 

680) as in the payroll program in Chapter 9. 

EXTRA FACILITIES 

There are a number of facilities that it would be 
useful to add to this program, and which are indeed typical 

of this kind of ‘database’ application: for example the ability 

to alter records, insert records, delete records, list the 
records starting at a particular place, and scroll the listing 

down as well as up. 

In all the programs so far, the program has 

followed a well-defined sequence of calculations and asked 

the user for input when it was required. The programmer, 
through the program, was controlling the sequence of 

events, and the user's role was entirely passive. Of course, 

the user has ultimate control in that he can choose not to run 

the program and can abort the program at any time. (Note 

that we do not say that the computer is controlling anything: 

the computer is not responsible for the way a program 
behaves any more than a tape recorder is responsible for 
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the views expressed by a voice recorded on a tape.) 
In the next example we have a somewhat different 

situation in which we require the user to choose what tasks 
the program shall perform, and in what order. Once a 

particular function has been chosen, however, the 
programmer still controls how it is carried out. 

The user could be offered the ability to type 

commands to the program much in the way the programmer 

types commands for the BASIC, but this would require the 

user to learn the ‘language’ in which the commands are 
expressed and in particular to learn just what commands 

are available; it would also require the program to interpret 

the commands (which would presumably be typed in as 

character strings) and, as we saw in the earlier chapters, 
this is likely to lead to either a rather complicated program 

(difficult for the programmer and possibly using up an 
embarrassingly large amount of the computer's memory) or 

else an over-rigid format for the commands (tedious for the 

user). 

The usual method followed in this kind of situation 

is to offer the user a ‘menu’ of available facilities. The user 

selects one facility from this menu, and the program then 

asks the user for the necessary data in just the same way as 

in the earlier programs. in this way the user is shown exactly 
what facilities are available and the course taken by the 

program is directed by simple (mostly single-character) 

responses. 
For the bank account program we might have the 

following, lines 10 to 150 being the same as before. 

200 INK 0: PAPER 7: CLS 
210 PRINT "1 View statement from start" 
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215 PRINT 
220 PRINT "2 View last page of statement" 

225 PRINT 
230 PRINT "3 Add an entry to the end" 

235 PRINT 

240 PRINT "4 Add an entry in the middle" 

245 PRINT 

250 PRINT "5 Remove an entry" 

255 PRINT 

260 PRINT "6 Alter an entry" 

265 PRINT 

270 PRINT "7 Print statement out" 
275 PRINT 
280 PRINT "8 Save data on cassette tape" 

285 PRINT 

290 PRINT "9 Exit from program" 
300 INPUT "Select item number: "; n 
310 LET n = INT (nt0.5) 
320 IF n<l OR n>9 THEN GOTO 300 
330 CLS 
340 GOTO 1000 * n 

Line 340 jumps to line 1000 if item 1 is selected, 
2000 if item 2, and so on. Line 310 ensures that the line 

jumped to is one of 1000, 2000, 3000, etc: otherwise the 
user might type (say) 4.73 and cause the program to jump 

to line 4730, with consequences that are unlikely to be 
helpful. Alternatively line 310 could insist on a whole 

number, by doing 

310 IF n < INT n THEN PRINT AT 19,0; 

"Ttem number must not include a", 

yt fraction": GOTO 300 

Similarly line 320 could give the user a message, which 

would indicate that a number in the range 1 to 9is 
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expected, before jumping back to line 300. 
The part of the program that deals with each item 

must finish by jumping to line 200; alternatively we could 

replace line 340 with 

340 GOSUB 1000 * n 
350 GOTO 200 

so that a RETURN command is used instead of GOTO 200, 
which at first sight appears to be rather neater and give a 
more ‘well-structured’ appearance. However, in the case of 

item 9 we do not wish to return to line 200 and so ought to 
remove the unwanted information from the GOSUB stack. In 
the Spectrum this can be done using CLEAR (which will also 

throw away all the arrays etc.) but in the ZX81 only NEW 
(which throws everything away) will do it. We should add 

335 IF n=9 THEN GOTO 9999 

so that item 9 is treated specially and avoids putting 
anything on the GOSUB stack in the first place. 

Assuming that we retain the original line 340, the 

rest of the program can be as follows. 

500 REM add entry n to statement on screen 
510 IF PEEK 23692 > 20 THEN POKE 23692,14 

520 PRINT AT 21,0: PRINT 
530 PRINT AT 0,0; 

"Date Details Amount Balance",, 

540 PLOT 0,164: DRAW 255,0 
550 PRINT AT 20,0; dS(n); " "5 eS(n); 

560 LET w=7: LET v=a(n): GOSUB 700 

570 LET w=8: LET v=b(n) 
580 IF v>=0 AND v < min free THEN PAPER 6 

590 GOSUB 700: PAPER 7 
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194 

PLOT 44,8: DRAW 0,167 

PLOT 137,8: DRAW 0,167 

PLOT 193,8: DRAW 0,167 
RETURN 

REM write v pence in w characters (2<w<9) 
LET v§ = STRS ABS v 
IF LEN v$ >= w THEN LET v$ = " *kx44x" 

(2 TO w) 
LET vs =" O"(9-w TO 7-LEN v$) + vs 

REM now v$ is w-l chs long & last 2 chs 
are digits 

PRINT INK 2 AND v<O; v$(1 TO w-3); "."; 
v$(w-2 TO w-1); 

RETURN 
REM Display statement from start 

LET m=1 

GOTO 2030 
REM Display last page of statement 

LET m = next entry - 18 
IF m<l THEN LET m=1 

REM Display statement from mth entry 
POKE 23692, 20 
FOR n = 1 TO next entry - 1 
GOSUB 500 
NEXT n 

REM Wait for user then go to 200 
INPUT "Hit ENTER for main menu: "; rs 
GOTO 200 

REM Add entry at end 
IF next entry >= max entry THEN GOTO 4020 
LET n = next entry 
GOSUB 3500 
LET next entry = next entry + 1 
GOTO 2000: REM to display new entry 

REM Input entry number n 



3510 
3520 
3530 
3540 

3550 
3560 
3570 
3580 
3590 
3600 
3610 
4000 
4010 
4020 
4030 
4040 
4100 
4110 
4120 
4130 
4140 
4150 
4160 
4170 
4180 
4190 
4500 
4501 
4502 

4510 
4520 
4530 
4540 
4550 

INPUT "Date (5 chs): "; d$(n) 
INPUT "Details (11 chs): "; e$(n) 
INPUT "Amount: "; x 
LET x = INT (0.5 + 100 * ABS x) 

INPUT "Credit or debit? (C/D): "; r$ 
IF r$="C" OR rg="'c"" THEN GOTO 3590 
IF r$O"D" AND r$O'"d" THEN GOTO 3550 
Eee ae 

LET a(n) 

LET b(n) 

RETURN 

REM Insert entry 
IF next entry < max entry THEN GOTO 4100 

REM here if no room to insert 
PRINT "No room for any more records" 

GOTO 2100 
REM here if room to insert entry 

LET m§ = "Insert before": GOSUB 4500 
IF n=0 THEN GOTO 200 

FOR i = next entry TO n STEP -l 

LET dS$(itl) = d$(i): LET e$(itl) = e$(i) 
LET a(itl) = a(i): LET b(itl) = b(i) 

NEXT i 

LET next entry = next entry + 1 

GOSUB 3500 
GOTO 6100 

REM Find record & set n to its number, or 

REM to zero if not found 
REM Enter with m$ showing what to do 

with it 

PRINT "Note: you must give the date" 
PRINT " EXACTLY as it is shown" 
PRINT " on the statement" 
INPUT (m$+" entry dated: "); r§ 
LET r$ = (r$+" ")( TO 5) 

x 

b(n-1) + x 
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4560 
4570 
4580 
4590 
4600 
4610 
4620 
4630 
4640 
4650 
4660 
4700 
4710 
4720 
4730 
4740 
4750 
4760 
4770 
4780 

4790 
4800 
5000 
5010 

5020 
5030 
5040 
5050 
5060 
5070 
5080 
6000 
6010 

196 

FOR n = 1 TO next entry - 1 

IF d$(n) = r$ THEN GOTO 4620 
NEXT n 

INPUT "Not found. Try again? (Y/N) "; r$ 
IF rg="Y" OR r$="y''" THEN GOTO 4510 

LET n=0: RETURN 

REM Found record, n=number, see if another 

FOR i = mt+l TO next entry - 1 

IF d$(i) = r$ THEN GOTO 4700 

NEXT i 
RETURN: REM identified unambiguously 

REM here if more than one with the same date 
LET m=n 

POKE 23692,20 
REM write out relevant part of statement 

FOR n=m TO m+17 

IF n >= next entry THEN GOTO 4780 
GOSUB 500 
NEXT n 

INPUT "Entry number? (1 = first on", 
"screen, 2 = second, etc) "; n 

LETn=m+n-1 
RETURN 

REM Delete entry 

LET m$ = "Delete'': GOSUB 4500 

IF n=0 THEN GOTO 200 

FOR i = n TO next entry - 2 

LET d$(i) = d$(itl): LET e$(i) = e$(it1) 
LET a(i) = a(itl): LET b(i) = b(itl) 

NEXT i 

LET next entry = next entry —- 1 

GOTO 6100 
REM alter entry 

LET m$ = "Replace": GOSUB 4500 



6020 
6030 
6100 
6110 

6120 
6130 
6140 
6150 
6160 
6170 
7000 
7010 
7020 
7030 
7040 
7100 
7101 
7110 
7120 
7125 
7130 
7140 
7150 
7155 
7160 
7170 
7180 
7200 
7210 
7220 
7230 
7240 
7250 
7260 

IF n=0 THEN GOTO 200 

GOSUB 3500 
REM recalculate balances 

INPUT "Recalculate subsequent balances?"; 

pate hb Bikes ee 
IF r$="N" OR r$="n" THEN GOTO 200 
IF r$O"¥" AND r$O"y" THEN GOTO 6110 
FOR i=n TO next entry - 1 
LET b(i) = b(i-1) + a(i) 

NEXT i 

GOTO 200 
REM output statement to printer 

IF IN 251 © 255 THEN GOTO 7100 
PRINT "You must connect a ZX printer to" 
PRINT " be able to use this facility." 
GOTO 2100 

REM here if we do have a printer 
REM set up characters for the ruled lines 

FOR i = 0 TO 15 

POKE USR "a" + i, BIN 00001000 
POKE USR "c" + i, BIN 01000000 

POKE USR “e'"' + i, BIN 00000000 

NEXT i 
POKE USR "b" + 3, BIN 11111111 

POKE USR "d" + 3, BIN 11111111 

POKE USR "f"' + 3, BIN 11111111 » 
LPRINT "Date |Details | Amount] Balance" 
LPRINT "-----+-----------+------+------=" 
FOR n = 1 TO next entry - 1 

LPRINT d$(n); "1"; e$(m); "1"5 
LET w=6: LET v=a(n): GOSUB 7500 

LET rg = "|": LET v=b(n) 
IF v >= 0 AND v < min free THEN LET r$="*" 

LPRINT r$; 

LET w=7: GOSUB 7500 
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7270 NEXT n 
7280 GOTO 200 
7500 REM write v pence in w characters (2<w<8) 
7510 LET v$ = STR$ ABS v 

7520 IF LEN v$ >= w THEN LET v$ = "' *#kkexk"' 

(2 TO w) 
7530 LET v$ =" 0"(8-w TO 6-LEN v$) + v$ 
7540 LPRINT INVERSE v<0; v$(1 TO w-3); "."; 

v$(w-2 TO w-1); 
7550 RETURN 

8000 REM Save on tape 

8010 SAVE "Bank" LINE 200 
8020 PRINT "Replay tape to verify" 

8030 VERIFY "Bank" 

8040 GOTO 200 
9000 REM exit ’ 
9010 PRINT "Finished." 

9020 PRINT 
9030 PRINT "To re-enter, do GOTO 200" 

Note that the loop on lines 5030 to 5060, which copies the 

records back to close up the gap that would otherwise have 

been left by a deleted record, works forwards through the 

records from the deleted record to the end, whereas the 
loop on lines 4130 to 4160, which copies them forwards to 

open up a gap into which a new record can be insterted, 

works backwards from the end to the point of insertion. 
Consider what would happen if line 4130 was 

FOR i = n TO next entry 

so that the program worked forwards through the records: 
the first time round the loop record n+1 would be replaced 

by a copy of record n; the second time round record n+2 
would be replaced by a copy of this new record n+1, which 
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is the same as record n; the third time round record n+3 

would be replaced by a copy of the new record n+2, which 

is the same as record n; and so on. The end effect is that we 
have a large number of copies of record n and all the later 

records have been lost. It is always necessary when shifting 

blocks of data round in this way to take care that you move 
the data in the correct sequence, and never re-use the 

space occupied by something until after you have moved it 

The subroutine starting at line 4500 asks the user 
to identify a record by giving its date (which line 4550 
ensures is exactly 5 characters long); if there are several 

records with the same date the user is asked to identify the 
required one in a portion of the data that is displayed on the 

screen for the purpose. This assumes that every record will 

have a date and that the records will be in date order; if the 
assumption is false the program will not actually crash but 

the user might not easily be able to identify the required 

record. An alternative would be to display the statement with 

a marker against the ‘current record’ rather like that against 

the ‘current line’ in the listing when a ZX BASIC program is 

being edited; this could be moved around by the cursor 

control keys (read via INKEY$) and cause the display to 

scroll when it gets near the top or bottom of the screen. 

The input and display routines could be modified 

so that if no date is input the date is assumed to be the 

same as that on the preceding entry, and when an entry is 

output its date is omitted if it is the same as that on the 

previous entry (unless it is the first one on the screen). 
After making an alteration in the middle of the data, 

the user is offered the opportunity of having all the ‘balance’ 

figures after the point of alteration recalculated (lines 6100 
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to 6160). Further extensions to the program which you 
should consider are to allow the user to input an explicit 

‘balance’ figure, and to allow a group of several entries to be 
deleted or amended. 

Line 7010 tests whether the ZX printer is present. 

The 2X81 does not have the IN function, but a very simple 

machine code routine can be used instead: it consists of the 
six bytes 

2195. 251.5: °79)..65) 05, 201 

which we can add to the front of the program in a REM 

command as 

1 REM <= CLS ?@# TAN 

being careful to use exactly the right characters (looked up 
in Appendix A of the manual). There is a space character 

between the graphics character and TAN, but nowhere 

else. To get CLS, first type THEN (to get into K mode), then 

type CLS, then go back and rub the THEN out; alternatively 
type CLS immediately after the line number and then go 
back and type REM < = afterwards. The question mark 

represents the character with code 79, which you cannot 

type directly: use any character when first typing the line in, 

and after it has been added to the program do 

POKE 16516,79 

to insert the correct code. Now USR 16514 can be used in 
place of IN 251 in line 7010. 

Lines 7110 to 7160 set up user-defined graphics 
for drawing lines on the printer similar to those used on the 
screen. The graphics-shift A is used for the line between the 
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‘Date’ and ‘Details’ columns, C for the other two lines. When 
you type the program in, these characters will probably 

appear as capital A and capital C, but after the computer 
has obeyed lines 7110 to 7160 (which will only happen if 

you have a ZX printer and invoke item 7 unless you do a 

deliberate GOTO 7110) they will appear as the appropriate 
vertical bar symbols. The first plus-shaped symbol on line 
7180 is graphics-shift b, the other two are ds, and the 

horizontal-line characters are fs. 

The subroutine at lines 500 to 630 could be 
rearranged to use these graphics characters also, but it 
would still be necessary to ensure that the lines dividing the 

columns from each other extended from top to bottom of the 
screen, even when there was only one record to be 

displayed. 
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EIPIIINIGHSICORE 

Many games involve a certain amount of arithmetic 
and record-keeping, and the computer can be used for this. 
The following program keeps score at darts; the total score 
for three darts is entered as a single number, although 

because ZX BASIC lets you enter any expression rather 

than restricting you to a literal number the user can type, for 
instance, 

16+3*19+50 

if the three darts are a 16, a treble 19, and a bull. 

The program is written for the Spectrum, but the 
only changes required for the ZX81 are omission of the 

colour controls such as ‘INK 4;' and the alterations (to INPUT 

and to lines containing more than one commana) that 
should by now be familiar from the earlier chapters 

10 REM darts chalker 

20 DIM n$(2,15): DIM n(2): REM name & its length 
30 DIM s(2): REM score 

40 INPUT "Name of Ist team? "; s$ 

50 LET n$(1) = s$: LET n(1) = LEN s$ 
60 INPUT "Name of 2nd team? "; s$ 
70 LET n$(2) = s$: LET n(2) = LEN s$ 

80 INPUT "Starting score? "; start 

90 INK 7: PAPER 0: BORDER 0 

100 REM start game 

110 CLS: PRINT n$(1); TAB 16; n$(2) 
120 PRINT 
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FOR i = 1 TO 2 

LET s(i) = start 
LET s$ = ""': GOSUB 1000 
NEXT i 

REM each side’s throw 
FOR i = 1 TO 2 

INPUT (n$(i,1 TO n(i))+"’s score? "); score 
IF score=0 OR score > s(i) OR 

score = s(i)-1 THEN GOTO 270 
LET s(i) = s(i) - score 

LET s$ = STR$ score: GOSUB 1000 

IF s(i) = 0 THEN GOTO 300 

NEXT i 

GOTO 210 

REM here when i’th side has won 

PRINT 

PRINT FLASH 1; n$(i); " wins!" 

INPUT "Another game? (Y/N) "; r$ 
IF r$O"y" AND r§$O"y" THEN GOTO 9999 

INPUT (n$(1)+" to start? (Y/N) "; r$ 
IF rg="Y" OR r$="y" THEN GOTO 100 
IF r$O"N" AND r$O"n" THEN GOTO 350 
LET r$=n$(1): LET n$(1)=n$(2): LET n$(2)=r$ 
GOTO 100 

REM print score s$ and new total for 

REM side number i 
REM leaves s§ = total 

PRINT INK 4; TAB (16*i-12-LEN s$); s$; 

LET s$ = STRS s(i) 

PRINT TAB (16*i-6-LEN s$); sS; 

RETURN 

The program prints two columns for each side, the 

lefthand column being the actual scores (in green chalk) 
and the righthand column being the amount left (in white). It 

does not print anything if the score is zero or ‘bust’. 
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To keep a count of the games won by each side, 

and display it in red at the top of the screen, the following 

lines can be added to the program. Note that when the array 
gis D\Mensioned its elements g(1) and g(2) are set to zero. 

25 DIM g(2): REM games won 

115 PRINT INK 2; g(1); TAB 16; g(2) 

305 LET g(i) = g(i) +1 

385 LET score=g(1): LET g(1)=g(2): 

LET g(2)=score 

If the two sides take it in turns to throw first, you can 

miss out lines 350 to 370. If the loser of one game throws 

first for the next, you can put 

360 IF i=2 THEN GOTO 100 

in their stead. 

If you replace line 1030 with 

1030 PRINT TAB (16*i-6-LEN s$); PAPER s(i)=170 OR 

s(i)=167 OR s(i)=164 OR s(i)<162 AND 

s(i)<>159; s$ 

then the score is on a blue background instead of black if a 
three-dart finish is available. How would you modify the 

program so that it listed all the possible three-dart finishes 
from the next player? 

To reduce the number of occasions on which the 

players have to wait for the scorer to catch up, we need to 
make it as easy as possible to input the scores. The 
following modification allows each dart to be entered 

205 



separately, or two or three can be entered at once; all the 

input can be done without pressing any shift keys. The user 

is expected to use a single space to separate one dart from 

the next if more than one is entered at a time, and not to use 

spaces in any other circumstances; this must be clearly 

explained in documentation or in a message on the screen 

when the program is started. The reason for this apparently 

‘user-unfriendly’ approach is to allow the input to be typed 

as quickly as possible. 

The score is typed as a number which may be 

preceded by D or X to indicate a double or T for a treble; B 

(for bull) may be used instead of 25. Thus double top may 

be entered as 40 or D20 or X20, treble nineteen as 57 or 

T19, and a bullseye as 50 or D25 or X25 or DB or XB. 

220 

We replace line 220 with 

GOSUB 2000 

and the subroutine is 

2000 
2010 
2020 
2030 
2040 

2050 
2100 
2101 
2110 
2120 
2130 
2140 
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REM input score for side i 
LET r§. = '"; LET score=0 
POKE 23658,8: REM set caps lock 

LET d$="first": GOSUB 2100 

LET d$="second": GOSUB 2100 

LET dg="third" 
REM input one dart and add to SCORE 

REM leaves unused data in r$ for next time 

IF r$="" THEN GOTO 2140 
IF r$(1)="_" THEN LET r$=r$(2 TO): GOTO 2150 

BEEP .2,47: BEEP .35,31: BEEP .4,47 

INPUT (score;" ";n$(i);'"’s ";d$;" dart: ");r$ 



2150 
2160 
2170 
2180 

2190 
2200 
2210 
2220 
2230 
2240 
2250 
2260 
2270 
2280 
2290 
2300 
2310 
2320 
2330 

IF rg=""' THEN RETURN 

IF r$(1)=" '" THEN RETURN 

LET m=1 

IF r$(1)="D" OR r$(1)="X" THEN 
LET m=2: GOTO 2210 

IF r§(1)<>"I" THEN GOTO 2220 

LET m=3 

LET r$ = r$(2 TO) 
IF r§(1)="B" THEN LET n=25: GOTO 2290 
LET n = CODE r$ - 48 

IF n<O OR n>9 THEN GOTO 2130 

LET r§ = r$(2 TO) 
LET n2 = CODE r$ - 48 
IF n2<O OR n2>9 THEN GOTO 2300 
LET n = 104n + n2 
LET r$ = r$(2 TO) 

IF r§ = '" THEN GOTO 2320 
if rg(1) <> " " THEN GOTO 2130 
LET score = score + m*n 

RETURN 

Consider how the program can be enhanced to 
allow T (for ‘top’) to be typed instead of 20, so that DT or XT 

means double top or 40, and TT means treble top or 60. We 

can process T in the same way as B by adding 

2225 IF r$(1)='"'T" THEN LET n=20: GOTO 2290 

but this on its own is not enough: if the input string consists 

simply of “T” for ‘top’, the test at line 2190 will assume it 
means ‘treble’ and expect it to be followed by a number or B 

or T. At line 2240 the program finds that it is not, and 

‘complains’. This is an example of the adage ‘an 

enhancement is a change to a program as a result of which 
it no longer works’. We must add 
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2195 IF CODE r$(2 TO ) < 48 THEN LET n=20: GOTO 2290 

in which we assume T means ‘top’ if it is at the end of the 
string or followed by a space, ‘treble’ if it is followed by a 

letter or a digit. 
The program as written here does not do an 

exhaustive check for errors; those that will slip by include 
further characters in the string /$ after the third dart has 

been read, and invalid scores such as 23 or 77 or T25 or 
x99. 
Suggestions for further development are: 

(a) Recognise when a side wins with its first or second dart; 

(b) Recognise when a side goes bust (i.e. reduces the 
amount left to 1 or to a negative number) with its first or 

second dart, and do not ask for the remaining ones; 
(c) Only allow a side to win if its last dart was a double; a 
single or treble that reduces the score to zero counts as 

‘bust’; 

(d) |f the amount left is one of 50, 40, 38, 36, . . ., 2showit as 
X25, X20, X19, X18, .. ., X1 to indicate that a one-dart finish 

is possible; 

(e) Show the amount left after each dart, unless it is more 

than 170. 

MAH-JONGG 

Another game which requires a fair amount of 

arithmetic in the scoring is mah-jongg. It is a game for four 

players which is in many ways similar to canasta, but 
instead of cards it is played with ‘tiles’ made of bamboo and 
ivory or (increasingly nowadays) of plastic. Each hand ends 
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either when one player wins or when all the tiles have been 

used up. in the latter case no scores are counted, but 

otherwise all four players count up the values of the 

combinations of tiles they hold: each player receives the 

value of his hand from each other player except that the 

winning player does not pay anything out. There is a further 

complication that the player who is 'East wind’ pays and 

receives double. 
Suppose for example that player A wins with a 

score of 22, B scores 48, C is East wind and scores 4, and D 

scores 6. Then A receives 22 from B, 44 from C, and 22 from 

D, and (being the winner of this hand) pays nothing out, so 

he has a net gain of 88; B receives 96 from C and 48 from D 

and pays 22 to A, 8 to C, and 6 to D, for anet gain of 108; C 

receives 8 from each of B and D, and pays 44 to A, 96 to B, 

and 12 to D, for anet loss of 136; and D receives 6 from B 

and 12 from C, and pays 22 to A, 48 to B, and 8 to C, fora 

net loss of 60. While the scorer is working all this out, the 

other three players are ‘building the wall’, i.e. getting the 

tiles ready for the next hand. 
The following program keeps account of the state 

of play. If the player who is East wind wins the hand, he is 

East wind again the next time; otherwise the next player 

becomes East wind. The display shows which wind each 

player corresponds to, both by name and by number, and 

puts an asterisk by the one that is ‘wind of the round’. (The 

number is needed for scoring the flowers and seasons; if the 

flowers and seasons are not numbered in your set, you will 

want to put their names on the screen above the names of 

the winds. Which is wind of the round has a minor effect on 

the scoring.) Below the players’ names it shows the scores 
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for the most recent hand (with an asterisk by the winning 
player's score) and the total points for each player. Whether 

you regard these as pence, pounds, or just numbers 
depends on the kind of stakes you like to play for. 

10 REM Mah-jongg scoring 
20 DIM n$(4,7): DIM n(4): REM players’ names 

30 DIM s(4): REM score this hand 

40 DIM t(4): REM total score 
50 DIM w$(4,5): REM winds 

60 LET w$(1)=" East": LET w$(2)="South" 
70 LET w$(3)=" West": LET w$(4)="North" 

100 FOR i=l TO 4 

110 INPUT (wS(i);" wind player’s name? "); s$ 

120 LET n$(i) = s$: LET n(i) = LEN s$ 

130 NEXT i 

140 LET e wind = 1: REM Player who is East wind 
150 LET w round = 1: REM wind of the round 
160 LET winner = 0: REM winning player, 0 if none 

200 REM here at start of each hand 
210 GOSUB 2000: GOSUB 2300 
220 INPUT "Winner? (Give number of wind,", 

"or zero if no winner) "; winner 
230 LET winner = INT (winner+0.5) 
240 IF winner<0 OR winner>4 THEN GOTO 220 
250 IF winner=0 THEN GOTO 700 

260 LET winner = winner + e wind - 1 

270 IF winner>4 THEN LET winner = winner-4 
300 FOR i=l TO 4 

310 INPUT (n$(i,TO n(i));'"’s score? "); s(i) 
320 LET s(i) = INT (s(i) + 0.5) 

330 NEXT i 
400 REM Display scores to check 
410 GOSUB 2000: GOSUB 2200 
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420 
430 
440 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 
700 
710 
720 
730 
740 
750 
760 
770 
800 
810 
820 

2000 
2010 
2020 
2030 

2040 
2050 
2060 
2070 

INPUT "Scores correct? (Y/N) "; r$ 
IF rg="N" OR r$="n" THEN GOTO 220 
IF rgO"y" AND r§<"y" THEN GOTO 420 

REM here if OK, work out new totals etc 

FOR i=l TO 3 

FOR j=it+l TO 4 

REM work out net amount j pays to i 

LET p = s(i)-s( j) 
IF i = winner THEN LET p = s(i) 

IF j = winner THEN LET p = -s( j) 

IF i = e wind OR j = e wind THEN LET p = 2%*p 

LET t(i) = t(i) +p 

LET t(j) = t(j) - Pp 
NEXT j 

NEXT i 

REM see if winds change 
IF winner = e wind THEN GOTO 800 

LET e wind = e wind + 1 

IF e wind <= 4 THEN GOTO 800 

REM end of round 

LET e wind = 1 

LET w round = w round + 1 
IF w round > 4 THEN LET w round = 1 

REM display new position 

GOSUB 2000: GOSUB 2200: GOSUB 2300 
GOTO 220 

REM display headings of scoresheet 
CLS 

FOR i=l TO 4 

LET j = i - e wind + 1: IF j<1 THEN 

LET j = #4 

LET f$="_": IF j = w round THEN LET fs="*" 

PRINT 3; f£$; w$(j)5 " "5 
NEXT i 

PRINT: PRINT 
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2100 
2110 
2120 

2130 
2140 
2150 
2200 
2210 
2220 
2230 
2240 
2250 
2260 
2270 
2300 
2310 
2320 
2330 
2340 
2350 
2360 

2370 

REM names 

FOR i=l TO 4 

PRINT n$(i); " "3 
NEXT i 

PRINT: PRINT 

RETURN 

REM display scores last hand 

FOR i=1 TO 4 

LET f$=""": IF i=winner THEN LET f$="*" 

LET v$ = STRS s(i) 

PRINT " MULEN wSe TOUS) v5 pe Ess OP 
NEXT i 

PRINT: PRINT 

RETURN 

REM display total scores 

FOR i=l TO 4 

LET v$ = STRS$ t(i) 
IF v$(1) > "0" THEN LET v$ = "+" + v$ 

PRINT " "(LEN v$ TO 6); v$; ""; 
NEXT i 

PRINT: PRINT 

RETURN 

Once the scores for the individual hands have 
been added up, all the scorer has to do is type them into the 

computer, and the computer does all the arithmetic. The 

scorer then has no excuse not to help with building the wall 

In the same way that the darts scoring program 

was enhanced to allow the individual dart scores to be 

input, this program could be adapted so that the various 

pungs, kongs, flowers, seasons, etc. are input separately. 
The amount of detail the scorer would need to type in to do 

the job thoroughly is so large that it is probably not worth the 

effort, especially considering that the ZX BASIC allows you 
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to type in a number in a form such as 

(44448416420) *2*2 

if you do not want to do the adding up and doubling 

yourself. 
Similar techniques can be used to write a program 

for scoring at bridge. In rubber bridge, for instance, the 

program should ask for the contract (which side, suit, 
number of tricks, whether doubled) and then for the number 

of tricks actually made; it is then quite simple to work out the 

scores, being careful to keep separately the scores above 

and below the line. The program must also allow for extra 

scores to be added, e.g. for honours. It should keep track 
of, and show on the screen, which side is vulnerable and 

when a rubber is won 
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ESS} 
FOR PLAY E 

There are many games which involve two people 

who move alternately, with a board or some other means of 

showing the current state of the game. This chapter deals in 

particular with games in which the outcome depends solely 
on the players’ choice of moves; these include not only 

board games such as chess and draughts (or checkers), 
but also games such as nim which do not require a special 

board or set of pieces. Games which include chance 

elements such as throwing dice or turning up cards froma 

pack are mentioned briefly at the end of the chapter. 
A game which is simple enough to demonstrate the 

principles involved without requiring a very large program is 
noughts and crosses. The following program (written for the 

Spectrum but easily converted for the ZX81) allows two 

people to play noughts and crosses without using any 

paper or pencil. 

500 REM noughts and crosses 
550 REM define graphics shift A 

to be same as on ZX81 

560 FOR i = USR "a" TO USR "'a"+6 STEP 2 

570 POKE i, BIN 10101010: POKE i+l, 

BIN 01010101: NEXT i 

700 REM draw the "board" 
710 CLS 

720 FOR i = 5 TO 15 
730 FOR j ="8 TO 12 STEP 4 

740 PRINT AT i,j+5; "A"; AT j,i+5; "A" 
750 NEXT j: NEXT i 
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760 

770 

800 
810 
820 
900 
910 
920 
930 
940 
950 
960 
970 
980 
990 

1000 
1010 
1020 
1400 
1410 
1500 
1505 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
1580 
1590 
1600 
1610 
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PRINT AT 3,11;'1 Canon, 
PRINT AT 6,8; "a"; AT 10,8; "b"; 

AT 14,8; "c" 
DIM b$(3,3): REM board matrix 
LET moves = 0: REM number of moves so far 
LET p$ = "X'': REM player whose move it is 

REM play game 
INPUT (p$);"’s move? "; m$ 
IF LEN m$ © 2 THEN GOTO 910 

LET x=1: LET y=2 

IF m$(1)<="3" THEN LET x=2: LET y=1 

LET i = CODE m$(x) - CODE "A" - 1 

IF i>3 THEN LET i = i - (CODE "a" — CODE A") 

LET j = CODE m$(y) - CODE "0" 

IF i<l OR i>3 THEN GOTO 910 

IF j<l OR j>3 THEN GOTO 910 
IF b§(i,j) <> " " THEN GOTO 910 

LET b§(i,j) = p$ 
LET moves = movestl 

REM display move on board 
PRINT AT 24+4*i,7+4%j; pS 

REM check for win 

REM check rows 
FOR n=l TO 3: FOR m=1 TO 3 

IF b$(n,m) <> p$ THEN GOTO 1550 
NEXT m 
GOTO 1740 
NEXT n 

REM check columns 
FOR n=l TO 3: FOR m=1 TO 3 

IF b$(m,n) <> p$ THEN GOTO 1610 
NEXT m 

GOTO 1730 
NEXT n 



1620 
1630 

1640 

1650 
1660 
1670 
1680 

1700 
1710 
1720 
1730 
1740 
1800 
1810 
1820 
1830 
1840 

REM check diagonals 
IF b$(1,1)=p$ AND b$(2,2)=p$ AND bS(3,3)=p$ 

THEN GOTO 1720 

IF b$(1,3)=p$ AND b$(2,2)=p$ AND bS(3,1)=p$ 
THEN GOTO 1700 

LET p$ = CHR§$(CODE "X" + CODE "0" — CODE p$) 
IF moves<9 THEN GOTO 900 
PRINT AT 21,0; "Game drawn" 

GOTO 1820 

REM cross through winning line 
PLOT 84,52: DRAW 80,80: GOTO 1800 
PLOT 84,132: DRAW 80,-80: GOTO 1800 
PLOT 60+32*n,132: DRAW 0,-80: GOTO 1800 
PLOT 84,156-32*n: DRAW 80,0 

REM here when game won 

PRINT AT 21,0; p$;" wins" 
INPUT "Another game? (Y/N) "; a$ 
IF a$="Y" OR aS="y" THEN GOTO 700 
IF aS©"n" AND aSO"N" THEN GOTO 1820 

The As in line 740 are in graphics shift; after the program is 
first run they will be seen to have changed to grey squares. 
The character string on line 760 has three spaces between 

the 1 and the 2, and three more between the 2 and the 3. 

The move is input in the form of a letter and a digit, 

being the 'map reference’ of the square in which the symbol 

is to be placed. The letter and digit may be in either order, 

and the letter may be in upper or lower case: for example 

the righthand square in the middle row may be identified as 

‘B3’ or ‘b3' or '3B’ or ‘3b’. The program should explain this to 

the user if a wrong format is given, so that lines 920, 980, 
980, and 1000 should not jump directly to 910 but first 

output a suitable message. 

The state of the game is stored in the array b$ 
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which has one element for each of the nine squares in the 

3x3 grid. Each element holds either an X oran O ora 

space. Making a move consists of writing the appropriate 
symbol in the appropriate element of 6$; having made a 

move we look to see if the player who made the move has 

won, and if he has not we offer the other player a move. 

Although this may seem an obvious way of storing 
the position, it is by no means the only way. Make the 

following changes to the program: add 

600 
610 
620 
630 

640 
650 
660 
670 

REM define value of each square 

DATA 1344, 4160, 16449 
DATA 1040, 4369, 16400 
DATA 1029, 4100, 16644 

DIM v(3,3) 
FOR i=l TO 3: FOR j=l TO 3 

READ v(i,j) 

NEXT j: NEXT i 

replace lines 800 to 910 by 

800 
810 
890 
900 
910 

DIM m(2,5): REM moves played 

LET move = 1: REM current move number 

REM each player moves, p=l for X, p=2 for 0 

FOR p=1 TO 2 

INPUT "XO"(p); "’s move? "; mS 

and replace lines 1000 to 1810 by 

1000 
1010 
1020 
1030 
1040 
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LET k = v(i,j) 
FOR n 1 TO move 

IF m(1,n)=k OR m(2,n)=k THEN GOTO 910 

NEXT n 

LET m(p,move) = k 
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1400 
1410 
1500 
1510 
1520 
1530 

1540 
1550 
1560 
1570 
1580 
1590 
1600 

1610 
1620 
1630 
1700 
1711 
1712 
1713 
1714 
1715 
1716 
Liha 
1718 
1750 
1760 
1770 
1800 
1810 

REM add move to board 
PRINT AT 24+4%i,7+4%5; "XO"(p) 

REM check for win (3 in a row) 

LET s=0 
FOR i=l TO move 
LET s = s + m(p 

NEXT i 

FOR i=l TO 8 

oi) 

LET k = INT (s/4) 
IF s-k*4 = 3 THEN GOTO 1750 
LET s =k 

NEXT i 

IF move=5 THEN PRINT AT 21,0; 
GOTO 1820 

NEXT p 
LET move = move + 1 

GOTO 900 
REM cross through winning Line 

DATA 84, 52, 
DATA 84, 60, 
DATA 84, 92, 
DATA 84, 124, 
DATA 84, 132, 
DATA 92, 132, 
DATA 124, 132, 
DATA 156, 132, 

RESTORE 1710+i 

READ x,y,dx,dy 

PLOT x,y: DRAW 
REM here when game won 

PRINT AT 21,0; "XO"(p); " wins’ 

80, 80 
80, (0) 

80, 0 
80, (0) 
80, -80 
OF eso) 
0, -80 
0, -80 

dx ,dy 

"Game drawn'': 
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Although the new program behaves in just the 
same way as far as the user is concerned, the way in which 

it stores the state of the game is very different. Instead of 

keeping a record of the symbol that is in each square, it 

keeps a record of the moves that have been made; 
moreover it uses a rather peculiar set of numbers to 

represent the nine possible squares in which each player 

can place his symbol. 

There are eight ‘lines’ along which a winning set of 
three symbols can lie: three horizontal, three vertical and 

two diagonal. The number of symbols a player has on any 
given line can be 0, 1, 2, or 3. We give the lines values each 

of which is four times the last, viz. 1, 4, 16, 64, 256, 1024, 

4096, and 16 384; we arbitrarily choose to allocate them in 

the order 

1 diagonal bottom left to top right; 

4 bottom horizontal line; 

16 middle horizontal line; 

64 top horizontal line; 

256 diagonal top left to bottom right; 

1024 lefthand vertical line; 

4096 middle vertical line; 

16384 righthand vertical line. 

The value of each square is the sum of the values of all the 

lines it appears in: thus the top lefthand square has the 
value 64+256+ 1024 and the square in the middle of the 

bottom row has the value 4+4096. The complete diagram is 
given below. 
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600 
610 
620 
630 
640 
650 
660 
670 
680 
690 

Note that instead of simply loading the values into v 
with the READ command we could have calculated them by 

REM define value of each square 

DIM v(3,3) 
LET v(3,1)=l: LET v(2,2)=1: LET v(1,3)=1 
LET j=4: FOR i=3 TO 1 STEP -l 

FOR n=] TO 3: LET v(i,n)=v(i,n)+j: NEXT n 

LET j=j*4: NEXT i 
FOR n=l TO 3: LET v(n,n)=v(n,n)+j: NEXT n 
FOR i=1 TO 3: LET j=j*4 

FOR n=1 TO 3: LET v(n,i)=v(n,i)+j: NEXT n 

NEXT i 

At line 1000 in the new program we store in k the 
value of the square the player has chosen and then (lines 

1010 to 1030) see if either player has used that square 
already. If not, the move is valid and is added to the record 

of moves and to the picture. 

In the earlier program, the code to see if a line of 

three has been made is very straightforward: for each row, 
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column, and diagonal it looks to see if all three squares 
contain the symbol of the player who has just moved. 

The code in the new program is shorter but it is 

less easy to see what is going on. First we add up all the 
moves the player has made: lines 1510 to 1540 set s equal 
to the total. Then we repeatedly divide this total by four; kis 
the quotient, and s—k*4 is the remainder, so line 1570 looks 

each time to see if the remainder is 3. Remember that sis 
the total of the scores of all the squares in which the player's 

symbol has been placed, and each square scores 1 if itis in 

the bottom-left-to-top-right diagonal, 4 if it is in the bottom 
row, 16 if it is in the middle row, and so on. All the scores 

except for the diagonal are multiples of 4, all except that 

and the bottom row are multiples of 16, and so on. 
The first time the program divides s by 4, therefore, 

the remainder is the number of moves that were in the 

bottom-left-to-top-right diagonal. If this is 3 then the player 
has occupied all three squares in the diagonal and has won; 

lines 1750 to 1770 read the co-ordinates of the line through 
this diagonal (from line 1711) and draw it. Note that the 

player cannot play in more than three squares along the 

diagonal, and thus cannot score enough in 1s to ‘carry over’ 

into the 4s. 
If the first remainder is not 3, s is set to one quarter 

of its previous value; i.e, the bottom row now scores 1, the 

middle row 4, the top row 16, and so on. The diagonal that 
we have already dealt with no longer scores at all. On its 

second time through |ine 1570, the program looks at the 

remainder when this new s is divided by 4, i.e. at the 

number of squares occupied in the bottom row. As before, if 

it is 3 we jump to line 1750 to draw through the winning line. 
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This time /is 2 so the DATA are taken from line 1712. 

Each time round the loop the count of squares 

occupied in another row is separated out until all eight have 

been considered. If one of them proves to have all three 
squares occupied by the player, the game is won and at line 
1770 the program draws through the winning line. 

PLAYING AGAINST THE COMPUTER 

Having programmed the computer to make moves 

that are dictated to it, and to recognise when one side has 

won, the next step is to make the program able to play one 

side itself. For example we may add the following to the 

noughts and crosses program. 

590 LET auto = 2 

905 IF p=auto THEN GOTO 1100 

1050 GOTO 1400 

1100 REM computer’s move 

1110 LET i = INT (RND * 3) 

1120 LET j = INT (RND * 3) 

1130 GOTO 1000 

and change line 1020 to jump to line 905 instead of 910 if 

the square is already occupied. Line 590 defines that the 
program will play second: you may prefer to set to 1 instead, 

so that the program will play first, or to ask the user whether 
the program should play first (auto=1) or second (auto=2) 
or not at all (auto=0). 

In this version, the program's moves are purely 

random: it keeps choosing a random square until it finds 

one that is not already occupied, and does not make any 
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effort to form a line of three. If you occupy two squares ina 

line of three and the third is free, your opponent should 

move in the third square, but the program is as likely to 
move in any of the other available squares and let you win. 

In short, the program does not make any attempt to win the 

game, nor even to defend itself when it is losing. This makes 
ita rather unsatisfactory opponent, as it is much too easy to 

beat. 
You can use a similar technique to that on lines 

1510 to 1590 to make the program look for two in a row (in 

which s—k*4 = 2), looking first for a row in which it can make 

a winning move (one in which it scores 2 and you score 

none) and then for one in which you will make a winning 
move if it does not get there first (one in which you score 2 

and it scores none). Only if no such row is found will it move 
randomly. Having decided to move in a particular row, it 

must of course then discover which square to choose: after 

LET k = INT (v(i,j) / n) / 4 

the value of 

k > INTk 

will be true if square (i,/) is in the row, column, or diagonal 

that scores n and false if it is not, and it will not take long for 

the program to simply try all the squares that are not yet 

occupied until the correct one is found. 
The program would not then play like a complete 

idiot, but you would still be able to beat it fairly often, and it 
would only beat you if you were both careless and unlucky 

at the same time. 
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For the program to be able to play more 
competently, it needs to be able to look ahead and see what 

further moves will be possible from each of the positions it 

can move to. For instance, consider the following position in 
which it is O's move; the squares are numbered in the same 

way as in the program: 

1 2 3 

a | 1629 
FASS IS 

b Nea! 
pea eats peat es 

ic xed | 

If O moves into square 61, X is then able to move into 

square c3 giving the position 

| Dard) 
pelape pe ieee tars 

Ope aa 
aeaialae lise (eet 

Kol janes 

from which X can win because he can complete a line by 
playing at either a1 or c2; if O blocks one of them by playing 

at a1, say, X can still play at c2 and win before O has a 

chance to complete the line in row a. 
Thus although the move in 61 would not be seen as 

alosing move by the program just described, we can see 

that if O plays this move then he will lose unless his 
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opponent is very careless. Indeed, of the six possible 

moves in this position four (a2, 61, 63, c2) are losing moves, 

so that if you are X in this position you have a 2 to 1 chance 
of beating the program. 

(If you make your first move in the centre, then the 

program will move either in a corner square such as a or in 

a centre-edge square such as a2. In the former case you 

can, as we have seen, win two games out of three by 

playing in the opposite corner; in the latter case you can 

always win by playing anywhere except directly opposite: if 

the program has played in a2 you can win if you play in any 
square except c2. Because the program plays randomly, if 

you start in the centre every time then, on average, out of 

every six games the program will play in a corner square in 
three, two of which you will win, and in a centre-edge square 
in three, all three of which you will win. On average, then you 
should win five out of six games, so the odds are 5 to 1 in 
your favour.) 

If the program is to find the ‘best’ move in any 

Position then it must be able to ascribe a value to each 

possible move, and have objective criteria for calculating 
this value. In fact we tend to talk interchangeably about the 

value of a move and the value of a position: the value of a 

move is the same thing as the value of the position moved 

to. In many two-person games, including noughts and 
crosses, the possible values are simply ‘win’, ‘draw’, and 
‘lose’, which are often represented as 1, 0, and —1. (In other 
games it can matter not just whether you win or lose but also 

by what margin: you may have a choice of three moves, all 

of which lose, but if one loses you £1 and the others lose you 
£5 you will choose the £1 move.) 
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The rule used by a program to find the value of a 

position (except one at the end of the game for which we 

know the value anyway) is: the value of a position to the 

player whose turn it is to move is the greatest of the values 

of the moves he has available to him. 
Thus if it is your move and you have a winning 

move available to you then you are in a winning position, 

even if you have a lot of other moves available which do not 

win. From your opponent's point of view, of course, the 

situation is reversed: if there is one move available which will 

result in him losing then it is a losing position (although he 

can always hope that you will not spot the vital move). 

The basic structure of a routine which finds the 

value of a position in this way is: 

define "value of (p)" as: 

if end of game then [calculate value directly] 

else: let v = worst possible value for the 

current player 

now let q be, in turn, each position 

we can move to 

for each q, let v2 = value of (q), and 

if v2 is better than v then 

let v = v2 

when all moves have been considered, 

value is ve 

This causes two main problems when we try to 

227 



implement it in BASIC. First, the routine is ‘recursive’, which 
means that it is defined in terms of itself. Suppose we have a 
position p1 from which we can move to p2, p3, or p4, and 
suppose p2 is a drawn position (at the end of a game) but 
p3 is a position (not at the end of a game) which turns out to 

be lost. When value of (p3) is worked out, variable vis used 

to hold ‘value of the best move from p3 so far found’ (in this 

case ‘lose’), but we must not overwrite the variable v which 

holds ‘value of the best move from p1 so far found’ (in this 

case ‘draw'). Languages which are ‘block structured’, such 
as Algol and Pascal, take care of this kind of problem more 
or less automatically, but in BASIC we need to make 

provision for it in the program. 

Secondly, this innocent-looking little routine can 

take an enormous amount of time to run. Suppose we are 

looking at the first move in a game of noughts and crosses: 
there are nine possible moves, so the routine is called for 

each of them. Within each of these nine calls, the routine is 
called again for each of the second player's eight possible 
moves, a total of 9x8 or 72. Within each of these 72 calls, 
the routine is called again for each of the first player's seven 
possible second moves, a total of 727 or 504 calls at this 

level. Within these we have 504x6=3024 calls to find the 

value of the second player's second move, which in turn 

involves 15 120 calls to find the value of the first player's 

third move. Of these, 2880 will be for ‘end-of-game' 
positions in which the first player has won but the other 12 
240 all give rise to further calls: it can be shown that for each 
one there will be at least 13 but less than 64 further calls. 

Adding up all the calls at the different levels, we 
can see that there wil! be at least 177 850 (but less than 
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802 090) calls, every one of which must at least check to see 

whether the game has been won. If we reckon that this will 

take around a hundredth of a second each time, it means 

that the program will take between half an hour and two 

hours to decide on its first move. In fact the time per call is 

likely to be nearer a tenth of a second than a hundredth, so 

the program could take anything up to 20 hours over its first 

move if it plays first, and 2 hours if it plays second 

There are two ways that this time can be reduced: 

itis clearly helpful if we can reduce the time taken to 

discover if a position is a winning position, but it is equally 

clear that we must make a significant reduction in the 

number of positions that the program considers 

The method of identifying winning positions used in 

the second version of the program in this chapter works very 

well in machine code and in some programming languages. 

This is because the number s which the program works out 

on lines 1510 to 1540 is held inside the computer as a bit 

string 16 bits long with 2 bits for each row, and the 

computer can in two or three operations (which work ona bit 

string as a whole) find out whether any row has the value 3. 

RECURSION - a technique whereby a function or rout 

defined in terms of itself (e.g. factorial n defined as ‘if n=0 then 

4 else n« factorial n—1') so that during evaluation (say of facto- 

rial 5) the computer breaks off to go through the same code 

with different data (to evaluate factorial 4, 3, etc) 

ITERATION - the alternative to recursion, in which the repeti- 

tion of part of the code is explicit (as in the FOR loop) rather 

than implied by a call. An iterative definition of factorial n would 

be ‘let f=1: for i=1 ton: let f=f+i: next /’ 
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However, in BASIC we have to break s down into eight 
numbers, and moreover we have to do this using the ‘divide’ 

operator, which is one of the slower ones. 

(The new program given below in fact retains the 

old method in the part that actually makes the moves. This is 

not strictly necessary although it does give a check that the 
part of the program that chooses the computer's move is not 

‘cheating’. It was done to avoid changing the program more 
than is necessary to add the new facility.) 

The program below uses the following arrays: 

(92) holds the content of each of the squares as 1 for X, —1 
for O, zero if empty. The squares are numbered 1, 2,.. ., 9 

rather than (1,1), (1,2), .. ., (3,3) to save time. 

w(8) saves the value of v (which is essentially the vin the 
informal description of the routine above) at each ‘level’ of 
call. 

n(9) similarly saves i, which keeps track of which move we 
are considering. 

r(45) consists of five numbers for each square, being the 

number of each line (row, column, or diagonal) the square is 

in, followed by enough zeros to make up five numbers (see 

lines 2010 to 2090). Again, one subscript rather than two is 
used for speed. 

c(8) counts the symbols in each line: 3 for three Xs (so X has 
won), 2 for two Xs (so X can win if it is his move), 1 for one X 

or two Xs and an O, 0 for no symbols at all, —1 for one O or 

two Os and an X, —2 for two Os, —3 for three Os. 

s(8,3) shows which squares make up each line (three 

squares to each of the eight lines: see lines 2100 to 2130 of 
the program). In this case there would be little advantage in 

making it use a single subscript. 
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The lines of squares are in the same order as 

before but numbered 1 to 8, so that 1 and 5 are the 

diagonals, 2 to 4 the rows, and 6 to 8 the columns. 
The routine has been put at the top of the program 

to reduce the time taken for GOTO and GOSUB, as 
explained in an earlier chapter. It works as follows. 

GOSUB 100 calculates, and stores in v, the value 
of the position after player q has moved in square /; q is 1 if 

the player is X, —1 if the player is O. The value is 1 if the 

position is a win for X, —1 if it is a win for O, zero ifitis a 

draw. 

After updating array p it sets about updating array 

c. Array rhas already been loaded with the data from lines 

2010 to 2090. Suppose for instance that /=3 so that /x5—4 
= 11;/will be set to 11 so the program reads the first of the 
numbers loaded from line 2030, and we repeat lines 110 to 

130 with r(/) being in turn 1, 4, and 8 because square 

number 3, which is at the top right, is in lines 1 (diagonal), 4 

(top row), and 8 (righthand column). Each time we update 
one of the elements of c, we check if the line now has two or 

three of the current player's symbols in it. On line 150 we 
recognise the position as a win if nis at least 2, which 

means that either there is now a row of three or else there is 

more than one row of 2, as in 

AMO safe 
ene Oe Se 

oe | 
a pe a te SE’ 

(aeba 

when X has just moved: each of the diagonals has two Xs, 
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and whichever of the bottom corners O plays in, X can play 

in the other and win. Note that the top row only scores 1 and 
thus does not count as having two Xs. 

lf there is just one line that scores 2, the opponent 
must play in the third square in that line; line 170 finds which 

square is still free. Thus after Xs move in 

DS | sie | 
Pees Me ey 

! | 
SR Ef Rares Ere eo 

Dest ! 

O must play in the top righthand corner and the program 
does not waste time considering the other five squares. 

Another test which reduces the number of 
positions considered is at the end of line 240, which looks to 
see if a winning move for the relevant player has been 

found: if it has, we have a winning position for that player 

and do not need to look at any further moves. 
The code to be added to the earlier program is as 

follows. Only line 1040 replaces an existing line, the rest is 
adgitional to the previous code. 

10 GOTO 500 
90 REM set v = value of move i 

100 LET p(i)=q: LET j=i*5-4: LET n=0 
110 LET k=c(r(j)): LET c(r(j))=k+q: 

IF k=q THEN LET n=ntl: LET n2=j 

120 IF k=q+q THEN LET n=2 

130 LET j=j+l: IF r(j)<>0 THEN GOTO 110 
140 IF n=0 THEN GOTO 210 
150 IF n>] THEN LET v=q: GOTO 320: REM win 
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160 

170 

180 
200 
210 
220 

230 
240 
250 
260 
270 
300 
310 
320 
330 

340 
500 
501 
510 

520 

530 
540 
550 

560 
570 

590 

905 

LET n(m)=i: LET q=-q: LET m=m+tl: 

REM opponent’s move forced 
LET i=s(r(n2),n): IF p(i)<>0 THEN 

LET n=n+l: GOTO 170 

GOSUB 100: GOTO 310 
REM look at all opponent’s moves 

IF m>7 THEN LET v=0: GOTO 320 

LET n(m)=i: LET m=m+l: LET w(m)=q: 

LET q=-q: LET i=l 

IF p(i) <> 0 THEN GOTO 260 
GOSUB 100: IF v=q THEN GOTO 310 

IF v=0 THEN LET w(m)=0 
LET i=i+l: IF i<l0 THEN GOTO 230 

LET v=w(m) 
REM now v = value; undo move & exit 

LET m=m-1: LET q=-q: LET i=n(m) 

LET j=i*5-4 
LET ¢(r( j))=c(r( j))-q: LET j=j+l: 

IF r(4)>0 THEN GOTO 330 

LET p(i)=0: RETURN 

REM 

REM start of program proper 

LET q=0: LET m=O: LET i=0: LET k=0: 

REM so they are first in v’bles area 

DIM p(9): DIM w(8): DIM n(9): DIM r(45): 

DIM c(8): DIM s(8,3) 

RESTORE 2000 
FOR n=1 TO 45: READ r(n): NEXT n 

FOR i=l TO 3: FOR n=l TO 8: READ s(n,i): 

NEXT n: NEXT i 

FOR i=USR "a" TO USR "a''t+6 STEP 2 

POKE i, BIN 10101010: POKE itl, BIN OLOLOLOL: 

NEXT i 

LET auto=2 

IF p=auto THEN GOTO 1110 

233 



1040 
1100 
1110 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1300 
1310 
1320 

1350 
1370 
1400 
1410 
1420 
1430 
1440 
1450 
1460 
1470 

2000 
2010 
2020 
2030 
2040 

234 

GOTO 1400 
REM computer’s move 

LET m=2*movetp-2: LET q=3-p-p: LET i=l 

FOR n=l TO 8: IF c(n)=q+q THEN GOTO 1230 
NEXT n 

FOR n=1 TO 8: IF c(n)=-q-q THEN GOTO 1230 
NEXT n 

REM evaluate each possible move 

IF p(i) <> 0 THEN GOTO 1210 
GOSUB 10: IF v=q THEN LET i2=i: GOTO 1370 

IF v=0 THEN LET i2=i 

LET i=it+l: IF i<10 THEN GOTO 1180 

GOTO 1370 
LET i2=n 

REM move in row i2 
IF p(s(i2),i)) <> 0 THEN LET i=i+l: GOTO 1310 

LET i2=s(i2,i) 
REM move in square i2 

LET Ge = INT (C143) Rey ad 2 = 13 3 

REM move in square (i,j) 
PRINT AT 2+4%1, 744445; "XO"(p) 
LET m(p,move) = v(i,j) 
LET q = 3-p-p 
LET p(3*i+j-3) = q 
LET n = 15*i + 5*j - 19 
LET k = c(r(n)): LET c(r(n)) = k+q 

LET n=ntl: IF r(n) <> 0 THEN GOTO 1460 

REM lines each square is in 

DATA 4,5,6,0,0 
DATA 4,7 
DATA 1,4 
DATA 3,6 

> 
,0,0,0 
»8,0,0 
,0,0,0 



ey 
> 

2100 REM squares in each line (read downwards) 

2110 DALAL A PAR Dy eT 
2120 DATA 5, 8,5,2, 5, 4,5,6 
2130 DATA 3, 9,6,3, 9, 7,8,9 

This version (which is written so that the computer 

plays secona) still looks at more positions than it needs to. It 
does not recognise symmetrical positions: for instance if 

your first move is in the centre, the program finds the value 
of moving in each of the eight remaining squares even 

though all the corner squares must have the same value, as 

must all the centre edge squares. By a more careful analysis 
of how the lines of squares are occupied, it could identify 

drawn positions, and winning moves, sooner. 

(To win, you need two intersecting lines in each of 

which there are none of your opponent's symbols and just 

one of your own, which must not be in the square which is 
common to both lines. If this situation exists, the move in the 

square that is common to both lines is a winning move and 
no other moves need to be considered. A position in which 

neither side has two such lines available is drawn. If the 
current player does not have two such lines available and 

the first move we look at achieves a draw, the position is 
drawn and we do not need to look at the other moves as we 

know none of them can win.) 

The program takes several minutes over its first 

move, and if it was changed so that the computer moved 
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first rather than second it would take about nine times as 
long. However, we can add 

1020 IF m<3 THEN LET i2=5: GOTO 1350 

1360 IF p(i2) <> O THEN LET i2=9: REM if 
from 1020 with m=2 & sq 5 oce’d 

so that if it moves first it always starts in the centre and if it 

moves second it moves in the centre unless you have 

already moved there, in which case it goes in one of the 
corners. This dramatically reduces the time required for the 

program to decide on its first move. It also makes the 

question of symmetry much less important, as it is in the 

earliest stages of the game that the symmetrical positions 

mostly occur. 

You might like to see all the various positions the 
program considers during its deliberations: this can be 

done by adding 

90 LET pos=0 

335 PRINT AT 20,post4;m;: FOR x=3 TO 9 STEP 3: 
PRINT AT x/3+18,pos;: FOR k=x-2 TO x: 
PRINT " " AND p(k)=0; "0" AND p(k)<O; 
"X" AND p(k)>0;: NEXT k: NEXT x: 
PRIN Bei he therws! 

LET pos=pos+6: IF pos>28 THEN 

LET pos=0:; 
PRINT ’’’’’: IF PEEK 23692>12 THEN 

POKE 23692, 12 

which prints out the position, move number, and value, 

before returning from each call of the subroutine 
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Unfortunately, it also destroys the display of the board and 
increases the time the program takes to run. 

Although keeping extra data about the position can 
help reduce the amount of calculation, it is important to 

remember that although it saves work it also creates extra 

work maintaining the extra data structures. For instance, 

suppose that instead of the array p, which shows what is in 

each square, we kept a list of the squares that have not yet 

been occupied. Then for the eighth or ninth move in the 

game the program would not need to search through p 
looking for the one or two remaining squares. But the effort 
of maintaining the list would be more than the small amount 

of looping around lines 230 and 260 that would be saved. 
In contrast to the earlier programs which hardly 

ever won and often lost, this program never loses. As an 

opponent you might find this even more unsatisfactory, but it 
is a fault of the game rather than of the program. Some 
pdssible improvements include choosing a move at random 

from among the available moves (excluding, of course, 
those moves that would lose) instead of the present regime 
of always taking the last one found; and perhaps making 

occasional random moves which might be losing moves (so 

the program behaves more like a human player). It could 
also take account of having a fallible opponent by preferring 

moves from which a win could occur if its opponent made a 

mistake, for instance all the possible second moves for X 

after 

loci | 
pater ene eee Depa ele naa me 

| | 
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are drawn, but, whereas most of them more or less force a 

draw, playing in the bottom lefthand corner gives O plenty of 

opportunity to make a losing move. 

OTHER GAMES 

Other two-person games, such as chess, go, 

draughts, and othello, are programmed in essentially the 

same way. The computer works out the value of the various 

available moves using the algorithm given earlier, and the 
number of positions to be considered has to be kept within 

reasonable bounds. The main techniques we used here 
were to treat the opening moves of the game specially, 

relying on past experience rather than analysing the 

position afresh every time; to recognise when a player's 
move is forced; and to recognise won and drawn positions 

as early as possible. 
Except with very simple games like noughts and 

crosses, it is also necessary to limit how many moves ahead 

the program looks. (In the program above, once we had 
eliminated the first two moves the length of the game limited 

it to looking about six moves ahead.) When it reaches the 
limit, it has to use some other measure of the ‘value’ of a 

position; in chess this might take account of the number of 
pieces each side has on the board, which pieces are en 
prise, and the extent to which each side has control of the 
centre of the board. The program needs to be somewhat 
flexible about where the limit comes, not stopping in the 
middle of a sequence of captures or while a player is in 

check. 

In general you should expect that to write a 

program that plays a game as complex as chess at all 
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competently you will need to use a language that is rather 

more efficient than ZX BASIC. 

For games that involve a random element, the 

amount of looking ahead that can be done is severely 

constrained by not knowing what card will be turned up 

next, or what number will come up at the next throw of the 

dice. The program can, of course, consider all the possible 

outcomes of the random element, but this is likely to cause a 

big increase in the number of positions to be looked at, and 
hence decrease the distance ahead that the program can 
look in a reasonable time. The program's performance 

therefore depends much more on considering the apparent 

worth of a position than on considering the moves that can 

be made from it; how this ‘apparent worth’ can best be 
calculated will depend very much on the game and itis 

difficult to give any general rules for it, except to reiterate 

that it must be able to be calculated from numerical 

properties of the position and cannot include any subjective 
criteria. 
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3 

ANIIMIATT ION 

The main limitation to providing moving pictures on 

the TV screen is the slowness of the ZX BASIC language. In 

most cases a fair amount of calculation is needed to 

produce each frame of a moving picture, and it is unrealistic 

to expect to be able to do it in the 25th of a second or so that 

would be needed to produce a picture that appears to move 

smoothly. 

For some kinds of moving display, you do not need 

to change the picture this often. To display a clock, for 

instance, you only need to change the picture once per 

second: the manual contains a suitable program (at the start 

of Chapter 19 in the ZX81 manual, Chapter 18 in the 

Spectrum manual) for one which contains only a second 

hand, and one of the exercises at the end of that chapter 

suggests you should extend the program to draw the hour 

and minute hands as well 

To get an idea of how fast the Spectrum can draw 

and redraw things, use the following ‘jiffy’ program. (A ‘jiffy’ 

program is a short program that is written quickly and is 

intended to be ephemeral. Hence, for instance, we do not 

bother to put captions in the INPUT command.) 

10 OVER 1 
20 INPUT k,s 
30 LET n = INT (176/k) - 1 
40 LET m = xntl) * (k-1) 
50 FOR i=s TO 255 STEP s 
60 FOR j=0 TO m STEP ntl 
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70 PLOT i,j: DRAW O,n 
80 PLOT i-s,j: DRAW O,n 

90 NEXT j 
100 NEXT i 

110 GOTO 20 

This draws a line up the screen in k segments and moves it 

across the screen in steps of s pixel-widths at a time. (It 

also, rather messily, leaves a line at each side of the screen; 

this can be eliminated by adding 

43 FOR j=0 TO m STEP n+l 
45 PLOT 0,j: DRAW 0,n 
47 NEXT j 

103 FOR j=0 TO m STEP n+l 
105 PLOT i-s,j: DRAW 0,n 
107 NEXT j 

but you might not think it worth the effort.) 

By experimenting with different values of k and s 

you can see just how fast (or not so fast!) the computer can 

move things around on the screen. When k is small it has 

very little effect on the soeed because most of the time is 

taken up actually drawing the line, but as k gets larger the 

various overheads such as interpreting the DRAW and 

PLOT commands become more important. You could 

investigate the effect of line length by INPUTting a third 

parameter, / say, and replacing n with / in lines 60 and 70 

(and 45 and 105 if you have them), or by simply replacing n 

in these lines by a constant. 

For the ZX81 a similar program can be used: 

10 SLOW 
20 INPUT k 

242 



30 INPUT s 

40 LET n = INT (44/k) 
50 LET m =n * (k-1) 
60 FOR i= s TO 63 STEP s | 
7O FOR } = 0 TOm STEP n 
80 PLOT i,j 
90 UNPLOT i-s,j 

100 NEXT j 
110 NEXT i 
120 GOTO 20 

Again, it shows how a very small amount of redrawing takes 

anoticeable amount of time. It has to run in SLOW mode, 

because otherwise you do not see anything until it has 

finished. 

The following program for the Spectrum draws a 

matchstick figure which walks across the screen. 

10 DIM u(7): DIM v(7): REM params for current 

figure 

20 DIM t(7): DIM w(7): REM params for previous 

figure 

30 DIM q(7): REM preserves old u() in 

calculations 

40 DIM x(7): DIM y(7): REM params for first 

figure 

100 REM parameters for start of stride 

110 LET x(1) = 40: LET y(1) = 30 

120 LET x(2) -2.5 * SQR 3: LET y(2) = -2.5 ! 

130 LET x(3) = -20: LET y(3) = -8 * x(2) 

oe u nud 

140 LET x(4) = x(1) + x(3): | 
LET y(4) = y(1) + y(3) + 1 

150: LET x6). -10: LET y(5) = 4 * x(2) 

160 LET x(6) -10: LET y(6) = y(5) 
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170 
200 
210 
220 
230 
300 
301 

310 
320 
330 

340 
400 
410 
420 

430 

440 

450 

500 

510 
520 
600 
610 
620 
700 
710 

720 
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LET x(7) = 5: LET y(7) = 
REM initialise "previous figure" 

FOR i=l TO 7 
LET t(i) = x(i): LET w(i) = y(i) 
NEXT i 

REM set up coefficients for rotations 
REM the number following c or s is in 

degrees 

LET c3 = COS (PI/60): LET s3 = SIN (PI/60) 
LET c4 = COS (PI/45): LET s4 = SIN (PI/45) 
LET c7 = COS (7*PI/180): 

LET s7 = SIN (7*PI/180) 

LET cl0 = COS (PI/18): LET s10 = SIN (PI/18) 

REM now draw first figure 

OVER | 

PLOT x(1)-x(2),y(1)-y(2): DRAW x(2),y(2): 
DRAW x(3),y(3) 

DRAW x(5),y(5): DRAW x(6),y(6): 
DRAW x(7),y(7) 

PLOT x(4),y(4): DRAW 0,40: DRAW 7,-22: 
DRAW 24,3 

PLOT x(4),y(4)+40: DRAW 15,15: DRAW -15,15: 
DRAW -15,-15: DRAW 15,-15: DRAW -7,-25: 
DRAW 23,-7 

FOR i=2 TO 7 

LET u(i) = x(i): LET v(i) = y(i) 

NEXT i 

REM here to draw each eee figure 
FOR i=1 TO 20 

FOR j=2 TO 7: LET q(j) = u(j): NEXT j 
REM update params for next figure 

IF i<l1 THEN LET u(2) = c3*u(2) + s3*v(2): 
LET v(2) = c3*v(2) - s3*q(2) 

LET u(3)=c3*u(3)+s3*v(3): 

LET v(3)=c3*v(3)-s3*q(3) 



730 
740 

750 

760 

770 

780 

790 

800 
810 

820 

830 

840 

850 

860 

900 
910 
920 
930 
940 

LET u(4) = x(1)+u(3): LET v(4) = y(1)+v(3) \ 

IF i<ll THEN LET u(5) = cl0*u(5) - sl0*v(5): ij 

LET v(5) = cl0*v(5) + sl0*q(5) 

IF i>16 THEN LET u(5) = cl0*u(5) + s10*v(5): 

LET v(5) = cl0*v(5) - sl0*q(5) 

IF i<5 THEN LET u(6) = cl0*u(6) + sl0*v(6): 

LET v(6) = cl0*v(6) -— sl0*q(6) 
IF i>10 THEN LET u(6) = cl0*u(6) - sl0*v(6): 

LET v(6) = cl0*v(6) + sl0*q(6) 

IF i<]11 THEN LET u(7) = c7*u(7) + s7*v(7): 

LET v(7) = c7*v(7) - s7*q(7) 

IF i>10 THEN LET u(7) = cl0*u(7) - sl0*v(7): 

LET v(7) = cl0*v(7) + s10*q(7) 

REM undraw old & draw new 

PLOT t(1)-t(2), y(1)-w(2): DRAW t(2), w(2): 

DRAW t(3), w(3): DRAW t(5), w(5): 

DRAW t(6), w(6): DRAW t(7), w(7) 

PLOT x(1)-u(2), y(1)-v(2): DRAW u(2), v(2): 

DRAW u(3), v(3): DRAW u(5), v(5): 
DRAW u(6), v(6): DRAW u(7), v7) 

PLOT t(4), w(4): DRAW 0,40: DRAW 7,-22: 

DRAW 24,3 

PLOT u(4), v(4): DRAW 0,40: DRAW 7,-22: 

DRAW 24,3 

PLOT t(4), w(4)+40: DRAW 15,15: DRAW -15,15: 

DRAW -15,-15: DRAW 15,-15: DRAW -7,~-25: 
DRAW 23,-7 

PLOT u(4), v(4)+40: DRAW 15,15: DRAW -15, 15: 

DRAW -15,-15: DRAW 15,-15: DRAW -7,-25: 

DRAW 23,-7 

FOR j=2 TO 7 
LET t(j) = u(j): LET w(j) = v(j) 
NEXT j 
LET t(1) = x(1) 
NEXT i 
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950° LET x(1) = x(1) + 40 
960 GOTO 600 

There are 20 separate ‘frames’ to each stride. 
Lines 100 to 340 set up various parameters and calculate 

the sines and cosines of the angles that are going to be 

needed (3, 4, 7, and 10 degrees) to rotate the various parts 

of the legs from one frame to the next. Lines 400 to 450 draw 

he first frame, and lines 600 to 940 draw each subsequent 

tame, erasing the previous frame as it goes. A diamond 
shape is used instead of a circle for the figure’s head 
because circles take much longer to draw. 

The picture moves very slowly and rather jerkily; 

the program can be altered so that it calculates all the 

parameters (u, v, t, w) for each frame first and stores them in 
arrays, but this does not make it run much faster as much of 
he time is taken up actually drawing the lines. 

Often the picture does not need to be moved 
smoothly. In Space Invader type games, for instance, the 

effect is of the phalanx of aliens moving across the screen 

rom left to right and back again. If it was done by moving 

his part of the picture smoothly back and forth across the 
screen, it would require a great deal of work on the part of 

the computer, but if you look closely you can see that what 
actually happens is that the individual aliens jump sideways 
one at a time. This gives the effect of a smooth movement of 

he whole population, but in fact only a small amount of the 

screen is updated at a time, and that updating involves a 

ump of quite a large distance. You would draw the aliens 

using PRINT AT and graphics characters rather than with 
PLOT, so the sideways jump would be the width of a 

character square. 
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The following ZX81 program generates a picture 

which, while not containing any movement as such, is 

constantly changing. 

10 PRINT AT RND*21,RND*31; CHR$(RND*10) 

20 GOTO 10 

A similar thing can be done in colour on the 

Spectrum: 

10 PRINT AT RND*21,RND*31; PAPER RND*7; 

20 GOTO 10 

Unlike this book. these programs never finish. 
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The ZX Programmers’ Companion introduces 

the new programmer to the art and science of 
programming using the popular ZX machines 

and equivalent TS machines in the USA. 

The instruction manual that comes with the 

ZX computer has to be an introduction to all 

the facilities provided on the machine and 

how they are used. It does not have the space 

to say much about how to write programs to 

do particular jobs. The ZX Programmers’ 

Companion complements the manuals by 

explaining how to set about designing and 
writing programs for the ZX computers, and 

contains many examples of the kind of 
program that the ZX user might need. The 

steps in deciding the most appropriate way to 

tackle each problem are discussed and, 

finally, fully documented programs are given. 

The authors’ company, Nine Tiles Information 

Handling Ltd, was responsible for writing 
the instruction manuals and the built-in 

software for the ZX 81 and Spectrum 
machines, and this companion volume will be 

essential reading for all ZX users. 

ISBN O0-Se1-27044-6. 


